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Abstract—Fall needs to be attentively considered due to its
highly frequent occurrence especially with old people - up to one
third of 65 and above year-old people around the world are risk
of being injured due to falling. Furthermore, fall is a direct or
indirect factor causing severe traumas such as brain injuries or
bone fractures. However, timely medical attention might help to
avoid serious consequences from a fall. A viable solution to solve
this is an IoT-based system which takes advantage of wireless
sensor networks, wearable devices, Fog and Cloud computing. To
deliver sufficient degree of reliability, wearable devices working
at the core of a fall detection system, are required to work for
prolonged period of time. In this paper we investigate energy
consumption of sensor nodes in an IoT-based fall detection system
and present a design of a customized sensor node. In addition,
we compare the customized sensor node with other sensor nodes,
built on general purpose development boards. The results show
that sensor nodes based on delicate customized devices are more
energy efficient than the others based on general purpose devices
while considering identical specification of micro-controller and
memory capacity. Furthermore, our customized sensor node with
energy efficiency selections can operate continuously up to 35
hours.

Index Terms—Internet-of-Things, Fall Detection, Fog Comput-
ing, Energy Efficiency, Wearable Devices

I. INTRODUCTION

Internet-of-Things (IoT) is a concept that encompasses a
number of technologies, with the aim to extend Internet to
real-world objects [1]. With this approach, different quantities
which represent physical world, such as temperature, humidity,
acceleration, just to mention a few, will be digitized. Wireless
Sensor Network (WSN), plays a key role in IoT, acting as
a source of data, enabling digitalization. Collected data can
be further processed and analyzed by the means of fog [2]
and cloud computing. IoT application area is broadening,
currently including a number of domains [3], such as smart
environments, personal and social fields, transportation, and
logistics. The field of health-care is one of the most important
areas covered. As predicted in [4], health-care will shift to
home-centered fashion by 2030. Pervasive nature of IoT might
significantly contribute in the change.

According to World Health Organization [5], falls are one of
the dominant health-related issues among elderly. According to
[6], more than one third of 65 (and above) year-old falls each
year. Falls might lead to serious injuries such as head traumas
or brain damages. Delay in a medical treatment in such cases

threatens patient’s life [7], [8]. However, only a half of the
patients reports about the incident. Unreported cases might
lead to dangerous health related problems. A quick response
on the incident might decrease the risk of serious medical
conditions after a fall.

Fall detection systems in this regard play an important
role. They can be categorized into wearable and context-aware
systems [9]. Latter systems feature environmental sensors such
as microphones and cameras, placed around a patient to be
monitored. Wearable systems estimate patient’s movements
by exploiting sensors attached to the body. Popular wearable
solutions employ accelerometers and gyroscopes attached to a
patient.

Operations in the scope of IoT, can uncover new outlook
on wearable fall detection systems: computational capacities
of the fog can be used to reduce the workload of wearable
devices thus prolong the duration of its operational time; cloud
will allow to analyze and store gathered data and notify an
appropriate caregiver almost in a ubiquitous way.

In this work, we investigate primarily energy consumption
sources together with a total energy consumption of wireless
sensor nodes in a fall detection IoT-based system. We design
a simple customized wireless sensor node and compare that
with other sensor nodes based on general purpose systems
in terms of energy consumption to explore ways of building
energy efficient wearable sensor nodes. We demonstrate that
by applying our method of customizing sensor nodes for a
IoT-based fall detection system will lead to an energy efficient
system design.

The remainder of the paper is organized as follows: Section
2 presents related works and motivations. Section 3 discusses
system architecture and fall detection algorithm. Section 4
presents experimental setup and implementation. In section
5, experimental results are shown. Section 6 considers discus-
sions and Section 7 concludes the work.

II. RELATED WORK AND MOTIVATION

Reliability of a fall detection system is multifaceted. We
argue that the most important ones include fall detection
accuracy, operational time of the system and ability to timely
deliver a notification about a fall.

Core building blocks of fall detection systems are usually
embedded in wearable device accelerometers and gyroscopes,



or cameras. In series of works, authors focus on improving
the accuracy of fall detection system by combining several
building blocks. In [10] Casilari et al. use an accelerometer
and a gyroscope, embedded in a smart phone and a smart
watch, in [11] authors exploit a depth camera together with
an accelerometer-based wearable to increase the accuracy.
Other works [12], [13] target quality (sensitivity, specificity,
accuracy) of fall detection algorithms, as it sets the scope
of their application. Although energy efficiency of a system
directly affects duration of its work, and therefore, its relia-
bility, it lacks due attention. A wearable device designed to
fulfil the demands for both preserving patient’s lifestyle and
providing constant monitoring, should be capable of working
for prolonged periods autonomously. This requirement makes
a wearable a bottleneck of a whole system when considering
duration of work.

General purpose development devices e.g. Arduino Uno, Fio
are widely used as the central computational part of a sensor
node of fall detection systems [14], [15]. Due to large current
draw, these general purpose systems cannot be considered
energy efficient. In order to improve energy efficiency, a
delicate device can be utilized. In addition, the relationship
between sensors’ sampling rate and communication data rate
is not examined in detail.

An accelerometer which provides three-dimensional accel-
eration values, together with the wireless transmission mecha-
nism (to the gateway), is another source of energy drain. By a
harmonious combination of accelerometer sampling rate and
transmission rate, both the fall detection system’s requirements
and energy efficiency can be achieved. Another variable which
influences energy characteristics is communication interfaces
those are used in the sensor nodes and their data rates (i.e.
SPI, I2C).

To the best of our knowledge, the actual issues which limits
energy efficiency when considering overall primary energy
consuming source of a sensor node in the fall detection system
have not been elaborately investigated. Therefore, in this paper,
we design a sensor node for evaluating factors impacting on
energy consumption of the sensor node in the fall detection
system. These investigated factors include parameters within
micro-controller (i.e. type and frequency, communication inter-
faces), 3D accelerometer sampling rate, Bluetooth technology
(i.e. classic, low energy and data rate). In addition, we compare
several sensor nodes constructed from general purpose devices
with our design in terms of energy efficiency.

III. FALL DETECTION IOT SYSTEM ARCHITECTURE

The system architecture, shown in Fig. 1, consists of three
main parts: sensor nodes, a gateway with a fog layer unit and
a back-end system described as follows:

A sensor node consists of at least three primary compo-
nents: 3D accelerometer sensor, micro-controller and wire-
less communication module. Data is gathered from the 3D
accelerometer via a communication interface such as UART,
SPI or I2C. Depending on particular fall detection systems,
the collected data can be pre-processed or kept intact before

Fig. 1: The three layers of system architecture: edge, fog and
cloud. Measurements collected by wearable devices in the
edge layer are processed in the fog layer while cloud layer
provide information to caregivers.
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Fig. 2: Acceleration changes in time during a fall.

being transmitted to a gateway wireless. Frequently, collected
raw data without pre-processing (i.e. wavelet transformation,
or neural filtering) is transmitted as such. Complex processing
mechanisms, like fall detection algorithms based on hidden
Markov model, are carried out at the gateway because of
significant computational requirements. In our fall detection
system, Bluetooth is utilized for wireless communication be-
tween sensor nodes and a gateway.

Alongside with primary features of receiving data from
sensor nodes and transmitting the data to Cloud servers, a
gateway with fog computing in a IoT-based fall detection
system can offer advanced services such as data process-



ing (i.e. complex filtering mechanisms, or data fusion), data
compression, security, push notification service, local storage,
fall detection algorithms and decision making. Depending on
particular fall-detection applications, specific services might
be proffered. In our fall detection system, a gateway equipped
with a Bluetooth module and an Ethernet module is used
for receiving raw data from sensor nodes and transmitting
the data to Cloud, respectively. In addition, the gateway
provides a push notification service, local storage and a fall
detection mechanism. The collected data is processed with a
fall detection algorithm. When a fall is detected, the gateway
triggers the push notification service for notifying caregivers
in real-time. Local storage is used for storing both user data
for some periods of time and service data i.e. algorithms.

The back-end system includes cloud servers and an user
terminal. When the Cloud receives a signal from the gateway’s
push notification service, it notifies appropriate party via real-
time messages. An end-user (i.e. caregiver) can then view these
messages with an Internet browser or a mobile application.
In our system, the system checks reply messages from end-
users after sending notification messages in order to verify
that fall notification messages are properly received. The end-
users can reply with an affirmative messages via a browser or
an appropriate application to acknowledge the fall case.

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION

In order to evaluate energy consumption of a sensor node, a
complete IoT-based fall detection system described in section
3 is implemented.

The gateway is implemented on Rasberry Pi v3 [16] as it
is equipped with a compelling 4-core 1.2 GHz CPU, 1 GB
RAM and extensible storage, which can guarantee that com-
plex algorithms (i.e. push notification and fall-detection) run
smoothly with low latencies. Additionally, Bluetooth classic,
Bluetooth low energy, and Ethernet are supported. Therefore,
functionality of the gateway can be conveniently implemented
without needing supplementary hardware components. Ubuntu
is used for managing the gateway due to its benefits such as
customization, security support, users support and diversified
administration tools. With Ubuntu, all tasks can be run fairly
and possible hardware race condition can be avoided. Because
of its performance, ease of use, scalability and secure nature,
the MySQL together with local storage are used for storing
3D acceleration data, user records, and essential data used by
the services.

In the gateway, a two-level threshold fall detection algorithm
is applied which uses three-dimensional acceleration data to
calculate fall-feature parameters such as angle between y-
axis and the vertical direction, sum vector magnitude (SVM),
differential SVM (DSVM) based on the following equation
[17].

SVMi =
√
xi

2 + yi2 + zi2 (1)

Φ = arctan

(√
y2i + z2i
xi

)
∗ 180

Π
(2)

DSVMi =
√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

(3)
SVM: Sum vector magnitude
i: sample number
x,y,z : accelerometer value of x, y, z axis
Φ : the angle between y-axis and vertical direction
DSVM: Differential sum vector magnitude

The algorithm first removes noise with a digital second-
order Butterworth filter for posture detection and dynamic
analysis. The output from the filter is used for calculating
fall-feature parameters which are then checked against the
first simple threshold. An example of the SVM threshold
comparison method is shown in Fig. 2. The threshold is
decided when the specificity is the highest with a sensitivity
of 100%. When these fall-feature parameters surpasses the
threshold, it indicates that a possible fall has occurred. The
output of possible falling cases is applied to the second
threshold. Finally, based on the output of verifying these
parameters with the second threshold, a decision about the
fall is drawn. A summary of processing 3D accelerometer
data with the fall detection algorithm is shown in Fig. 3.
When an actual fall is detected, the gateway immediately sends
a push notification to the caregiver. The push-notification is
primarily implemented in the gateway with an assistance of
Pushbullet [18]. Pushbullet provides full API for creating push
notification applications which allows sending text, files, in-
stant messages in real-time between different types of devices
(server, gateway, mobile phone, computer).

The back-end of the system includes cloud service and
a terminal application. End-users such as family members,
doctors or caregivers can use any Internet browser or a push
notification enabled smart phone application to subscribe to
the push notification server. In addition to receiving push
notification messages, end-users can confirm that a fall case
is noticed via replying messages by using the ”confirmation”
button in an application or a browser’s interface.

For implementing a sensor node, several hardware com-
ponents including ADXL345 three-dimensional accelerome-
ter sensor, micro-controller and Bluetooth module are used.
ADXL345 is a high resolution and low power consumption
digital three-dimensional accelerometer sensor. It provides
16bit two complement output, which incorporates 3 dimen-
sional acceleration along x, y, z axis. It consumes only 90 µA
for providing output values at a rate of 400 Hz. It is equipped
with SPI and I2C interfaces for communicating with a micro-
controller. In order to achieve a fair and diversified compari-
son, an ATMega328P and ATMega32U running at 16 MHz are
primarily used in our evaluation. Accordingly, Arduino Uno
board, Arduino Micro, a customized device are evaluated. The
customized device is constructed from ATmega328P 16 Mhz
micro-controller, 16kHz crystal oscillator and set of capacitors
and resistors. Although the device can operate at both 3.3V
and 5V, 3.3V is used for our experiments. The prototype and
minimum setup of the customized sensor node are shown in
Fig. 4 and Fig. 5, respectively.Detailed specification of these



Fig. 3: Fall detection algorithm flow

Fig. 4: Prototype of the customized device

boards are shown in table I.
In experiments, both HC-05 Bluetooth classic and Bluetooth

Low Energy (BLE) are used for evaluation. HC-05 is a low
cost Bluetooth module for data transmission. This module can
be configured as a master or a slave. BLE Micro [19] is a
ultra-low power Bluetooth module. When operating at 3V, the
BLE Micro current consumption is 2 µA in IDLE mode and
about 10.5 mA when transmitting data at a rate of 1 Mbps,

Fig. 5: Minimum setup of the customized device

TABLE I: Devices specifications

Device Micro-controller Flash
(KB)

SRAM
(KB)

Operating
Voltage (V)

Arduino
Uno

ATmega328P-PU
16MHz 32 2 5

Customized
device

ATmega328P-PU
16MHz 32 2 3.3-5

Arduino
Micro

ATmega32U4-AU
16MHz 32 2.5 5

TABLE II: Energy consumption when collecting 3D ac-
celerometer data with different sampling rates

PPPPPPPPPP

Device
Sampling rate 50 sam-

ples/s
(mJ)

100
sam-
ples/s
(mJ)

200
sam-
ples/s
(mJ)

400
sam-
ples/s
(mJ)

Arduino Uno 187.6 187.8 188.01 188.05
Customized device 47.817 47.982 48.247 48.345

Arduino Micro 158.55 158.65 158.8 159.1

while 2 Mbps is the maximum data rate for this module.

V. EXPERIMENTAL RESULTS

In order to calculate energy consumption of sensor nodes,
the following equation [20] is applied: The energy equation (1)
is formed based on the fact that total node energy consumption
is equal to the sum of energy consumption in both waiting and
operating time.

E = V × I(w)× (t(w)− t(o)) + V × I(o)× t(o) (4)

E : Total energy consumption (mJ)
V : Voltage supply
I(w) : Average current draw during waiting time (mA)
I(o) : Average current draw during operating (mA)
t(w) : Waiting time (s)
t(o) : Operating time (s) In our experiments, current of devices
is measured by power monitor produced by MonSoon Solution
[21]. The Power Monitor including hardware and advanced
software provide a robust power measurement solution for
mobile devices such as general purpose development boards,
mobile phones or any devices using batteries having capacity
less than 3A.

According to datasheet of ADXL345 [22], the sensor is
capable of providing a sampling rate of 3200Hz. However, for
supporting this data rate, the sensor must operate in a normal
energy inefficient mode. To reduce energy consumption, the
low power mode has to be used. The maximum data rate
of the low power mode is 400Hz. Therefore, 50, 100, 200,
and 400 Hz data rates are used in the experiment. The first
experiment is to compare energy consumption of the sensor
node when collecting three-dimensional accelerometer data
during a second with 50, 100, 200, 400 samples/second data
rate via SPI configured with 4 Mbps communication speed.
Results of this experiment are shown in Table II.

The results of the experiment show that energy consumption
of the sensor node based on the customized device is one third
of energy consumption of other devices based on Arduino



TABLE III: Energy consumption of the customized device
when collecting 100 samples/second 3D accelerometer data
with different SPI data rates and I2C
`````````Board

Data Rate 125kbps
SPI(mJ)

500kbps
SPI(mJ)

1Mbps
SPI(mJ)

4Mbps
SPI(mJ)

400KHz
I2C(mJ)

Customized device 46.992 47.058 47.388 47.982 47.457

TABLE IV: Energy consumption of the sensor node for col-
lecting 100, 200 and 400 samples/s 3D accelerometer data via
1 Mbps SPI and transmitting 100, 200, and 400 samples/s data
with 9600 bps and 19200 bps Bluetooth classic, respectively
`````````Board

Sampling rate 100samples/s
(mJ)

200samples/s
(mJ)

400samples/s
(mJ)

Arduino Uno 308.79 315.6 329.57
Customized device 138.24 140.64 146.18

Arduino Micro 281.15 282.85 288.45

board for all experimental cases even though they are built
from the identical micro-controller ATMega328P-PU. As seen
in table 1, energy consumption of the sensor node with
sampling rate 50, 100, 200 and 400 samples/second is not
largely different. Therefore, significant energy savings can
be achieved even though trading the energy for a higher
sampling rate with the interest of fulfilling application’s data
rate requirements.

As mentioned, ADXL345 supports SPI and I2C for com-
munication. Therefore, these interfaces are evaluated by send-
ing 100 samples/s from ADXL345 to the micro-controller
in order to choose most appropriate one in terms of energy
efficiency. In addition, as SPI data rate impacts energy con-
sumption of the sensor node, effects of different rates are
evaluated. Results from these experiments, as shown in Table
III, illustrate that applying the SPI interface for obtaining data
from 3D accelerometer sensor is more energy efficient than
using the I2C interface when similar data rates are used. Table
III also shows that 1 Mbps SPI is still more energy efficient
than 400 Khz I2C. In some cases of time-critical fall detection
systems, 4 Mbps SPI can be used without heavy impact on
energy consumption because energy consumption of the sensor
node increases only slightly when increasing SPI data rate
from 1 Mbps to 4 Mbps.

To provide an incisive view of energy consumption of the
sensor node, the total energy consumption for obtaining and
sending the data to a gateway via Bluetooth is evaluated.
Several data rates of Bluetooth classic including 9600 bps,
19200 bps and 230400 bps are applied in the experiment.
In order to explore the relationship between these Bluetooth
data rates and sampling rate of a 3D accelerometer sensor
and Bluetooth sampling, several sampling rates of the sensor
such as 100, 200 and 400 samples/second are enumerated.
The results are shown in Table IV and Table V. It shows
that sending data via Bluetooth with lower data rate consumes
less energy for all experimental devices. In addition, the
customized one is the most energy efficient device among all
experimental devices.

Energy consumption of sensor nodes can be dramatically

TABLE V: Energy consumption of the sensor node when
collecting 100, 200, 400 samples/s 3D accelerometer data via
1Mbps SPI and sending the data to a gateway via Bluetooth
classic configured with 230400bps
`````````Board

Sampling rate 100samples/s
(mJ)

200samples/s
(mJ)

400samples/s
(mJ)

Customized device 145.36 147.98 152.39
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Fig. 6: Operating durations of the customized sensor node
supplied with a 1100mAh battery when collecting 100, 200,
and 400 samples/s 3D accelerometer data and sending the data
via 9600bps BLE

lowered by using Bluetooth Low Energy (BLE) instead of
Bluetooth classic. Therefore, in our sensor nodes, BLE at 9600
bps data rate is used for transmitting 3D accelerometer data
with sampling rate 100, 200 samples/s while 19200 bps is
used when sampling at a rate of 400 samples/s. Results are
shown in Table VI. 30% energy consumption of sensor node
can be reduced by using BLE. Our sensor nodes are supplied
with 3.3 volt 1100 mAh lithium battery which has a small size
of 15*37*59 mm and a light weight of 21 grams. With the
battery, the sensor node with BLE can operate up to 35 hours
when obtaining 3D accelerometer data at the data rate of 100
samples/s and sending it to the gateway with BLE at 9600
bps. The estimated duration of operating time of our sensor
node is shown in Fig. 6.

TABLE VI: Energy consumption of the sensor node when
collecting 100, 200, 400 samples/s 3D accelerometer data via
1Mbps SPI and sending the data to a gateway via Bluetooth
low energy configured with 9600bps for 100, 200 samples/s
and 19200bps for 400samples/s
`````````Board

Sampling rate 100samples/s
(mJ)

200samples/s
(mJ)

400samples/s
(mJ)

Arduino Uno 238.48 247.15 260.77
Customized device 92.04 94.44 104.036

Arduino Micro 213.65 215.85 218.96



VI. DISCUSSIONS

In our experiments, micro-controller’s digital interfaces (i.e.
SPI, I2C), sensor’s sampling rate, and wireless commu-
nication were investigated. Based on practical results, the
developed sensor node is more energy efficient than other
nodes based on general purpose development device regarding
to the identical micro-controllers and memory capacitor. We
suggest that sensor nodes for fall detection and other IoT
systems should be as simple as possible in terms of hardware
components for energy efficiency.

While experimenting, for sending the same amount of data,
we found that SPI is more energy efficient than I2C for
all cases of similar data rates. It is recommended that SPI
should be used for communicating between sensors and micro-
controllers. A choice of an appropriate SPI data rate depends
on sensors’ sampling rate and time requirements of particular
applications. When fall detection and other IoT-based systems
are not extremely time-critical in terms of millisecond, low
SPI data rate should be used for saving energy consumption.

Although the low power mode of ADXL345 does not
support high sampling rates such as 1600 and 2000 samples/s,
it provides 400 samples/s sampling rate which is sufficient for
many fall detection algorithms. In the low power consumption
mode, energy requirements of sensor nodes when obtaining 3D
accelerometer data with 100, 200, and 400 samples/s is slightly
different. Therefore, one of these data rates can be chosen for
fulfilling the requirements of application while maintaining the
desired energy efficiency.

Clock frequency of a micro-controller directly impacts on
energy consumption of a sensor node. When a sensor node
is not required to perform heavy computation, a low clock
frequency should be used. For extensions, a lower clock
frequency micro-controller i.e. 1MHz or 8MHz having the
same family as ATMega328P could be used for comparing
with a customized ATMega328P which is 16MHz but is scaled
down to 1MHz and 8MHz by software. Furthermore, when
1MHz clock frequency is applied, a 16k crystal oscillator can
be removed from our design because 1MHz internal clock
source of ATMega328P can be utilized.

VII. CONCLUSIONS

In this paper, we evaluated energy consumption of wireless
sensor nodes in a fall detection IoT-based system for extracting
an energy efficiency method of designing those sensor nodes.
We implemented a simple customized sensor node for achiev-
ing a high level of energy efficiency. We compared primary
energy consumption sources of several sensor nodes based on
our and other designs. Based on experiments, we concluded
that our sensor node is energy efficient. When using an 1100
mAh battery, the sensor node can operate up to 35 hours. In
addition, our push notification service can improve quality of
healthcare services via a mechanism of notification together
with acknowledgement.
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[10] E. Casilari and M. A. Oviedo-Jiménez, “Automatic fall detection system
based on the combined use of a smartphone and a smartwatch,” PloS
one, vol. 10, no. 11, p. e0140929, 2015.

[11] M. Kepski and B. Kwolek, “Embedded system for fall detection using
body-worn accelerometer and depth sensor,” in : Intelligent Data Acqui-
sition and Advanced Computing Systems: Technology and Applications
(IDAACS), 2015 IEEE 8th International Conference on, vol. 2, pp. 755–
759, IEEE, (2015).
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