
Designing Tornado Codes as Hyper Codes for Improved Error Correcting

Performance

Kristian Nybom, Jerker Björkqvist

Department of Computer Science, Åbo Akademi University
kristian.nybom@abo.fi, jerker.bjorkqvist@abo.fi

Abstract

Digital services are increasingly being delivered to
user terminals over wireless multicast networks. When
the target service requires uncorrupted data delivery,
there is an increasing need for developing techniques
for reliable content delivery. In multicast networks, the
typical way of providing reliable content delivery is to
apply forward error correcting techniques (FEC). In
this paper, we introduce a modification to the Tornado
code, where we combine the structures of Tornado
codes and Hyper codes. Standard Tornado codes have
the drawback that they are dependent on the error
distribution on the data path. By combining the
Tornado code with a Hyper code, we decrease the
probability of the Tornado decoder failing due to
inopportune error distribution in the source data.

We demonstrate, based on a simulated transmission
channel, that the error correcting performance is
improved, at the cost of slightly longer decoding times,
by using a combination of Hyper codes and Tornado
codes, compared to the standard Tornado codes.

1. Introduction

Forward Error Correction (FEC) mechanisms

provide transport protocols with reliable delivery of

content. FEC mechanisms are especially suitable for IP

multicast protocols when feedback to the transmitter is

either costly or impossible. FEC contributes protocols

with the ability to overcome both erasures and bit-level

corruption. The primary contribution of FEC codes to

IP multicast protocols is, however, erasure correction,

as the network layers in IP multicast protocols will

detect and discard corrupted packets.

In 1998, Byers et al. [1] introduced a new FEC

code, called the Tornado code. The same year, Hunt et

al. [2] presented a new family of FEC codes, called

Hyper codes. This paper shows with simulations that

by designing Tornado codes as Hyper codes, the error

correcting performance of the Tornado code can be

notably improved at the cost of slightly longer

decoding times.

2. The Tornado Code

The Tornado code introduced by Byers et al. [1]

consists of several layers of bipartite graphs. In the

leftmost graph, the left side nodes are called message

nodes and correspond to the source symbols. A symbol

is some predefined number of bits. All the remaining

nodes are called check nodes and correspond to

redundancy symbols. An example of a Tornado code

structure with three layers of nodes is illustrated in Fig.

1. Between the right side nodes and the left side nodes

in each bipartite graph there exist edges, specifying

how the right side nodes depend on the left side nodes.

The degree of a node is equal to the number of edges

connected to the node. The check nodes are calculated

as the exclusive-OR of all the left side nodes in the

bipartite graph with which the check nodes share

edges. Decoding of a block is done using the following

algorithm:

“Given the value of a check node and all but one of its
message nodes, set the missing node to be the XOR of
the check node and all of the check nodes known
message nodes.”

If a check node is required for decoding, but the

value of the node is unknown, a similar decoding

algorithm must be performed in the bipartite to the

right, so that the check node is recovered.

The error correcting performance of the code is

extremely dependent on the design of the bipartite

graphs. Luby [3] states that the degree distributions of

the left side nodes in each bipartite graph should be

equal to the Soliton distribution and the degree

distributions of the right side nodes should be equal to

the Poisson distribution.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Fig. 1. The structure of a Tornado code with
three layers of nodes. The black dots
correspond to the source symbols and the
white dots correspond to the redundancy
symbols.

Luby et al. [4] show that if each bipartite graph, Bi,

has iK left side nodes and i+1K right side nodes,

where i=0..m, K is the number of source symbols and

is chosen between zero and one, then the number of

bipartite graphs, m+1, should be chosen so that m+1K

is roughly K . This yields a code with code rate

1

0

1
m

i

i

K K
R

N
K

Elias [5] showed that if the capacity of an erasure

channel is 1-p, where p is the fixed constant

probability that a codeword symbol is lost, then a

random linear code of rate R<1-p can be used to

transmit over this channel. Therefore, this code is able

to recover from a random loss of fraction of its nodes

with high probability.

3. Hyper Codes

Hunt et al. [2] describe a new family of FEC codes,

called Hyper codes. These codes can be understood as

multi-dimensional codes. Hunt et al. prove that Hyper

codes offer good but not exceptional error-rate

performance, for a given block size and code rate.

Hyper codes have significantly enhanced distance

properties compared to codes that are not structured in

this manner.

When using Hyper codes, the source bits are

arranged in an N-dimensional “box”. In every

dimension, parity bits are calculated, but the source

bits are permuted between the dimensions. The

permutation of the source bits increases the minimum

distance, which can be seen as an improvement of the

error correcting performance of the code. The Hyper

code decoder relies on soft-decision decoding.

4. Combination of Hyper Codes and

Tornado Codes

By using the methodology of Hyper codes when

designing Tornado codes, the error correcting

performance of Tornado codes can be improved. The

combination of the codes results in the following

encoding algorithm:

1. Calculate the redundancy symbols in the first

dimension as described in section 2.

2. Permute the message nodes.

3. Calculate new redundancy symbols using the

same graph structure as used in the first

dimension.

4. Repeat steps 2 and 3 until all redundancy

symbols in all dimensions have been

calculated.

The usage of multiple dimensions introduces a

significant number of additional redundancy symbols.

Therefore, in order to maintain the code rate, the

number of redundancy symbols in each dimension has

to be reduced, i.e. the ratio of redundancy symbols to

source symbols per dimension, , has to be reduced. If

the number of dimensions is denoted as and the

reduced ratio of redundancy symbols to source

symbols for the multidimensional code is denoted as ,

then the code rate for multidimensional tornado codes

can be calculated as

1 1

1 1

1

1

m m
i i

i i

K K
R

N
K K

Assuming an infinite number of bipartite graphs,

i.e. m goes to infinity, equation (2) simplifies to

1
1 (1)

R

= Message Node

= Check Node

Bipartite

Graph

Bipartite

Graph

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Using the same argument as in section 2, the

multidimensional Tornado code can recover from a

random loss of fraction of its nodes with

high probability. By choosing the number of

dimensions to one, equation (3) obtains the form

R=1- , which is identical to equation (1).

The benefit of using multiple dimensions becomes

clear when the decoding algorithm presented in section

2 is examined. The decoding algorithm states that the

decoder requires a check node and all but one of its

message nodes in order to recover a missing node. This

means that if there are missing nodes to be recovered

but no check node fulfills this criterion, the decoding

algorithm will fail. When multiple dimensions are

used, this problem may be overcome when the missing

nodes are reconstructed in another dimension. The

decoding may be possible in another dimension since

the message nodes have been reordered and therefore

depend on different check nodes. In other words, by

using multiple dimensions the code is transformed into

an iterative code, which iterates through the

dimensions until no more nodes can be recovered.

5. Simulations and Test Results

A multidimensional Tornado code that used a

symbol length equal to the IP packet payload was

implemented. In this particular case, the symbol length

was fixed to 1436 bytes. The packet size is, in the

context of implementation and testing, not essential but

represents a possible setup for delivering objects over a

multicast network. The implementation, however,

requires all IP packets to be of equal length. The code

was tested with the number of dimensions ranging

from one to six dimensions, the one-dimensional code

being a standard Tornado code. The encoded IP

packets were given to a DVB-H channel simulator,

which introduced packet losses into the transmitted

data. The simulator assumed that the IP packets were

either entirely corrected by the lower layers in the

network topology or entirely corrupted or lost.

Therefore, the results presented below can be viewed

as worst case scenarios, as improved implementations

of the DVB-H subsystem could deliver partly corrected

IP packets. The fractured data was then given to the

decoder, which tried to recover from the losses.

The tests were performed with code lengths ranging

from 400 to 4000, where a constant code rate of

approximately 0.75 was used. The codes were created

with only one bipartite graph, except for the standard

Tornado code, since prior test results showed that

using multiple dimensions had a greater impact on the

error correcting performance than several layers of

nodes had. Depending on the channel simulator

settings, four different IP packet error rates (IP PER)

were obtained in the uncorrected file. These IP PERs

were approximately 9%, 10.5%, 13.5% and 15%. The

simulations were run on a Pentium 4, 2.0 GHz

processor, using a 30.36 MB mpeg file for testing. The

implementation of the code was made in ANSI C on a

UNIX platform.

In the figures showing the error correcting

performances below, some of the lines are not

continuous. The points where the lines break

correspond to simulations in which the corresponding

code was able to reconstruct all missing IP packets,

thereby achieving an IP PER of 0%. As the figures are

logarithmic, these points were not plotted.

Code Length

0 1000 2000 3000 4000

IP
 P

E
R

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0
Tornado Code

2-Dimensional

3-Dimensional

4-Dimensional

5-Dimensional

6-Dimensional

Fig. 2. Error correcting performances for
multidimensional Tornado codes for an
uncorrected IP PER of 9% on a simulated
erasure channel.

Fig. 2 shows the IP PERs in the decoded files for

the simulations in which the IP PER before correction

was 9%. The figure demonstrates that the standard

Tornado code was able to reduce the IP PER to

approximately 2%, showing little improvement with

the growing code length. The two-dimensional code

performed slightly better, achieving decoded IP PERs

of approximately 0.4%. The three-dimensional code

dropped the IP PERs to below 0.01%, seldom

correcting all symbols, however. The four-, five- and

six-dimensional codes proved to be outstanding, with

regard to the error-correcting performance, managing

to reproduce the original file in almost all of the

simulations.

The channel setting, which produced an IP PER of

approximately 10.5%, was then investigated. The test

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

results of these simulations are illustrated in Fig. 3.

The results show that the four-, five- and six-

dimensional codes were unaffected by the increase in

the received IP PER, while the rest of the codes

experienced a small reduction in their error correcting

performance.

Code Length

0 1000 2000 3000 4000

IP
 P

E
R

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0
Tornado Code

2-Dimensional

3-Dimensional

4-Dimensional

5-Dimensional

6-Dimensional

Fig. 3. Error correcting performances for
multidimensional Tornado codes for an
uncorrected IP PER of 10.5% on a simulated
erasure channel.

Code Length

0 1000 2000 3000 4000

IP
 P

E
R

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

Tornado Code

2-Dimensional

3-Dimensional

4-Dimensional

5-Dimensional

6-Dimensional

Fig. 4. Error correcting performances for
multidimensional Tornado codes for an
uncorrected IP PER of 13.5% on a simulated
erasure channel.

The third channel setting produced an IP PER of

approximately 13.5%. Fig. 4 shows that for a received

IP PER of this magnitude, only the five- and six-

dimensional Tornado codes were able to produce error

free decoded files, and then only for slightly longer

code lengths.

Fig 5. shows the test results for the codes when the

IP PER before correction was approximately 15%.

The figure reveals that the differences in the error

correcting performances of the codes were small with

the shorter code lengths. However, when the code

length grew beyond 1700 encoding symbols, the five-

dimensional Tornado code excelled at the error

correcting performance, compared to the other codes.

Code Length

0 1000 2000 3000 4000

IP
 P

E
R

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

Tornado Code

2-Dimensional

3-Dimensional

4-Dimensional

5-Dimensional

6-Dimensional

Fig. 5. Error correcting performances for
multidimensional Tornado codes for an
uncorrected IP PER of 15% on a simulated
erasure channel.

In each simulation, both the encoding and the

decoding times were measured. The average encoding

times per MB of source data for the different Tornado

codes are listed in Table 1. As the table demonstrates,

the encoding time grows linearly with the number of

dimensions. During the simulations, it became clear

that the encoding times are also dependent on the

symbol length and on the code rate used for the codes.

TABLE 1

ENCODING TIMES PER MB OF SOURCE DATA

Code type Time (ms)

Standard 29.974

2-Dimensional 38.208

3-Dimensional 50.725

4-Dimensional 64.888

5-Dimensional 77.734

6-Dimensional 87.615

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Code Length

0 1000 2000 3000 4000

T
im

e
 (

s
)

0,00

0,02

0,04

0,06

0,08
Tornado Code

2-Dimensional

3-Dimensional

4-Dimensional

5-Dimensional

6-Dimensional

a) Decoding times for IP PER 9%.

Code Length

0 1000 2000 3000 4000

T
im

e
 (

s
)

0,00

0,02

0,04

0,06

0,08
Tornado Code

2-Dimensional

3-Dimensional

4-Dimensional

5-Dimensional

6-Dimensional

c) Decoding times for IP PER 13.5%.

Code Length

0 1000 2000 3000 4000

T
im

e
 (

s
)

0,00

0,02

0,04

0,06

0,08
Tornado Code

2-Dimensional

3-Dimensional

4-Dimensional

5-Dimensional

6-Dimensional

b) Decoding times for IP PER 10.5%.

Code Length

0 1000 2000 3000 4000

T
im

e
 (

s
)

0,00

0,02

0,04

0,06

0,08
Tornado Code

2-Dimensional

3-Dimensional

4-Dimensional

5-Dimensional

6-Dimensional

d) Decoding times for IP PER 15%.

Fig. 6. Decoding times per MB of source data as functions of the code lengths for the simulations.

Fig. 6 illustrates the decoding times of the codes.

Fig. 6 a) shows the decoding times for the simulations

in which the uncorrected IP PER was 9%, Fig. 6 b)

shows the decoding times for 10.5%, Fig. 6 c) shows

the decoding times for 13.5% and Fig. 6 d) shows the

decoding times for 15%. The graphs reveal that the

decoding time is dependent on the number of

dimensions and on the error rate in the received data.

No other factors affect the decoding times.

6. Conclusions

In this paper, we showed with simulations that by

designing the Tornado code structure with a Hyper

code approach, the error correcting performance can be

significantly improved. This is at the cost of slightly

longer decoding times, since the decoder iterates

through every dimension, correcting as many symbols

as possible at a time before moving on to the next

dimension. It should be noted, however, that this

combination, or design methodology, does not create a

new code, since this approach merely divides the

Tornado code structure into several sections, or

dimensions. What is interesting is that by using several

dimensions, the error correcting performance is

improved, compared to standard Tornado codes, which

rely on several layers of nodes, rather than on several

dimensions. In this paper, we have demonstrated that

using multiple sets of redundancy symbols, where each

set is calculated on the reordered message symbols,

improves the probability of successful decoding. We

have shown with simulations that this is true because

the message symbols depend on different redundant

symbols in each dimension and, therefore, if decoding

is not possible in one dimension, the decoding may be

possible in another dimension.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

7. References

[1] J.W. Byers, M. G. Luby, M. Mitzenmacher, and A. Rege,

“A Digital Fountain Approach to Reliable Distribution of

Bulk Data”, Proceedings of ACM SIGCOM ’98, ACM Press

New York, Vancouver, 1998, pp. 56-67.

[2] A. Hunt, S. Crozier, and D. Falconer, “Hyper-Codes:

High-Performance Low-Complexity Error-Correcting

Codes”, Proceedings of the 19th Biennial Symposium on
Communications, Kingston, Ontario, Canada, 1998, pp. 265-

267.

[3] M.G. Luby, “LT Codes”, The 43rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS’02),
IEEE Computer Society, Vancouver, 2002, pp. 271.

[4] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and

D.A. Spielman, “Efficient Erasure Correction Codes”, IEEE
Transactions on Information Theory, IEEE Transactions on

Information Theory Society, 2001, 47(2). pp. 589-584

[5] P. Elias, “Coding for two noisy channels”, Information
Theory, 3rd London Symposium, Butterworth’s Scientific

Publications, 1955, pp. 61-76.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

