
1569014904

1

Abstract—In this paper we introduce an erasure correcting

code, which is designed to be used for providing error free data

object transmissions over noisy wireless data casting systems,

such as DVB-H. The code belongs to the class of low-density

parity-check (LDPC) codes, and uses multiple parallel code

structures, also called hyper codes. We also provide a

straightforward algorithm for generating the parity-check

matrix, which can generate instances of the code for different

code sizes and coding capabilities, using only a few parameters.

This gives us flexibility in designing the data transmission

system. Using simulations and field measurements we show

that the code performance is similar to that of the current state

of the art codecs. The coding and decoding complexities are

low, enabling software-based use in energy-constrained mobile

devices.

Index Terms—FEC, LDPC codes, hyper codes, application

layer codes

I. INTRODUCTION

ODING techniques are extensively being used to
improve the quality of service in wireless networks.

Environmental conditions are known to deteriorate the
quality of reception and different coding techniques are
therefore needed to correct corrupted information.
Especially for mobile receivers, as in DVB-H networks [1],
there is a need for developing error correcting codes that are
capable of reconstructing transmitted objects both with as
high probability and with as low complexity as possible.

Raptor codes [2, 3] are a fairly new class of codes, which
have become popular in broadcasting scenarios, mainly
because of their good erasure correcting capabilities, their
small reception overheads, their low complexity, and their
ability to produce an infinite stream of encoding symbols. In
relatively small broadcasting scenarios, i.e. when the
number of receivers is small and the receivers can inform
the transmitter when they have received an object, the
ratelessness of Raptor codes can efficiently be exploited.
However, when the number of receivers is large, as will
probably be the case in DVB-H broadcasting scenarios,
there is no possibility to use a feedback channel to the
transmitter. This implies that receivers cannot inform the
transmitter when they have received the transmitted object
and since there probably are several different objects that
should be transmitted within a time frame, the amount of
transmitted Raptor encoding symbols have to be limited. In

effect, the Raptor code is changed from a rateless code to a
code with a fixed code rate.

In this paper, we introduce the hyper low-density parity-
check (HLDPC) code, which is based on some of the ideas
presented in [2-7]. The HLDPC code is a more developed
code than the Tornado code that was presented in [7], but
since the only similarity, apart from the sparse graph
structure, that the HLDPC and the Tornado code has is the
Soliton distribution, we see it unfair to call this code a
Tornado code. Furthermore, in [7] only the general idea of
the hyper designed code is discussed, but no detailed
information is given regarding the construction of the code.
Therefore, the main contribution of this paper is to introduce
the HLDPC code, to describe the methodology on how to
create a HLDPC code and to give guidelines on how to
specify the parameters for the code. We show with
simulations and with field measurements that the HLDPC
code has a similar performance as the Raptor code in
DVB-H broadcasting scenarios.

II. PARITY-CHECK MATRIX CONSTRUCTION

HLDPC codes are systematic, fixed-rate, large block, and
erasure correcting codes that are constructed with sparse
parity-check matrices. The symbol sizes can be any
predefined number of bits. The HLDPC code is a hyper
code, utilizing several dimensions of encoding symbols.
Hunt et al. [4] argue that by using several dimensions in the
code, the minimum distance is increased when compared to
the case where only one dimension, i.e. a standard code, is
used. Throughout this paper, with dimension we refer to the
hyper dimension and not to the code dimension.

In addition to the number of dimensions, the performance
of the code is strongly related to the degree distribution of
the message and parity symbols. By carefully choosing the
degrees, the parity-check matrix can be made sparse,
resulting in both an efficient decoding algorithm and a good
erasure correcting performance. For these purposes, the
HLDPC code uses the Soliton distribution for generating the
degrees, which has been shown in [8] to result in both an
efficient parity-check matrix generation and a good
probability of successful decoding.

The overall algorithm for generating the parity-check
matrix for an HLDPC code is given by the following steps:

HLDPC Codes – Low Density, Low
Complexity, Efficient Erasure Correcting Codes

Kristian Nybom, Jerker Björkqvist

Department of Information Technologies, Faculty of Technology

Åbo Akademi University, Turku, Finland

C

1569014904

2

1. Generate the degree distribution for the message
symbols in the first dimension

2. Distribute the message symbol edges
3. Calculate parity symbol degrees for uncovered

parity symbols so that all parity symbols are
covered and distribute their edges

4. Permute the message symbols, once for each
remaining dimension, so that the final parity-
check matrix is obtained

These steps are described in detail in the following

subsections.

A. The Hyper Structure

Hyper codes are a family of codes, which operate by
arranging parity equations into multi-dimensional systems
of equations. The multi-dimensionality gives the decoder
several alternate possibilities to reconstruct missing
symbols. In effect, hyper codes divide the parity-check
matrix into several parts, where every part corresponds to
one dimension. Therefore, when creating hyper codes, the
number of dimensions needs to be specified. Every
dimension contains the message symbols and a fraction of
the total amount of parity symbols. Between the dimensions,
the message symbols are permuted and in every dimension,
the parity symbols are calculated based on the permuted
message symbols in that dimension. Fig. 1 displays a parity-
check matrix for a 3-dimensional HLDPC code. Fig. 1 also
shows that the code can be viewed as a hyper-LDGM code.

Fig. 1. The parity-check matrix structure for an HLDPC code with three
dimensions. Every dimension utilizes a fraction of the parity symbols for
error correction.

For a d-dimensional (n, k) HLDPC code, the number of

parity symbols in every dimension, s, is given by (1), and is
equal to the total number of parity symbols divided by the
number of dimensions, rounded up. This calculation may
result in an increasing of n so that the total number of parity
symbols equals d s⋅ .

n k

s
d

−
=

 (1)

B. The Degree and Edge Distributions

The HLDPC code uses the ideal Soliton distribution [8]
for generating the message symbol degrees. The number of
elements in the distribution is equal to the number of
message symbols.

1 if 1

()
1 if 1

(1)

i
m

i

i
i i

ρ

=

=

>
−

 (2)

Equation (2) defines the ideal Soliton distribution, where
ρ denotes the Soliton distribution and m is the number of
elements in the distribution. Fig. 2 illustrates the Soliton
distribution for 100 elements.

Elements

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0,0

0,5

1,0

Fig. 2. The Soliton distribution for 100 elements.

When generating the degree distribution for the message

symbols, the number of parity symbols in every dimension
must be determined using (1). The minimal degree of

message symbol i, deg()i , is then calculated with (3), as the

discrete Soliton distributed value i times the number of
parity symbols in every dimension, rounded up.

 deg() () ,i i s i kρ= ⋅ ∀ ∈ (3)

This results in a small fraction of the message symbols

having a relatively high degree, while the majority of the
message symbols have the degree equal to one. The degree
distribution needs only to be calculated in the first
dimension, as will become clear in section II.C.

For distributing the edges, the HLDPC code relies on the
algorithms presented by Harrelson et al. [9]. Using the
limited randomness edge distribution algorithm, a degree
number of edges is distributed for every message symbol,
while knowing that the maximum edge value is equal to the
number of parity symbols in the dimension. The adapted
version of the limited randomness algorithm is given by (4),
when the message symbols are indexed from zero to k-1 and
the parity symbols in every dimension are indexed from zero
to s-1.

{ }

{ }

1. Choose two integers 1, ..., 1 and

 0, ..., 1 uniformly at random

2. The th neighbor of the message symbol is then

 the (() mod)th parity symbol

a s

b s

i

ai b s

∈ −

∈ −

+

 (4)

Harrelson et al. argue that as long as the maximum edge

value is a prime number, all symbols can be covered. This,
however, is rarely the case and therefore, the uncovered
parity symbols have to be covered as well. Covering the
parity symbols is done by determining a degree for every
uncovered parity symbol and then by distributing the edges
to the message symbols with the limited randomness
algorithm, i.e. by substituting s with k in (4). The degree for
the parity symbols should be chosen in the following
manner: let f denote the discrete cumulative Soliton

Dimension 1

Dimension 2

Dimension 3

Identity
Matrix

1569014904

3

distribution and v be a random number, where [0,1]v ∈ .

Find j such that (1) ()f j v f j− ≤ < . The degree of the

parity symbol is then j.

C. Finalizing the Parity-Check Matrix

Once the degree and edge distributions have been
generated for the first dimension, the remaining dimensions
can be created by using the same edge and degree
distributions as in the first dimensions and then permuting
the message symbols. Once the message symbols have been
permuted, new parity symbols can be calculated. This
procedure is repeated until the parity symbols for all
dimensions have been calculated.

As a permutation algorithm, a modified block interleaver
can be used. The modification involves choosing a starting
index from where the interleaving should begin. By
employing this strategy, the permutation improves the
possibility that no symbol has the same index in several
dimensions. The starting index, b, is calculated with (5),
where di is the dimension to which the permuted message
symbols are being determined.

 { }
1

, 2, ...,id
b k i d

d

−
= ⋅ ∈

 (5)

Using (5) for a 5-dimensional HLDPC code with

k = 1000, the starting indexes, are thus 200, 400, 600, and
800. Other permutation algorithms are certainly possible to
use, as long as the algorithms strive to ensure that symbols
do not share positions between dimensions. The sharing of
positions results in replications of edge distributions, which
is not desirable, because this results in reduced erasure
correcting performance.

It is fairly easy to see that for each permutation in the
code, the minimum distance is increased with one at most.
This fact comes from the message symbol degree
distribution: since the majority of the message symbols have
degree one in the first dimension, then for every permutation
performed, i.e. subsequent dimension, the final degree of
most of the message symbols is increased with one. Because
the minimum distance is defined as the minimum number of
linearly independent columns plus one in the parity-check
matrix, then for every dimension in the code, the minimum
distance is increased with one at most. Recommendations on
how to choose the number of dimensions will be discussed
in section IV.

Because the code is an erasure correcting code, the
decoding algorithm is simple. The decoding consists of
finding those parity symbols, which know all their neighbors
but one. The missing neighbor is then calculated as the
modulo two sum of the parity symbol and all the parity
symbols known neighbors. This eliminates the need of using
an iterative decoding algorithm, which in turn yields a low
complexity and efficient decoding algorithm. This also
implies that the decoder can use received symbols for
decoding as soon as they are received.

III. IMPLEMENTATION GUIDELINES

When implementing the HLDPC code there is no need to

maintain the parity symbols as different sets of symbols, i.e.
one set for every dimension. The complexity of the code can
be significantly reduced if all the parity symbols are
maintained as one set. By distributing the edges in a proper
manner, the permutation of the actual message symbols can
be avoided, while achieving the same result as if the
message symbols were permuted. Fig. 3 illustrates an
example of how a 2-dimensional (16, 8) HLDPC code is
permuted with a block interleaver, without the starting index
given in (5). In Fig. 3, the first row in every matrix indicates
the symbol indexes in order to clarify the procedure. Note
that after the message symbols have been permuted, the
parity-check matrix in the second dimension is identical to
the parity-check matrix in the first dimension, only with
different symbol indexes. After the message symbols have
been permuted, the columns are sorted according to the
message symbol indexes to achieve the final parity-check
matrix structure in the second dimension.

Dimension 1:

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 1 0 0 1 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 1 1 0 0 0 0 1

Dimension 2 after permutation of message symbols:

1 4 7 2 5 8 3 6 13 14 15 16

0 0 0 0 1 0 0 1 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 1 1 0

0 0 0 1

Dimension 2 after sorting the columns:

1 2 3 4 5 6 7 8 13 14 15 16

0 0 0 0 1 1 0 0 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 1 0 0 0 1

Fig. 3. Permutation of a 2-dimensional (16, 8) HLDPC code. The first row
in every matrix indicates the symbol indexes. Sorting the permuted
dimension gives the final structure for the second dimension.

When all dimensions are merged into one parity-check

matrix the parity-check matrix for the entire code is
obtained. Fig. 1 illustrates such a parity-check matrix for an
HLDPC code with three dimensions. The complexity of
both the encoder and decoder is reduced by permuting the
edges instead of the message symbols, and this also gives a
straightforward encoding and decoding algorithm.

[10] specifies a triple generator, which can be used to
efficiently generate pseudo-random numbers for the edge
distributions. The triple generator calculates three numbers,
a, b, and d, where d is a degree and a and b are the random

1569014904

4

numbers used for the limited randomness algorithm in (4).
When generating the message symbol edges, the d value
should be omitted, since the degree is based on the Soliton
distribution, while for the parity symbols, the d value should
be used for the degree. The triple generator takes as input
the number of message symbols and the symbol ID, which is
the index of the symbol for which the values are generated.
A benefit of using the triple generator is that both the
transmitter and the receiver have the same random number
generator. This eliminates possible problems caused by
using different random number generators.

To improve the delivery of encoding symbols, each
symbol can be prefixed with encoding symbol information,
as described in [10]. In this case, each symbol is prefixed
with the following three values:

- Source Block Number (SBN)
- Encoding Symbol ID (ESI)
- Source Block Length (SBL)

The SBN describes which encoding block the symbol

belongs to. The ESI is the index of the symbol. If ESI is less
than k, then the symbol is a message symbol. Otherwise it is
a parity symbol. The SBL is the number of message symbols
in the encoding block.

If the encoding symbol information is used in conjunction
with the triple generator, the input parameters to the triple
generator are obtained directly from the encoding symbol
information, i.e. SBL and ESI. In this case, the SBL is used
for generating the Soliton distribution, and thereby also the
degrees. This implies that as soon as one encoding symbol is
received, the entire parity-check matrix can be constructed,
as long as the code rate, the number of dimensions and the
permutation algorithm are known. As will be seen in section
IV, the number of dimensions and the permutation algorithm
can be fixed beforehand.

IV. HLDPC PARAMETER SPECIFICATION

For complete generation of the parity-check matrix, three
parameters must be specified: the number of message
symbols, the code rate, and the number of dimensions. The
first two parameters are clearly dependent on the
transmission scheme, but the specification of the number of
dimensions is not obvious. As mentioned in section II, the
minimum distance increases with one at most with every
dimension. From the minimum distance, the minimum
number of symbols that can be corrected can be calculated.
If the performance of the code is measured with the
minimum distance, the HLDPC code may be viewed as a
poor code because of its low minimum distance. However,
as will be seen in section V, the code has a similar
performance as the Raptor code. Hence, the minimum
distance is not an adequate measurement of the performance
of the code. What is more interesting to study is the average
message symbol erasure rate after decoding and the amount
of data that has to be transmitted in order for the receiver to
be able to reconstruct an object, when measuring code
performances.

 Fig. 4 illustrates the decoded message symbol erasure
rates vs. code rates for HLDPC codes with 3000 message

symbols on a TU6 channel with a Doppler frequency of
79 Hz. The results are based on laboratory measurements of
a DVB-H IP stream, made by Nokia. Similar results are
obtained with other Doppler frequencies and message
lengths, but with the maximum acceptable code rate shifted.
The measured IP stream had an average IP packet erasure
rate (IP PER) of 9.5 % and every IP packet contained
exactly one symbol.

Code Rate

0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

M
e

s
s
a

g
e

 S
ym

b
o
l
E

ra
s
u
re

 R
a

te

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1-dimension

2-dimensions

3-dimensions

4-dimensions

5-dimensions

6-dimensions

7-dimensions

8-dimensions

9-dimensions

10-dimensions

5 dimensions

Fig. 4. Message symbol erasure rates vs. code rates for HLDPC codes with
3000 message symbols and up to 10 dimensions on a TU6 channel with
Doppler frequency 79 Hz. 5-dimensional codes are the most beneficial
ones.

As can be seen, using less than four dimensions does not

produce an acceptable erasure correction capability,
indifferently of the code rate. When the number of
dimensions is increased beyond six dimensions, the erasure
correcting performance is reduced, because the parity-check
matrix becomes too dense. The remaining alternatives are
hence four, five and six dimensions. Extensive testing has
shown that five dimensions is the most beneficial and
reliable alternative. Simulations have proved that the
message length does not significantly affect the results. The
message length only affects the maximal code rate that can
be used but the number of dimensions is unaffected. It is
therefore our recommendation to fix the number of
dimensions to five in the HLDPC code, indifferently of the
code rate and the code length.

The permutation algorithm should be chosen so that the
symbols are spread out as far as possible from their original
positions and so that no symbol has the same position in
several dimensions. For this purpose, interleaving strategies
can be employed. An example of a permutation algorithm is
given in section II. Obviously, both the encoder and the
decoder must use the same permutation algorithm. It is
therefore imperative that the algorithm is determined either
separately for each object or is fixed for all objects. If the
algorithm is chosen separately for each object, the
specification on which algorithm is used must be delivered
to the receiver.

V. SIMULATIONS

The simulations were carried out on a TU6 DVB-H
channel with a constant Doppler frequency of 10 Hz. The
HLDPC code was used as an application layer code and

1569014904

5

every symbol was placed in exactly one IP packet. Hence,
entire missing or corrupted IP packets could be corrected.
The implementation of the HLDPC code was made using
the triple generator and the encoding symbol information
discussed in section III, and the permutation algorithm was
the modified block interleaver given in section II.C. The
code rate was fixed to 3/4 and five dimensions were used.
The number of message symbols in the codes was chosen to
6000 and 3000 symbols.

For comparison, a non-systematic Raptor code was used.
The Raptor code does not have a code rate because of its
ratelessness, but rather uses a reception overhead. If

' (1)n k ε= + is the number of encoding symbols that have

to be received in order to reconstruct a Raptor block, then ε
is the reception overhead. By limiting 'n to a fixed value n,
i.e. allowing a maximum of n transmitted symbols for an
object as discussed in the introduction, the Raptor code
obtains a code rate. This is something that has to be done in
large scale broadcasting scenarios in order to limit the time
during which an object is being transmitted. For the
simulations, 'n was limited to 4/3*k, i.e. the code rate was
limited to 3/4, so that comparable results were obtained.

The modulations that were used on the TU6 channel were
QPSK, 16QAM and 64QAM. The QPSK and 16QAM
modulations were coded with convolutional code rates
(CCR) 1/2 and 2/3, while the 64QAM modulation was
coded with a CCR 1/2. No MPE-FEC error correction was
utilized. In Fig. 5-9, the decoded message symbol erasure
rates are higher than the original erasure rates at lower C/N
values, because the Raptor code was non-systematic,

A. Erasure Correction Performance Measurements

Fig. 5 and Fig. 6 illustrate the erasure correcting
performances for the codes on a QPSK-modulated TU6
channel with CCR 1/2 and 2/3 respectively. As can be seen,
both the HLDPC and Raptor code produced quasi-error free
objects for C/N values of approximately 7-8 dB and 10 dB,
for CCR 1/2 and 2/3 respectively. For a criterion on the
symbol erasure rate of 10-3, the coding gain was 5-6 dB for
CCR 1/2 and 6 dB for CCR 2/3.

C/N (dB)

6 8 10 12 14 16 18

M
e

s
s
a

g
e

 S
y
m

b
o

l
E

ra
s
u

re
 R

a
te

10-4

10-3

10-2

10-1

100

Original Error Rate

Raptor, k = 6000

Raptor, k = 3000

HLDPC, k = 6000

HLDPC, k = 3000

Fig. 5. Erasure correction performances of Raptor and HLDPC codes on a
QPSK-modulated TU6 channel with convolutional code rate 1/2.

C/N (dB)

6 8 10 12 14 16 18

M
e

s
s
a

g
e

 S
ym

b
o

l
E

ra
s
u

re
 R

a
te

10-4

10-3

10-2

10-1

100

Original Error Rate

Raptor, k = 6000

Raptor, k = 3000

HLDPC, k = 6000

HLDPC, k = 3000

Fig. 6. Erasure correction performances of Raptor and HLDPC codes on a
QPSK-modulated TU6 channel with convolutional code rate 2/3.

C/N (dB)

10 12 14 16 18 20 22

M
e

s
s
a

g
e

 S
y
m

b
o

l
E

ra
s
u

re
 R

a
te

10-4

10-3

10-2

10-1

100

Original Error Rate

Raptor, k = 6000

Raptor, k = 3000

HLDPC, k = 6000

HLDPC, k = 3000

Fig. 7. Erasure correction performances of Raptor and HLDPC codes on a
16QAM-modulated TU6 channel with convolutional code rate 1/2.

C/N (dB)

10 12 14 16 18 20 22

M
e

s
s
a

g
e

 S
ym

b
o

l
E

ra
s
u

re
 R

a
te

10-4

10-3

10-2

10-1

100

Original Error Rate

Raptor, k = 6000

Raptor, k = 3000

HLDPC, k = 6000

HLDPC, k = 3000

Fig. 8. Erasure correction performances of Raptor and HLDPC codes on a
16QAM-modulated TU6 channel with convolutional code rate 2/3.

For the 16QAM-modulated transmission, illustrated in

Fig. 7 and Fig. 8, the required C/N values for quasi-error
free correction was increased with approximately 5 dB for
CCR 1/2 and 2/3 respectively. However, the equal erasure
correction performances were retained. For the 16QAM-

1569014904

6

modulated simulation, the coding gains were approximately
5 dB and 6 dB for CCR 1/2 and 2/3 respectively.

Fig. 9 shows that there is no observable difference
between the erasure correcting performances of the HLDPC
code and the Raptor code for the 64QAM-modulated
simulation. The codes produced quasi-error free objects at
C/N values of approximately 17 dB and the coding gain was
5 dB.

C/N (dB)

10 12 14 16 18 20 22

M
e

s
s
a

g
e

 S
ym

b
o

l
E

ra
s
u

re
 R

a
te

10-4

10-3

10-2

10-1

100

Original Error Rate

Raptor, k = 6000

Raptor, k = 3000

HLDPC, k = 6000

HLDPC, k = 3000

Fig. 9. Erasure correction performances of Raptor and HLDPC codes on a
64QAM-modulated TU6 channel with convolutional code rate 1/2.

What can be noted in Fig. 5-9 is that irrespectively of the

modulations used and of the coding used prior to the
HLDPC code or Raptor code, the erasure correction
performances of the codes are similar.

B. Transmission Overhead Measurements

With transmission overhead, we refer to the ratio of data,
proportional to the message length, that has to be
transmitted for complete recovery at the receiver. We define
the transmission overhead as the number of transmitted
symbols divided by k minus one. The transmission overhead
gives a measure of how long each receiver has to wait
before it is able to reconstruct an object. The difference
between transmission and reception overhead is that the
transmission overhead measures the number of symbols that
have to be transmitted, of which some are lost, while the
reception overhead measures the number of symbols that
have to be received, for complete recovery.

For measuring the transmission overhead, it was assumed
that the objects were transmitted repeatedly over and over
again in a carousel-like manner. The HLDPC code was
interleaved with an IP interleaver, using a block interleaver
with an interleaving depth equal to the number of encoding
symbols. Because of the random generation of Raptor
encoding symbols, the performance of the non-systematic
Raptor code cannot be improved with interleaving.
Therefore, the comparison is fair, although the Raptor code
was not interleaved.

Fig. 10-12 illustrate the transmission overhead vs. C/N for
the HLDPC and Raptor codes on a QPSK-, 16QAM-, and
64QAM-modulated TU6 channel, with CCR 1/2 and 2/3 for
the QPSK- and 16QAM-modulations and CCR 1/2 for the
64QAM-modulation. The results show that for low C/N
values, the Raptor code has a slightly lower transmission

overhead than the HLDPC code. This is because almost
every encoding symbol the Raptor code receives is different
from the previous ones and can therefore be used for
decoding with high probability. When the C/N increases
there is no notable difference between the transmission
overheads. Note that at the C/N values at where the
transmission overheads differ notably, the IP PER is above
2*10-1, which is a relatively high IP PER for any network.

C/N (dB)

6 8 10 12 14 16 18

T
ra

n
s
m

is
s
io

n
 O

v
e

rh
e

a
d

0,0

0,5

1,0

1,5

2,0

CCR 1/2, HLDPC, k = 6000

CCR 1/2, HLDPC, k = 3000

CCR 2/3, HLDPC, k = 6000

CCR 2/3, HLDPC, k = 3000

CCR 1/2, Raptor, k = 6000

CCR 1/2, Raptor, k = 3000

CCR 2/3, Raptor, k = 6000

CCR 2/3, Raptor, k = 3000

Fig. 10. Transmission overheads for HLDPC and Raptor codes on a QPSK-
modulated TU6 channel with convolutional code rates 1/2 and 2/3.

C/N (dB)

10 12 14 16 18 20 22

T
ra

n
s
m

is
s
io

n
 O

v
e

rh
e

a
d

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

CCR 1/2, HLDPC, k = 6000

CCR 1/2, HLDPC, k = 3000

CCR 2/3, HLDPC, k = 6000

CCR 2/3, HLDPC, k = 3000

CCR 1/2, Raptor, k = 6000

CCR 1/2, Raptor, k = 3000

CCR 2/3, Raptor, k = 6000

CCR 2/3, Raptor, k = 3000

Fig. 11. Transmission overheads for HLDPC and Raptor codes on a
16QAM-modulated TU6 channel with convolutional code rates 1/2 and 2/3.

C/N (dB)

10 12 14 16 18 20 22

T
ra

n
s
m

is
s
io

n
 O

v
e
rh

e
a
d

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

CCR 1/2, HLDPC, k = 6000

CCR 1/2, HLDPC, k = 3000

CCR 1/2, Raptor, k = 6000

CCR 1/2, Raptor, k = 3000

Fig. 12. Transmission overheads for HLDPC and Raptor codes on a
64QAM-modulated TU6 channel with convolutional code rate 1/2.

1569014904

7

Fig. 13 shows an interesting property of the HLDPC code.

The figure illustrates the relationship between the reception
overhead and the IP PER for an IP interleaved
5-dimensional (8000, 6000) HLDPC code compared to a
non-systematic Raptor code with equal message length.
What is noteworthy is that the reception overhead for the
HLDPC code is almost equal to the IP PER for IP PERs up
to approximately 2*10-1. This implies that for every lost
message symbol, a little more than one additional symbol is
required for recovery on average. What is also noteworthy is
that for IP PERs up to 8*10-2, the HLDPC code outperforms
the Raptor code in terms of reception overhead.

IP PER

10-4 10-3 10-2 10-1 100

R
e

c
e

p
ti
o

n
 O

v
e

rh
e
a

d
,

ε

10-4

10-3

10-2

10-1

100

101

102

HLDPC

Raptor

HLDPC, QPSK CCR 1/2

HLDPC, QPSK CCR 2/3

HLDPC, 16QAM CCR 1/2

HLDPC, 16QAM CCR 2/3

HLDPC, 64QAM CCR 1/2

Raptor, QPSK CCR 1/2

Raptor, QPSK CCR 2/3

Raptor, 16QAM CCR 1/2

Raptor, 16QAM CCR 2/3

Raptor, 64QAM CCR 1/2

Fig. 13. Reception overhead vs. IP packet erasure rate for an interleaved
5-dimensional (8000, 6000) HLDPC code compared to an equal length
Raptor code on a QPSK-, 16QAM-, and 64QAM-modulated TU6 channel,
with convolutional code rates 1/2 and 2/3.

VI. FIELD MEASUREMENTS

The HLDPC and Raptor codes were compared with field
measurements. For the measurements, data was transmitted
using a DVB-H test network and received with a DVB-T
receiver, connected to a laptop, with implementations of the
HLDPC and Raptor codes.

IP PER

10-4 10-3 10-2 10-1 100

T
ra

n
s
m

is
s
io

n
 O

v
e

rh
e

a
d

0,0

0,5

1,0

1,5

2,0

HLDPC, k = 6000

HLDPC, k = 3000

Raptor, k = 6000

Raptor, k = 3000

Fig. 14. Transmission overhead vs. received IP packet erasure rate for
DVB-H mobile pedestrian outdoor measurements using HLDPC and
Raptor codes.

Because the purpose of the application layer codes in
DVB-H is file delivery, there was a zero error tolerance on
the measurements and therefore, only the transmission
overhead was measured. The measured results, which are
illustrated in Fig. 14, resemble the simulation results showed
in section V.B and there is no notable difference between
the transmission overheads between the HLDPC and the
Raptor code, except for the higher IP PERs.

VII. CONCLUSIONS

In this paper, we introduced an erasure correcting code,
called HLDPC, for use in noisy wireless data casting
systems. A common problem for LDPC codes, which this
represents, is to generate the code structure. We presented a
systematic algorithm for the construction of the parity-check
matrix, which takes into account the requirements for degree
and edge distributions of the code. The code uses a hyper
code structure, i.e. multiple parallel codes, and permutations
of data between the codes.

The code was analyzed primarily using simulations of a
DVB-H system, based on the TU6 channel model, but also
using data acquired from field measurements. The results
show similar performance to Raptor codes.

The code is computationally of low complexity, the basic
operations being bitwise operations on data, hence
facilitating implementation in software layers of receiver
devices. Additionally, in good reception conditions, the
reception overhead is very low, making earlier receiver shut
down possible, thus saving energy.

The code was not optimized against any particular
channel model. The necessity of this remains open, and
could be analyzed in future work.

REFERENCES
[1] “Digital Video Broadcasting (DVB); Transmission System for

Handheld Terminals (DVB-H)”, ETSI EN 302 304 V1.1.1, 2004.
[2] A. Shokrollahi, “Raptor Codes”, in Proceedings of the International

Symposium on Information Theory (ISIT 2004)
[3] A. Shokrollahi, “Raptor Codes”, IEEE Transactions on Information

Theory, vol. 52, no. 6, pp. 2551-2567, 2006.
[4] A. Hunt, S. Crozier, and D. Falconer, “Hyper-Codes: High-

Performance Low-Complexity Error-Correcting Codes”, in
Proceedings of the 19th Biennial Symposium on Communications, pp.
265-267, 1998.

[5] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman,
“Efficient Erasure Correcing Codes”, IEEE Transactions on

Information Theory, vol. 47, no. 2, pp. 569-584, 2001.
[6] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V.

Stemann, “Practical Loss-Resilient Codes”, in Proceedings of the 29th

Annual ACM Symposium on Theory of Computing, pp. 150-159, 1997.
[7] K. Nybom and J. Björkqvist, “Designing Tornado Codes as Hyper

Codes for Improved Error Correcting Performance”, in Proceedings

of the Advanced International Conference on Telecommunications
(AICT 2006), 2006.

[8] M. Luby, “LT Codes”, in Proceedings of the 43rd Annual IEEE

Symposium on Foundations of Computer Science (FOCS 2002), pp.
271-282, 2002.

[9] C. Harrelson, L. Ip, and W. Wang, “Limited Randomness LT Codes”,
in Proceedings of the 41st Annual Allerton Conference on

Communication, Control, and Computing, 2003.

[10] “Universal Mobile Telecommunications System (UMTS); Mobile
Broadcast/Multicast Service (MBMS); Protocols and Codecs”, 3GPP
TS 26.346 version 6.4.0 Release 6.

