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Abstract—In this paper we introduce an erasure correcting 

code, which is designed to be used for providing error free data 

object transmissions over noisy wireless data casting systems, 

such as DVB-H. The code belongs to the class of low-density 

parity-check (LDPC) codes, and uses multiple parallel code 

structures, also called hyper codes. We also provide a 

straightforward algorithm for generating the parity-check 

matrix, which can generate instances of the code for different 

code sizes and coding capabilities, using only a few parameters. 

This gives us flexibility in designing the data transmission 

system. Using simulations and field measurements we show 

that the code performance is similar to that of the current state 

of the art codecs. The coding and decoding complexities are 

low, enabling software-based use in energy-constrained mobile 

devices. 

 
Index Terms—FEC, LDPC codes, hyper codes, application 

layer codes 

 

I. INTRODUCTION 

ODING techniques are extensively being used to 
improve the quality of service in wireless networks. 

Environmental conditions are known to deteriorate the 
quality of reception and different coding techniques are 
therefore needed to correct corrupted information. 
Especially for mobile receivers, as in DVB-H networks [1], 
there is a need for developing error correcting codes that are 
capable of reconstructing transmitted objects both with as 
high probability and with as low complexity as possible. 

Raptor codes [2, 3] are a fairly new class of codes, which 
have become popular in broadcasting scenarios, mainly 
because of their good erasure correcting capabilities, their 
small reception overheads, their low complexity, and their 
ability to produce an infinite stream of encoding symbols. In 
relatively small broadcasting scenarios, i.e. when the 
number of receivers is small and the receivers can inform 
the transmitter when they have received an object, the 
ratelessness of Raptor codes can efficiently be exploited. 
However, when the number of receivers is large, as will 
probably be the case in DVB-H broadcasting scenarios, 
there is no possibility to use a feedback channel to the 
transmitter. This implies that receivers cannot inform the 
transmitter when they have received the transmitted object 
and since there probably are several different objects that 
should be transmitted within a time frame, the amount of 
transmitted Raptor encoding symbols have to be limited. In 

effect, the Raptor code is changed from a rateless code to a 
code with a fixed code rate. 

In this paper, we introduce the hyper low-density parity-
check (HLDPC) code, which is based on some of the ideas 
presented in [2-7]. The HLDPC code is a more developed 
code than the Tornado code that was presented in [7], but 
since the only similarity, apart from the sparse graph 
structure, that the HLDPC and the Tornado code has is the 
Soliton distribution, we see it unfair to call this code a 
Tornado code. Furthermore, in [7] only the general idea of 
the hyper designed code is discussed, but no detailed 
information is given regarding the construction of the code. 
Therefore, the main contribution of this paper is to introduce 
the HLDPC code, to describe the methodology on how to 
create a HLDPC code and to give guidelines on how to 
specify the parameters for the code. We show with 
simulations and with field measurements that the HLDPC 
code has a similar performance as the Raptor code in 
DVB-H broadcasting scenarios. 

 

II. PARITY-CHECK MATRIX CONSTRUCTION 

HLDPC codes are systematic, fixed-rate, large block, and 
erasure correcting codes that are constructed with sparse 
parity-check matrices. The symbol sizes can be any 
predefined number of bits. The HLDPC code is a hyper 
code, utilizing several dimensions of encoding symbols. 
Hunt et al. [4] argue that by using several dimensions in the 
code, the minimum distance is increased when compared to 
the case where only one dimension, i.e. a standard code, is 
used. Throughout this paper, with dimension we refer to the 
hyper dimension and not to the code dimension. 

In addition to the number of dimensions, the performance 
of the code is strongly related to the degree distribution of 
the message and parity symbols. By carefully choosing the 
degrees, the parity-check matrix can be made sparse, 
resulting in both an efficient decoding algorithm and a good 
erasure correcting performance. For these purposes, the 
HLDPC code uses the Soliton distribution for generating the 
degrees, which has been shown in [8] to result in both an 
efficient parity-check matrix generation and a good 
probability of successful decoding. 

The overall algorithm for generating the parity-check 
matrix for an HLDPC code is given by the following steps: 
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1. Generate the degree distribution for the message 
symbols in the first dimension 

2. Distribute the message symbol edges  
3. Calculate parity symbol degrees for uncovered 

parity symbols so that all parity symbols are 
covered and distribute their edges 

4. Permute the message symbols, once for each 
remaining dimension, so that the final parity-
check matrix is obtained 

 
These steps are described in detail in the following 

subsections. 

A. The Hyper Structure 

Hyper codes are a family of codes, which operate by 
arranging parity equations into multi-dimensional systems 
of equations. The multi-dimensionality gives the decoder 
several alternate possibilities to reconstruct missing 
symbols. In effect, hyper codes divide the parity-check 
matrix into several parts, where every part corresponds to 
one dimension. Therefore, when creating hyper codes, the 
number of dimensions needs to be specified. Every 
dimension contains the message symbols and a fraction of 
the total amount of parity symbols. Between the dimensions, 
the message symbols are permuted and in every dimension, 
the parity symbols are calculated based on the permuted 
message symbols in that dimension. Fig. 1 displays a parity-
check matrix for a 3-dimensional HLDPC code. Fig. 1 also 
shows that the code can be viewed as a hyper-LDGM code. 

 
Fig. 1. The parity-check matrix structure for an HLDPC code with three 
dimensions. Every dimension utilizes a fraction of the parity symbols for 
error correction. 

 
For a d-dimensional (n, k) HLDPC code, the number of 

parity symbols in every dimension, s, is given by (1), and is 
equal to the total number of parity symbols divided by the 
number of dimensions, rounded up. This calculation may 
result in an increasing of n so that the total number of parity 
symbols equals d s⋅ . 
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B. The Degree and Edge Distributions 

The HLDPC code uses the ideal Soliton distribution [8] 
for generating the message symbol degrees. The number of 
elements in the distribution is equal to the number of 
message symbols.  
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Equation (2) defines the ideal Soliton distribution, where 
ρ denotes the Soliton distribution and m is the number of 
elements in the distribution. Fig. 2 illustrates the Soliton 
distribution for 100 elements. 
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Fig. 2.  The Soliton distribution for 100 elements. 

 
When generating the degree distribution for the message 

symbols, the number of parity symbols in every dimension 
must be determined using (1). The minimal degree of 

message symbol i, deg( )i , is then calculated with (3), as the 

discrete Soliton distributed value i times the number of 
parity symbols in every dimension, rounded up.  

 

 deg( ) ( ) ,i i s i kρ= ⋅ ∀ ∈    (3) 

 
This results in a small fraction of the message symbols 

having a relatively high degree, while the majority of the 
message symbols have the degree equal to one. The degree 
distribution needs only to be calculated in the first 
dimension, as will become clear in section II.C.  

For distributing the edges, the HLDPC code relies on the 
algorithms presented by Harrelson et al. [9]. Using the 
limited randomness edge distribution algorithm, a degree 
number of edges is distributed for every message symbol, 
while knowing that the maximum edge value is equal to the 
number of parity symbols in the dimension. The adapted 
version of the limited randomness algorithm is given by (4), 
when the message symbols are indexed from zero to k-1 and 
the parity symbols in every dimension are indexed from zero 
to s-1. 
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Harrelson et al. argue that as long as the maximum edge 

value is a prime number, all symbols can be covered. This, 
however, is rarely the case and therefore, the uncovered 
parity symbols have to be covered as well. Covering the 
parity symbols is done by determining a degree for every 
uncovered parity symbol and then by distributing the edges 
to the message symbols with the limited randomness 
algorithm, i.e. by substituting s with k in (4). The degree for 
the parity symbols should be chosen in the following 
manner: let f denote the discrete cumulative Soliton 

Dimension 1 

Dimension 2 

Dimension 3 
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distribution and v be a random number, where [0,1]v ∈ . 

Find j such that ( 1) ( )f j v f j− ≤ < . The degree of the 

parity symbol is then j. 

C. Finalizing the Parity-Check Matrix 

Once the degree and edge distributions have been 
generated for the first dimension, the remaining dimensions 
can be created by using the same edge and degree 
distributions as in the first dimensions and then permuting 
the message symbols. Once the message symbols have been 
permuted, new parity symbols can be calculated. This 
procedure is repeated until the parity symbols for all 
dimensions have been calculated. 

As a permutation algorithm, a modified block interleaver 
can be used. The modification involves choosing a starting 
index from where the interleaving should begin. By 
employing this strategy, the permutation improves the 
possibility that no symbol has the same index in several 
dimensions. The starting index, b, is calculated with (5), 
where di is the dimension to which the permuted message 
symbols are being determined. 
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Using (5) for a 5-dimensional HLDPC code with 

k = 1000, the starting indexes, are thus 200, 400, 600, and 
800. Other permutation algorithms are certainly possible to 
use, as long as the algorithms strive to ensure that symbols 
do not share positions between dimensions. The sharing of 
positions results in replications of edge distributions, which 
is not desirable, because this results in reduced erasure 
correcting performance. 

It is fairly easy to see that for each permutation in the 
code, the minimum distance is increased with one at most. 
This fact comes from the message symbol degree 
distribution: since the majority of the message symbols have 
degree one in the first dimension, then for every permutation 
performed, i.e. subsequent dimension, the final degree of 
most of the message symbols is increased with one. Because 
the minimum distance is defined as the minimum number of 
linearly independent columns plus one in the parity-check 
matrix, then for every dimension in the code, the minimum 
distance is increased with one at most. Recommendations on 
how to choose the number of dimensions will be discussed 
in section IV.  

Because the code is an erasure correcting code, the 
decoding algorithm is simple. The decoding consists of 
finding those parity symbols, which know all their neighbors 
but one. The missing neighbor is then calculated as the 
modulo two sum of the parity symbol and all the parity 
symbols known neighbors. This eliminates the need of using 
an iterative decoding algorithm, which in turn yields a low 
complexity and efficient decoding algorithm. This also 
implies that the decoder can use received symbols for 
decoding as soon as they are  received. 

 

III. IMPLEMENTATION GUIDELINES 

When implementing the HLDPC code there is no need to 

maintain the parity symbols as different sets of symbols, i.e. 
one set for every dimension. The complexity of the code can 
be significantly reduced if all the parity symbols are 
maintained as one set. By distributing the edges in a proper 
manner, the permutation of the actual message symbols can 
be avoided, while achieving the same result as if the 
message symbols were permuted. Fig. 3 illustrates an 
example of how a 2-dimensional (16, 8) HLDPC code is 
permuted with a block interleaver, without the starting index 
given in (5). In Fig. 3, the first row in every matrix indicates 
the symbol indexes in order to clarify the procedure. Note 
that after the message symbols have been permuted, the 
parity-check matrix in the second dimension is identical to 
the parity-check matrix in the first dimension, only with 
different symbol indexes. After the message symbols have 
been permuted, the columns are sorted according to the 
message symbol indexes to achieve the final parity-check 
matrix structure in the second dimension. 

 

 

Dimension 1:

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 1 0 0 1 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 1 1 0 0 0 0 1

Dimension 2 after permutation of message symbols:

1 4 7 2 5 8 3 6 13 14 15 16

0 0 0 0 1 0 0 1 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 1 1 0

 
 
 
 
 
 
  

0 0 0 1

Dimension 2 after sorting the columns:

1 2 3 4 5 6 7 8 13 14 15 16

0 0 0 0 1 1 0 0 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 1 0 0 0 1

 
 
 
 
 
 
  

 
 
 
 
 
 
  

 

 
Fig. 3. Permutation of a 2-dimensional (16, 8) HLDPC code. The first row 
in every matrix indicates the symbol indexes. Sorting the permuted 
dimension gives the final structure for the second dimension. 

 
When all dimensions are merged into one parity-check 

matrix the parity-check matrix for the entire code is 
obtained. Fig. 1 illustrates such a parity-check matrix for an 
HLDPC code with three dimensions. The complexity of 
both the encoder and decoder is reduced by permuting the 
edges instead of the message symbols, and this also gives a 
straightforward encoding and decoding algorithm. 

[10] specifies a triple generator, which can be used to 
efficiently generate pseudo-random numbers for the edge 
distributions. The triple generator calculates three numbers, 
a, b, and d, where d is a degree and a and b are the random 
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numbers used for the limited randomness algorithm in (4). 
When generating the message symbol edges, the d value 
should be omitted, since the degree is based on the Soliton 
distribution, while for the parity symbols, the d value should 
be used for the degree. The triple generator takes as input 
the number of message symbols and the symbol ID, which is 
the index of the symbol for which the values are generated. 
A benefit of using the triple generator is that both the 
transmitter and the receiver have the same random number 
generator. This eliminates possible problems caused by 
using different random number generators. 

To improve the delivery of encoding symbols, each 
symbol can be prefixed with encoding symbol information, 
as described in [10]. In this case, each symbol is prefixed 
with the following three values: 

 
- Source Block Number (SBN) 
- Encoding Symbol ID (ESI) 
- Source Block Length (SBL) 
 
The SBN describes which encoding block the symbol 

belongs to. The ESI is the index of the symbol. If ESI is less 
than k, then the symbol is a message symbol. Otherwise it is 
a parity symbol. The SBL is the number of message symbols 
in the encoding block. 

If the encoding symbol information is used in conjunction 
with the triple generator, the input parameters to the triple 
generator are obtained directly from the encoding symbol 
information, i.e. SBL and ESI. In this case, the SBL is used 
for generating the Soliton distribution, and thereby also the 
degrees. This implies that as soon as one encoding symbol is 
received, the entire parity-check matrix can be constructed, 
as long as the code rate, the number of dimensions and the 
permutation algorithm are known. As will be seen in section 
IV, the number of dimensions and the permutation algorithm 
can be fixed beforehand.  

 

IV. HLDPC PARAMETER SPECIFICATION 

For complete generation of the parity-check matrix, three 
parameters must be specified: the number of message 
symbols, the code rate, and the number of dimensions. The 
first two parameters are clearly dependent on the 
transmission scheme, but the specification of the number of 
dimensions is not obvious. As mentioned in section II, the 
minimum distance increases with one at most with every 
dimension. From the minimum distance, the minimum 
number of symbols that can be corrected can be calculated. 
If the performance of the code is measured with the 
minimum distance, the HLDPC code may be viewed as a 
poor code because of its low minimum distance. However, 
as will be seen in section V, the code has a similar 
performance as the Raptor code. Hence, the minimum 
distance is not an adequate measurement of the performance 
of the code. What is more interesting to study is the average 
message symbol erasure rate after decoding and the amount 
of data that has to be transmitted in order for the receiver to 
be able to reconstruct an object, when measuring code 
performances. 

 Fig. 4 illustrates the decoded message symbol erasure 
rates vs. code rates for HLDPC codes with 3000 message 

symbols on a TU6 channel with a Doppler frequency of 
79 Hz. The results are based on laboratory measurements of 
a DVB-H IP stream, made by Nokia. Similar results are 
obtained with other Doppler frequencies and message 
lengths, but with the maximum acceptable code rate shifted. 
The measured IP stream had an average IP packet erasure 
rate (IP PER) of 9.5 % and every IP packet contained 
exactly one symbol.  
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Fig. 4. Message symbol erasure rates vs. code rates for HLDPC codes with 
3000 message symbols and up to 10 dimensions on a TU6 channel with 
Doppler frequency 79 Hz. 5-dimensional codes are the most beneficial 
ones. 

 
As can be seen, using less than four dimensions does not 

produce an acceptable erasure correction capability, 
indifferently of the code rate. When the number of 
dimensions is increased beyond six dimensions, the erasure 
correcting performance is reduced, because the parity-check 
matrix becomes too dense. The remaining alternatives are 
hence four, five and six dimensions. Extensive testing has 
shown that five dimensions is the most beneficial and 
reliable alternative. Simulations have proved that the 
message length does not significantly affect the results. The 
message length only affects the maximal code rate that can 
be used but the number of dimensions is unaffected. It is 
therefore our recommendation to fix the number of 
dimensions to five in the HLDPC code, indifferently of the 
code rate and the code length.  

The permutation algorithm should be chosen so that the 
symbols are spread out as far as possible from their original 
positions and so that no symbol has the same position in 
several dimensions. For this purpose, interleaving strategies 
can be employed. An example of a permutation algorithm is 
given in section II. Obviously, both the encoder and the 
decoder must use the same permutation algorithm. It is 
therefore imperative that the algorithm is determined either 
separately for each object or is fixed for all objects. If the 
algorithm is chosen separately for each object, the 
specification on which algorithm is used must be delivered 
to the receiver.  

 

V. SIMULATIONS 

The simulations were carried out on a TU6 DVB-H 
channel with a constant Doppler frequency of 10 Hz. The 
HLDPC code was used as an application layer code and 
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every symbol was placed in exactly one IP packet. Hence, 
entire missing or corrupted IP packets could be corrected. 
The implementation of the HLDPC code was made using 
the triple generator and the encoding symbol information 
discussed in section III, and the permutation algorithm was 
the modified block interleaver given in section II.C. The 
code rate was fixed to 3/4 and five dimensions were used. 
The number of message symbols in the codes was chosen to 
6000 and 3000 symbols. 

For comparison, a non-systematic Raptor code was used. 
The Raptor code does not have a code rate because of its 
ratelessness, but rather uses a reception overhead. If 

' (1 )n k ε= +  is the number of encoding symbols that have 

to be received in order to reconstruct a Raptor block, then ε 
is the reception overhead. By limiting 'n  to a fixed value n, 
i.e. allowing a maximum of n transmitted symbols for an 
object as discussed in the introduction, the Raptor code 
obtains a code rate. This is something that has to be done in 
large scale broadcasting scenarios in order to limit the time 
during which an object is being transmitted. For the 
simulations, 'n  was limited to 4/3*k, i.e. the code rate was 
limited to 3/4, so that comparable results were obtained. 

The modulations that were used on the TU6 channel were 
QPSK, 16QAM and 64QAM. The QPSK and 16QAM 
modulations were coded with convolutional code rates 
(CCR) 1/2 and 2/3, while the 64QAM modulation was 
coded with a CCR 1/2. No MPE-FEC error correction was 
utilized. In Fig. 5-9, the decoded message symbol erasure 
rates are higher than the original erasure rates at lower C/N 
values, because the Raptor code was non-systematic, 

A. Erasure Correction Performance Measurements 

Fig. 5 and Fig. 6 illustrate the erasure correcting 
performances for the codes on a QPSK-modulated TU6 
channel with CCR 1/2 and 2/3 respectively. As can be seen, 
both the HLDPC and Raptor code produced quasi-error free 
objects for C/N values of approximately 7-8 dB and 10 dB, 
for CCR 1/2 and 2/3 respectively. For a criterion on the 
symbol erasure rate of 10-3, the coding gain was 5-6 dB for 
CCR 1/2 and 6 dB for CCR 2/3.  
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Fig. 5. Erasure correction performances of Raptor and HLDPC codes on a 
QPSK-modulated TU6 channel with convolutional code rate 1/2. 
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Fig. 6. Erasure correction performances of Raptor and HLDPC codes on a 
QPSK-modulated TU6 channel with convolutional code rate 2/3. 
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Fig. 7. Erasure correction performances of Raptor and HLDPC codes on a 
16QAM-modulated TU6 channel with convolutional code rate 1/2. 
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Fig. 8. Erasure correction performances of Raptor and HLDPC codes on a 
16QAM-modulated TU6 channel with convolutional code rate 2/3. 

 
For the 16QAM-modulated transmission, illustrated in 

Fig. 7 and Fig. 8, the required C/N values for quasi-error 
free correction was increased with approximately 5 dB for 
CCR 1/2 and 2/3 respectively. However, the equal erasure 
correction performances were retained. For the 16QAM-
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modulated simulation, the coding gains were approximately 
5 dB and 6 dB for CCR 1/2 and 2/3 respectively.  

Fig. 9 shows that there is no observable difference 
between the erasure correcting performances of the HLDPC 
code and the Raptor code for the 64QAM-modulated 
simulation. The codes produced quasi-error free objects at 
C/N values of approximately 17 dB and the coding gain was 
5 dB. 
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Fig. 9. Erasure correction performances of Raptor and HLDPC codes on a 
64QAM-modulated TU6 channel with convolutional code rate 1/2. 

 
What can be noted in Fig. 5-9 is that irrespectively of the 

modulations used and of the coding used prior to the 
HLDPC code or Raptor code, the erasure correction 
performances of the codes are similar.  

B. Transmission Overhead Measurements 

With transmission overhead, we refer to the ratio of data, 
proportional to the message length, that has to be 
transmitted for complete recovery at the receiver. We define 
the transmission overhead as the number of transmitted 
symbols divided by k minus one. The transmission overhead 
gives a measure of how long each receiver has to wait 
before it is able to reconstruct an object. The difference 
between transmission and reception overhead is that the 
transmission overhead measures the number of symbols that 
have to be transmitted, of which some are lost, while the 
reception overhead measures the number of symbols that 
have to be received, for complete recovery. 

For measuring the transmission overhead, it was assumed 
that the objects were transmitted repeatedly over and over 
again in a carousel-like manner. The HLDPC code was 
interleaved with an IP interleaver, using a block interleaver 
with an interleaving depth equal to the number of encoding 
symbols. Because of the random generation of Raptor 
encoding symbols, the performance of the non-systematic 
Raptor code cannot be improved with interleaving. 
Therefore, the comparison is fair, although the Raptor code 
was not interleaved.  

Fig. 10-12 illustrate the transmission overhead vs. C/N for 
the HLDPC and Raptor codes on a QPSK-, 16QAM-, and 
64QAM-modulated TU6 channel, with CCR 1/2 and 2/3 for 
the QPSK- and 16QAM-modulations and CCR 1/2 for the 
64QAM-modulation. The results show that for low C/N 
values, the Raptor code has a slightly lower transmission 

overhead than the HLDPC code. This is because almost 
every encoding symbol the Raptor code receives is different 
from the previous ones and can therefore be used for 
decoding with high probability. When the C/N increases 
there is no notable difference between the transmission 
overheads. Note that at the C/N values at where the 
transmission overheads differ notably, the IP PER is above 
2*10-1, which is a relatively high IP PER for any network. 
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Fig. 10. Transmission overheads for HLDPC and Raptor codes on a QPSK-
modulated TU6 channel with convolutional code rates 1/2 and 2/3. 
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Fig. 11. Transmission overheads for HLDPC and Raptor codes on a 
16QAM-modulated TU6 channel with convolutional code rates 1/2 and 2/3. 
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Fig. 12. Transmission overheads for HLDPC and Raptor codes on a 
64QAM-modulated TU6 channel with convolutional code rate 1/2. 
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Fig. 13 shows an interesting property of the HLDPC code. 

The figure illustrates the relationship between the reception 
overhead and the IP PER for an IP interleaved 
5-dimensional (8000, 6000) HLDPC code compared to a 
non-systematic Raptor code with equal message length. 
What is noteworthy is that the reception overhead for the 
HLDPC code is almost equal to the IP PER for IP PERs up 
to approximately 2*10-1. This implies that for every lost 
message symbol, a little more than one additional symbol is 
required for recovery on average. What is also noteworthy is 
that for IP PERs up to 8*10-2, the HLDPC code outperforms 
the Raptor code in terms of reception overhead. 
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Fig. 13. Reception overhead vs. IP packet erasure rate for an interleaved 
5-dimensional (8000, 6000) HLDPC code compared to an equal length 
Raptor code on a QPSK-, 16QAM-, and 64QAM-modulated TU6 channel, 
with convolutional code rates 1/2 and 2/3.  

 

VI. FIELD MEASUREMENTS 

The HLDPC and Raptor codes were compared with field 
measurements. For the measurements, data was transmitted 
using a DVB-H test network and received with a DVB-T 
receiver, connected to a laptop, with implementations of the 
HLDPC and Raptor codes.  
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Fig. 14. Transmission overhead vs. received IP packet erasure rate for 
DVB-H mobile pedestrian outdoor measurements using HLDPC and 
Raptor codes. 

 

Because the purpose of the application layer codes in 
DVB-H is file delivery, there was a zero error tolerance on 
the measurements and therefore, only the transmission 
overhead was measured. The measured results, which are 
illustrated in Fig. 14, resemble the simulation results showed 
in section V.B and there is no notable difference between 
the transmission overheads between the HLDPC and the 
Raptor code, except for the higher IP PERs.  

 

VII. CONCLUSIONS 

In this paper, we introduced an erasure correcting code, 
called HLDPC, for use in noisy wireless data casting 
systems. A common problem for LDPC codes, which this 
represents, is to generate the code structure. We presented a 
systematic algorithm for the construction of the parity-check 
matrix, which takes into account the requirements for degree 
and edge distributions of the code. The code uses a hyper 
code structure, i.e. multiple parallel codes, and permutations 
of data between the codes.  

The code was analyzed primarily using simulations of a 
DVB-H system, based on the TU6 channel model, but also 
using data acquired from field measurements. The results 
show similar performance to Raptor codes.  

The code is computationally of low complexity, the basic 
operations being bitwise operations on data, hence 
facilitating implementation in software layers of receiver 
devices. Additionally, in good reception conditions, the 
reception overhead is very low, making earlier receiver shut 
down possible, thus saving energy.  

The code was not optimized against any particular 
channel model. The necessity of this remains open, and 
could be analyzed in future work. 
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