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ABSTRACT

We propose novel computational short-cuts for construct-
ing sparse linear predictors with regularized least-squares
(RLS), also known as the least-squares support vector ma-
chine or ridge regression. The short-cuts make it possible
to accelerate the search in the power set of features with
leave-one-out criterion as a search heuristic. Our first short-
cut finds the optimal search direction in the power set. The
direction means either adding a new feature into the set of
selected features or removing one of the previously added
features. The second short-cut updates the set of selected
features and the corresponding RLS solution according to
a given direction. The computational complexities of both
short-cuts are O(mn), where m and n are the numbers of
training examples and features, respectively. The short-cuts
can be used with various different feature selection strate-
gies. As case studies, we present efficient implementations
of greedy and floating forward feature selection algorithm
for RLS.

1. INTRODUCTION

In this paper, we consider machine learning methods for
constructing sparse linear predictors. In the literature, the
task is often referred to as feature selection (see e.g. [1]).
The feature selection methods are usually divided into three
classes, namely, to the so called filter, wrapper (see e.g.
[2]), and embedded methods. In particular, we consider
the wrapper type of feature selection in which the features
are selected through interaction with a machine learning
method.

Sparse predictors are beneficial for many reasons. For
example, when constructing an instrument for diagnosing
a disease according to a medical sample, sparse predictors
can be more easily be deployed in the instrument than dense
ones, because they require less memory for storing and less
information from the sample in order to perform the diagno-
sis. Another benefit of sparse representations is in their in-
terpretability. If the predictor consists of only a small num-
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ber of nonzero dimensions, it makes it easier for a human
expert to explain the underlying concept. For example, in
life sciences the aim is often to find genes relevant to the
problem under consideration.

The number of possible feature sets grows exponentially
with the number of available features. Therefore, feature
selection methods need a search strategy over the power set
of features. In addition to the search strategy, a heuristic for
assessing the goodness of the feature subsets is required.
As suggested by [3], we use the leave-one-out (LOO) cross-
validation approach, where each example in turn is left out
of the training set and used for testing, as a search heuristic.

The most popular search strategy in wrapper type of fea-
ture selection is so-called greedy forward selection which
starts from the empty feature set, and on each iteration adds
the feature whose effect on the heuristic is the most benefi-
cial. Another popular strategy is greedy backward elimina-
tion which starts from the complete set and keeps removing
the features one by one. Sometimes, both approaches suffer
from the so-called nesting effect. With this, we refer to the
fact that the best subset of size k, for example, does not nec-
essarily cover the features included in the best subset of size
k− 1. It has been shown (see e.g. [4,5]) that floating search
methods, which use both forward and backward steps work
better than the two above ones, because they are able to cor-
rect some of the mistakes made in the previous steps. See
also [6] and references therein for some alternative search
strategies.

Our method is built upon the regularized least-squares
(RLS), also known as the least-squares support vector ma-
chine (LS-SVM) and ridge regression, which is a state-of-
the art machine learning method suitable both for regression
and classification [7–9], and it has also been extended for
ranking [10, 11]. An important property of the algorithm is
that it has a closed form solution, which can be fully ex-
pressed in terms of matrix operations. This allows develop-
ing efficient computational shortcuts for the method, since
small changes in the training data matrix correspond to low-
rank changes in the learned predictor. Especially it makes
possible the development of efficient cross-validation al-
gorithms. An updated predictor, corresponding to a one
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learned from a training set from which one example has
been removed, can be obtained via a well-known compu-
tationally efficient short-cut (see e.g. [12,13] and references
therein) which in turn enables the fast computation of LOO-
based performance estimates. Analogously to removing the
effect of training examples from learned RLS predictors, the
effects of a feature can be added or removed by updating
the learned RLS predictors via similar computational short-
cuts.

Learning a linear RLS predictor with k features and m
training examples requires O(min{k2m, km2}) time, since
the training can be performed either in primal or dual form
depending whether m > k or vice versa. In addition, the
computation of LOO performance without computational
short-cuts requiresm trainings. Furthermore, in each search
iteration we haveO(n) search directions in the space of fea-
ture subsets, because there are O(n) possibilities to add a
new feature to or remove a feature from the current set of
selected features. Putting everything together, the time com-
plexity of a single iteration step is O(min{k2m2n, km3n})
in case RLS is used as a black-box method.

In machine learning and statistics literature, there have
been several studies in which the computational short-cuts
for LOO, as well as other types of cross-validation, have
been used to speed up the evaluation of feature subset qual-
ity for RLS (see e.g. [14, 15]). In [16] we proposed an al-
gorithm for greedy forward selection according to the LOO
criterion. The algorithm, which we call greedy RLS, can
be carried out in O(kmn) time, where k is the number
of selected features, which is computationally faster than
the previously proposed implementations. In particular, the
time complexity of a single iteration step of greedy RLS is
O(mn).

In this paper, we consider our computational short-cuts
as building blocks and show that they can be used to con-
struct feature selecting algorithms based also on other search
strategies than the greedy forward selection. As case stud-
ies, we show how to implement both the greedy and the
floating search strategies. In our floating search strategy, we
follow the idea proposed by [5] in which the algorithm may
perform a series of corrective backward elimination steps
after each forward selection step. In particular, a backward
step is performed when the value of the LOO heuristic de-
teriorates less than half of the amount it was enhanced in
earlier forward steps. Accordingly, the algorithm can cor-
rect some of the mistakes it made in the earlier steps but
still it eventually keeps enhancing the value of the heuristic.
For more in depth analysis of this strategy, we refer to [5].

2. REGULARIZED LEAST-SQUARES

We start by introducing some notation. Let Rm and Rn×m,
where n,m ∈ N, denote the sets of real valued column vec-

tors and n×m-matrices, respectively. To denote real valued
matrices and vectors we use bold capital letters and bold
lower case letters, respectively. Moreover, index sets are
denoted with calligraphic capital letters. By denoting Mi,
M:,j , and Mi,j , we refer to the ith row, jth column, and
i, jth entry of the matrix M ∈ Rn×m, respectively. Simi-
larly, for index sets R ⊆ {1, . . . , n} and L ⊆ {1, . . . ,m},
we denote the submatrices of M having their rows indexed
byR, the columns by L, and the rows byR and columns by
L as MR, M:,L, and MR,L, respectively. We use an anal-
ogous notation also for column vectors, that is, vi refers to
the ith entry of the vector v.

Let X ∈ Rn×m be a matrix containing the whole feature
representation of the examples in the training set, where n is
the total number of features and m is the number of training
examples. The i, jth entry of X contains the value of the ith
feature in the jth training example. Moreover, let y ∈ Rm

be a vector containing the labels of the training examples. In
binary classification, the labels can be restricted to be either
−1 or 1, for example, while they can be any real numbers
in regression tasks.

In this paper, we consider linear predictors of type

f(x) = wTxS , (1)

where w is the |S|-dimensional vector representation of the
learned predictor and xS can be considered as a mapping of
the data point x into |S|-dimensional feature space.1 Note
that the vector w only contains entries corresponding to the
features indexed by S. The rest of the features of the data
points are not used in prediction phase. The computational
complexity of making predictions with (1) and the space
complexity of the predictor are both O(|S|) provided that
the feature vector representation xS for the data point x is
given.

Given training data and a set of feature indices S, we
find w by minimizing the RLS risk. This can be expressed
as the following problem:

argmin
w∈R|S|

(
((wTXS)T − y)T((wTXS)T − y) + λwTw

)
,

where λ > 0 is a regularization parameter. The first term,
called the empirical risk, measures how well the prediction
function fits to the training data. The second term is called
the regularizer and it controls the tradeoff between the loss
on the training set and the complexity of the prediction func-
tion.

To support the following considerations, we introduce
the dual form of the prediction function and some extra no-
tation. According to [17], the prediction function (1) can be

1In the literature, the formula of the linear predictors often also contain
a bias term. Here, we assume that if such a bias is used, it will be realized
by using an extra constant valued feature in the data points.
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Algorithm 1: Floating search
Input: X ∈ Rn×m, y ∈ Rm, ε, λ
Output: S, w
a← λ−1y;1

d← λ−11;2

C← λ−1XT;3

S ← ∅;4

c← 0;5

ec ←
∑m

j=1(yj)2;6

while true do7

c← c+ 1;8

D ← {1, . . . , n} \ S9

b, ec ← FOU(X,C,y,a,d,D, 1);
δc ← ec−1 − ec;10

if δc < ε then11

break12

C,a,d← PU(X,C,a,d, b, 1);13

S ← S ∪ {b};14

while true do15

b, e′ ← FOU(X,C,y,a,d,S,−1);16

δ′ ← e′ − ec;17

if δ′ > 0.5δc then18

break19

C,a,d← PU(X,C,a,d, b,−1);20

S ← S \ {b};21

c← c− 1;22

ec ← e′;23

w← XSa;24

Fig. 1. The floating search algorithm.

represented in dual form as follows

f(x) = aT(XS)TxS .

Here a ∈ Rm is the vector of so-called dual variables, which
can be obtained from a = ((XS)TXS + λI)−1y.

Next, we consider a well-known efficient approach for
evaluating the LOO performance of a trained RLS predictor
(see e.g. [13]). Provided that we have the vector of dual
variables a and the diagonal elements of G available, the
LOO prediction for the jth training example can be obtained
in constant number of floating point operations from

yj − (Gj,j)−1aj . (2)

3. NOVEL COMPUTATIONAL SHORT-CUTS

Here, we present our novel computational short-cuts en-
abling the construction of various types of feature subset
search strategies with LOO error as a heuristic. In addition,

we construct implementations of greedy and floating for-
ward feature selection algorithms for RLS with LOO crite-
rion, which act as case studies about how the computational
short-cuts can be employed. We refer to the algorithms as
greedy RLS and floating RLS. Both algorithms start from
an empty feature set S = ∅, and on each iteration add the
feature whose addition provides the best LOO performance.
Greedy RLS only adds features to the set of selected fea-
tures and never removes any from it. In contrast, floating
RLS may perform a series of corrective backward steps af-
ter each addition of a new feature during which it removes
some of the previously added features if the removal does
not increase the LOO error too much. Both algorithms stop
if the decrease of LOO error gained by adding a new feature
would be smaller than a given threshold ε > 0.

Pseudo code of floating RLS is presented in Fig. 1. The
greedy RLS algorithm is obtained if the inner loop, starting
from line 15 in the pseudo code, is removed (see [16] for a
more detailed description of greedy RLS). In addition, we
present the pseudo codes of our two computational short-
cuts (Fig. 2 and Fig. 3) which the algorithms take advantage
of.

In order to take advantage of the computational short-
cuts, feature selection algorithm maintains the current set of
selected features S ⊆ {1, . . . , n}, the vectors a,d ∈ Rm

and the matrix C ∈ Rm×n whose values are defined as

a = Gy, (3)
d = diag(G), (4)
C = GXT, (5)

where
G = ((XS)TXS + λI)−1 (6)

and diag(G) denotes a vector consisting of the diagonal en-
tries of G.

In the initialization phase of the floating RLS algorithm
(lines 1-4 in Fig. 1) the set of selected features is empty,
and hence the values of a, d, and C are initialized to λ−1y,
λ−11, and λ−1XT, respectively, where 1 ∈ Rm is a vector
having every entry equal to 1. The computational complex-
ity of the initialization phase is dominated by the O(mn)
time required for initializing C. Thus, the initialization
phase is no more complex than one pass through the fea-
tures.

Let us now consider the function FOU described in Fig. 2,
which finds the optimal update direction given a set D ⊆
{1, . . . , n} of available directions, that is, the update direc-
tion that has the lowest LOO error. The update may refer
to either adding a new feature into the set of selected fea-
tures (the argument t has the value 1) or removing one of
the features from the set (the value of t is −1). In addition
toD and t, the function FOU gets as arguments the matrices
X,C ∈ Rn×m and the vectors y,a,d ∈ Rm. The function



298

Algorithm 2: Find optimal update (FOU)
Input: X,C ∈ Rn×m, y,a,d ∈ Rm,

D ⊆ {1, . . . , n}, t ∈ {−1, 1}
Output: b, e
e←∞;1

b← 0;2

foreach i ∈ D do3

v← (Xi)T;4

u← C:,i(t+ vTC:,i)−1;5

ã← a− u(vTa);6

ei ← 0;7

foreach j ∈ {1, . . . ,m} do8

d̃j ← dj − ujCj,i;9

p← yj − (d̃j)−1ãj ;10

ei ← ei + l(yj , p);11

if ei < e then12

e← ei;13

b← i;14

Fig. 2. Find optimal update (FOU) function.

returns the index b corresponding the optimal update direc-
tion and the value of the LOO error e the predictor would
have in case the update would be performed.

Computing the LOO performance with the formula (2)
for the modified feature set S ∪ {i} or S \ {i}, where i is
the index of the feature to be added or removed, requires the
vectors ã = G̃y and d̃ = diag(G̃), where

G̃ = ((XS)TXS + vTtv + λI)−1 (7)

and v = (Xi)T. Let us define a vector

u = C:,i(t+ vTC:,i)−1 (8)

which is computable in O(m) time provided that v and C
are available. Then, the matrix G̃ can be rewritten as

G̃ = G−Gv(t+ vTGv)−1vTG

= G− uvTG (9)

where the first equality is due to the well-known Sherman-
Morrison-Woodbury (SMW) formula. Accordingly, the vec-
tor ã can be written as

ã = G̃y

= (G− uvTG)y
= a− u(vTa) (10)

in which the lowermost expression is also computable in

Algorithm 3: Perform update (PU)
Input: X,C ∈ Rn×m, a,d ∈ Rm, b ∈ {1, . . . , n},

t ∈ {−1, 1}
Output: C,a,d
v← (Xb)T;1

u← C:,b(t+ vTC:,b)−1;2

a← a− u(vTa);3

foreach j ∈ {1, . . . ,m} do4

dj ← dj − ujCj,b;5

C← C− u(vTC);6

Fig. 3. Perform update (PU) function.

O(m) time. Further, the entries of d can be computed from

dj = G̃j,j

= (G− uvTG)j,j

= (G− u(C:,i)T)j,j

= dj − ujCj,i (11)

in a constant time, the overall time needed for computing d̃
again becoming O(m). Thus, provided that we have all the
necessary caches available, evaluating each feature requires
O(m) time, and hence one pass through the whole set of
|D| features needs O(m|D|) floating point operations.

Let us next consider the function PU described in Fig. 3,
which performs the required updates to the matrix C and to
the vectors a and d corresponding to either addition or re-
moval of a feature indicated by the argument b. Whether the
feature is added or removed is again indicated by the argu-
ment t. The updates to the vectors a and d are performed
in O(m) time in a way analogous to the temporary updates
done in function FOU. Updating the cache matrix C is also
required when the set of selected features is updated perma-
nently. Putting together (5), (8), and (9), C can be updated
via

C− u(vTC),

which requires O(mn) time which dominates the computa-
tional complexity of the function PU.

Back to the main algorithm, the loop starting from line 7
in Fig. 1 first performs one forward selection step, that is, it
adds one new feature to the set of selected features S by
first calling the function FOU in order to find the optimal
feature to be added and then calling the function PU which
performs the actual update operation. In addition, the al-
gorithm performs book keeping by storing the the value of
LOO error ec corresponding to the updated feature set and
the difference δc = ec−1 − ec of the new LOO error and
the LOO error before the update. The LOO error corre-
sponding to the empty feature set is computed in the begin-
ning of the algorithm. The inner loop may perform correc-
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tive backward elimination steps after each forward selection
step. Here, we follow the idea proposed by [5]. Namely, a
backward step is performed when the increase (denoted by
δ′ in Fig. 1) of LOO error is no more than half of the de-
crease of the LOO error in earlier forward steps.

Since the computational complexities of both FOU and
PU functions are of the order O(mn), the overall time com-
plexities of floating and greedy RLS are O(kmn), where k
is the number of feature additions or removals. For greedy
RLS, k is also the number of selected features (see [16]).

4. EXPERIMENTAL RESULTS

In the experiments we test the greedy and floating feature
selection strategies on the MNIST handwritten digit database2.
We consider an artificial regression task, where all the ex-
amples corresponding to the digit 5 have the label 1, and all
the rest of the examples the label −1. We use the standard
training/test split with 60000 training examples, and 10000
test examples. The data set has 780 features, of which we
select up to 100. Mean squared error is used to measure
performance. The regularization parameter is set to 1. In
the experiments we compare the greedy RLS and the float-
ing RLS. Both were implemented in Python, as part of the
RLScore3 open source machine learning software frame-
work. The experiments were run on a modern desktop com-
puter with 2.4 GHz processor and 8 GB of main memory.

First we study the computational efficiency of floating
RLS. In Fig 4 (top) are the running times in CPU seconds
for greedy RLS and floating RLS for varying sparsity levels.
Because floating RLS on each iteration calculates the op-
timal direction for backward update, and sometimes takes
this step, its running time is a between two to three times
that of the greedy RLS. Still, even when selecting 100 fea-
tures out of 780 on a data set of 60000 examples, the running
time is less than half an hour. Thus already with a Python
implementation the method scales well to large data sets,
optimized implementation in a low-level language could be
expected to provide further increase in efficiency.

In Fig. 4 (middle) are the LOO results for varying spar-
sity levels, and in Fig. 4 (bottom) the corresponding test
errors. The results for the greedy and floating search are
quite close to each other. The correcting steps taken by the
floating search lead to slightly lower LOO-errors, and also
to lower test errors. Thus with the floating strategy one can
with a smaller feature set reach the same performance than
with the greedy search. When selecting close to 100 fea-
tures the test error for the floating search becomes slightly
worse than that of the greedy search, probably due to over-
fitting.

2Available at http://yann.lecun.com/exdb/mnist/
3Available at http://www.tucs.fi/RLScore
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Fig. 4. Runtimes on the MNIST data for varying sparsity
levels (top). LOO-error on the MNIST data for varying
sparsity levels (middle). Test error on the MNIST data for
varying sparsity levels (bottom).

5. CONCLUSIONS

In this paper, we have proposed two computational short-
cuts which can be used as building blocks in feature se-
lection algorithms for regularized least-squares (RLS), also
known as the least-squares support vector machine or ridge
regression. The first short-cut finds the optimal direction
in the space of feature subsets, the optimality being deter-
mined by the leave-one-out (LOO) criterion. Given an up-
date direction which refers to either adding a new feature
into the set of selected features or removing one of the pre-
viously added features from the set, the second short-cut up-
dates the set of selected features and the corresponding RLS
solution accordingly. The computational complexity of both
short-cuts is O(mn), where m is the number of training ex-
amples and n is the overall number of features.
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In our experiments, we test two feature selection al-
gorithms that take advantage of the presented short-cuts.
The first is greedy RLS, a feature selection based on greedy
forward selection, whose overall computational complexity
is O(kmn), where k is the desired number of features to
be selected. The second is a method based on the float-
ing search strategy. The floating search is computationally
slightly slower than greedy RLS but it is able to correct
some of its mistakes by discarding previously selected fea-
tures. To conclude, the presented computational short-cuts
can be used to implement various different feature selection
strategies for RLS which in turn enable the fast learning of
accurate but sparse linear predictors.
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