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Abstract—We propose a novel algorithm for greedy forward
feature selection for regularized least-squares (RLS) regression
and classification, also known as the least-squares support
vector machine or ridge regression. The algorithm, which we
call greedy RLS, starts from the empty feature set, and on
each iteration adds the feature whose addition provides the
best leave-one-out cross-validation performance. Our method
is considerably faster than the previously proposed ones, since
its time complexity is linear in the number of training examples,
the number of features in the original data set, and the desired
size of the set of selected features. Therefore, as a side effect
we obtain a new training algorithm for learning sparse linear
RLS predictors which can be used for large scale learning.
This speed is possible due to matrix calculus based short-
cuts for leave-one-out and feature addition. We experimentally
demonstrate the scalability of our algorithm compared to
previously proposed implementations.

I. INTRODUCTION

In this paper, we propose a novel algorithm for greedy
forward feature selection for regularized least-squares (RLS)
regression and classification. RLS (see e.g [1]), also known
as the least-squares support vector machine (LS-SVM) [2]
and ridge regression [3], is a state-of-the art machine learn-
ing method suitable both for regression and classification,
and it has also been extended for ranking [4], [5].

In the literature, there are many approaches for the task
of feature selection (see e.g. [6]). We consider the wrapper
type of feature selection [7] in which the feature selection
and training of the RLS predictor are done simultaneously.

Performing feature selection for linear RLS results in a
linear predictor which is sparse, that is, the predictor has
nonzero parameters only for the selected features. Sparse
predictors are beneficial for many reasons. For example,
when constructing an instrument for diagnosing a disease
according to a medical sample, sparse predictors can be
deployed in the instrument more easily than dense ones,
because they require less memory for storing and less
information from the sample in order to perform the diag-
nosis. Another benefit of sparse representations is in their
interpretability. If the predictor consists of only a small
number of nonzero parameters, it makes it easier for a human
expert to explain the underlying concept.

The number of possible feature sets grows exponentially
with the number of available features. Therefore, the wrap-

per type of feature selection methods need a search strategy
over the power set of features. As a search strategy, we
use the greedy forward selection that adds one feature at
a time to the set of selected features but no features are
removed from the set at any stage. In addition to the search
strategy, a heuristic for assessing the goodness of the feature
subsets is required. Measuring the prediction performance
on the training set is known to be unreliable. Therefore, as
suggested by [8], we use the leave-one-out cross-validation
(LOO) approach, where each example in turn is left out of
the training set and used for testing, as a search heuristic.
The merits of using greedy forward selection as a search
strategy and LOO criterion as a heuristic when doing feature
selection for RLS have been empirically shown by [9], [10].

An important property of the RLS algorithm is that it
has a closed form solution, which can be fully expressed in
terms of matrix operations. This allows developing efficient
computational shortcuts for the method, since small changes
in the training data matrix correspond to low-rank changes in
the learned predictor. Especially it makes possible the devel-
opment of efficient cross-validation algorithms. An updated
predictor, corresponding to a one learned from a training set
from which one example has been removed, can be obtained
via a well-known computationally efficient short-cut (see e.g.
[11]) which in turn enables the fast computation of LOO-
based performance estimates. Analogously to removing the
effects of training examples from learned RLS predictors, the
effects of a feature can be added or removed by updating the
learned RLS predictors via similar computational short-cuts.

Learning a linear RLS predictor with & features and m
training examples requires O(min{k?m, km?}) time, since
the training can be performed either in primal or dual form
depending whether m > k or vice versa. Let n be the overall
number of features available for selection. Given that the
computation of LOO performance requires m retrainings,
that the forward selection tests O(n) possibilities in each
iteration, and that the forward selection has k iterations, the
overall time complexity of the forward selection with LOO
criterion becomes O (min{k*m?n, k>m>3n}) in case RLS is
used as a black-box method.

In machine learning and statistics literature, there have
been several studies in which the computational short-cuts
for LOO have been used to speed up the evaluation of feature



subset quality for RLS (see e.g. [9]). However, the consid-
ered approaches are still computationally quite demanding,
since the LOO estimate needs to be re-calculated from
scratch for each considered subset of features. Recently, [10]
introduced a method which uses additional computational
short-cuts for efficient updating of the LOO predictions
when adding new features to those already selected. The
computational cost of the incremental forward selection
procedure is only O(km?n) for the method. The speed
improvement is notable especially in cases, where the aim
is to select a large number of features but the training set
is small. However, the method is still impractical for large
training sets due to its quadratic scaling. In [12] we proposed
computational short-cuts for speeding up feature selection
for RLS with LOO criterion and in [13] we proposed
a feature selection algorithm for RankRLS, a RLS-based
algorithm for learning to rank.

This paper concerns the construction of a greedy forward
selection algorithm for RLS that takes advantage of our
previously proposed computational short-cuts. The algo-
rithm, which we call greedy RLS, can be carried out in
O(kmn) time, where k is the number of selected features.
The method is computationally faster than the previously
proposed implementations.

The contributions of this paper can be summarized as
follows:

o« We present greedy RLS, a linear time feature selec-
tion algorithm for RLS that uses LOO as a selection
criterion.

o We show that the predictors learned by greedy RLS
are exactly equivalent to those obtained via a standard
wrapper feature selection approach which uses a greedy
selection strategy, LOO selection criterion, and RLS as
a black-box method.

« We show both theoretically and empirically that greedy
RLS is computationally faster than the previously pro-
posed algorithms that produce equivalent predictors.
Namely, it is shown that the computational complexity
of greedy RLS is O(kmn) which makes it faster than
low-rank update LS-SVM proposed by [10] which
requires O(km?n) time.

II. REGULARIZED LEAST-SQUARES

We start by introducing some notation. Let R™ and
R™*™  where n,m € N, denote the sets of real valued
column vectors and n X m-matrices, respectively. To denote
real valued matrices and vectors we use bold capital letters
and bold lower case letters, respectively. Moreover, index
sets are denoted with calligraphic capital letters. By denoting
M;, M. ;, and M, ;, we refer to the ith row, jth column,
and 4, jth entry of the matrix M € R™*™, respectively. Sim-
ilarly, for index sets R C {1,...,n} and £ C {1,...,m},
we denote the submatrices of M having their rows indexed
by R, the columns by £, and the rows by R and columns

by £ as Mgz, M. -, and My ., respectively. We use an
analogous notation also for column vectors, that is, v; refers
to the ith entry of the vector v.

Let X € R™"*™ be a matrix containing the whole feature
representation of the examples in the training set, where n is
the total number of features and m is the number of training
examples. The ¢, jth entry of X contains the value of the ith
feature in the jth training example. Moreover, let y € R™
be a vector containing the labels of the training examples. In
binary classification, the labels can be restricted to be either
—1 or 1, for example, while they can be any real numbers
in regression tasks.

In this paper, we consider linear predictors of type

f(x) =w'xs, (1

where w is the |S|-dimensional vector representation of the
learned predictor and xs can be considered as a mapping
of the data point z into |S|-dimensional feature space.!
Note that the vector w only contains entries corresponding
to the features indexed by S. The rest of the features of
the data points are not used in the prediction phase. The
computational complexity of making predictions with (1)
and the space complexity of the predictor are both O(|S])
provided that the feature vector representation xs for the
data point x is given.

Given training data and a set of feature indices S, we find
w by minimizing the RLS risk. This can be expressed as the
following problem:

argmin { (W' Xs)" —y) (W' Xs)T —y) + Aw'w}.
weRIS|
2

The first term in (2), called the empirical risk, measures
how well the prediction function fits to the training data.
The second term is called the regularizer and it controls
the tradeoff between the loss on the training set and the
complexity of the prediction function.

A straightforward approach to solve (2) is to set the
derivative of the objective function with respect to w to
zero. Then, by solving it with respect to w, we get

w = (Xs(Xs)" 4+ AI) ' Xy, (3)

where I is the identity matrix. We note (see e.g. [14]) that
an equivalent result can be obtained from

w = Xs((Xs)"Xs + M) ty. 4)

If the size of the set S of currently selected features is
smaller than the number of training examples m, it is
computationally beneficial to use the form (3) while using
(4) is faster in the opposite case. Namely, the computational
complexity of the former is O(|S|? +|S|*m), while the that

n the literature, the formula of the linear predictors often also contain
a bias term. Here, we assume that if such a bias is used, it will be realized
by using an extra constant valued feature in the data points.



Algorithm 1: Standard wrapper algorithm for RLS

Input: X € R"*™, y € R™, k, A

Output: S, w

S« 0;

while |S| < k do

€ + 005

b+ 0;

foreach ¢ € {1, ...
R+ SU{i};
e; < LOO(XR, y, )\);
if e; < e then

e < €;;

b+ 1;
L S+ SuU{b};
w < t(Xs,y,A);

,n}\S do
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Figure 1. Standard wrapper algorithm for RLS

of the latter is O(m?® + m?|S|), and hence the complexity
of training a predictor is O(min{|S|*m,m?|S|}).

To support the following considerations, we introduce
the dual form of the prediction function and some extra
notation. According to [15], the prediction function (1) can
be represented in dual form as follows

f(x) =a"(Xs) xs.

Here a € R™ is the vector of so-called dual variables, which
can be obtained from a = Gy, where G = ((Xs)"Xs +
AL

Next, we consider a well-known efficient approach for
evaluating the LOO performance of a trained RLS predictor
(see e.g. [11]). Provided that we have the vector of dual
variables a and the diagonal elements of G available, the
LOO prediction for the jth training example can be obtained
in constant number of floating point operations from

yi — (Gj;) 'a;. )
1. ALGORITHM DESCRIPTIONS

A. Wrapper Approach

Here, we consider greedy forward feature selection for
RLS with LOO criterion. In this approach, feature sets up
to size k are searched and the goodness of a feature subset
is measured via LOO classification error. The method is
greedy in the sense that it adds one feature at a time to the
set of selected features, and no features are removed from
the set at any stage. A high level pseudo code of greedy
RLS is presented in Fig. 1. In the algorithm description,
the outermost loop adds one feature at a time into the set
of selected features S until the size of the set has reached
the desired number of selected features k. The inner loop
goes through every feature that has not yet been added
into the set of selected features and, for each of feature,
computes the LOO performance of the RLS predictor trained

using the feature and the previously added features. With
LOO(XR,y,A), we denote the LOO performance obtained
with a data matrix X, a label vector y, and a regularization
parameter A, for RLS. In the end of the algorithm descrip-
tion, ¢(Xs,y, ) denotes the black-box training procedure
for RLS which takes a data matrix, a label vector, and a
value of the regularization parameter as input and returns a
vector representation of the learned predictor w.

Training a linear RLS predictor with k features and
m training examples requires O(min{k?*m, km?}) time.
Given that the computation of LOO performance requires m
retrainings, that the selection of a new feature is done from
a set of size O(n) in each iteration, and that k features are
chosen, the overall time complexity of the forward selection
with LOO criterion is O(min{k®*m?n, k?m3n}). Thus, the
wrapper approach is feasible with small training sets and
in cases where the aim is to select only a small number of
features. However, at the very least quadratic complexity
with respect to both the size of the training set and the
number of selected features makes the standard wrapper
approach impractical in large scale learning settings. The
space complexity of the wrapper approach is O(nm) which
is equal to the cost of storing the data matrix X.

An immediate reduction for the above considered com-
putational complexities can be achieved via the short-cut
methods for calculating the LOO performance presented in
Section II. In machine learning and statistics literature, there
have been several studies in which the computational short-
cuts for LOO, as well as other types of cross-validation,
have been used to speed up the evaluation of feature subset
quality for RLS. For the greedy forward selection, the
approach proposed by [9] has a computational complexity
to O(k*m?n + km3n), since they train RLS in dual form
and use the LOO short-cut (5) enabling the calculation of
LOO as efficiently as training the predictor itself.

We note that an analogous short-cut for the LOO perfor-
mance exists also for the primal form of RLS (see e.g. [11]),
that is, the LOO performance can be computed for RLS as
efficiently as training RLS in the primal. Accordingly, we
can remove a factor m corresponding to the LOO compu-
tation from the time complexity of the wrapper approach
which then becomes O(min{k*mn, k?m?n}). However, we
are not aware of any studies in which the LOO short-cut for
the primal formulation would be used for the greedy forward
feature selection for RLS.

Recently, [10] proposed an algorithm implementation
which they call low-rank updated LS-SVM. The features
selected by the algorithm are equal to those selected by the
standard wrapper algorithm and by the method proposed by
[9], but it uses certain additional computational short-cuts to
speed up the selection process. The overall time complexity
of the low-rank updated LS-SVM algorithm is O(km?n).
The complexity with respect to k is linear which is much
better than that of the standard wrapper approach, and hence



Algorithm 2: Greedy RLS

Input: X c Rnxm’ y c R'm’ k, )\

Output: S, w
1a+ Aty
2d e« 27
3 C« XY
4 S+ 0
5 while |S| < k do
6 € < o0;
7 b+ 0;
8 foreach i € {1,...,n}\ S do
9 u(—C;yi(l-ﬁ-XiC;,i)il;
10 a <+ a—u(X;a);
1 e; < 0;
12 foreach j € {1,...,m} do
13 dj < d]' — u]‘Cj,i;
i py;—(dj) ta
15 eiei+(p—y)
16 if e; < e then
17 e < ej;
18 L b+ 1i;
19 u(—C;,b(1+XbC;,b)_1;
20 a <+ a—u(Xsa);
21 foreach j € {1,...,m} do
22 L dj — dj — u]‘Cj,b;
23 C «+ C—u(XC);
24 S+ SuU{b};

25 w + Xgsa;

Figure 2. Greedy RLS algorithm proposed by us

the selection of large feature sets is made possible. However,
feature selection with large training sets is still infeasible
because of the quadratic complexity with respect to m.
The space complexity of the low-rank updated LS-SVM
algorithm is O(nm + m?), because it stores the matrices
X and G requiring O(nm) and O(m?) space, respectively.
Due to the quadratic dependence of m, this space complexity
is worse than that of the standard wrapper approach.

B. Greedy Regularized Least-Squares

Here, we present our novel algorithm for greedy forward
selection for RLS with LOO criterion. We refer to our algo-
rithm as greedy RLS, since in addition to feature selection
point of view, it can also be considered as a greedy algorithm
for learning sparse RLS predictors. Pseudo code of greedy
RLS is presented in Fig. 2.

In order to take advantage of the computational short-cuts,
greedy RLS maintains the current set of selected features
S C {1,...,n}, the vectors a,d € R™ and the matrix
C € R™*™ whose values are defined as

a = Gy,
d = diag(G),
C = GXT, (6)

where
G=((Xs)'Xs+AD)*

and diag(G) denotes a vector consisting of the diagonal
entries of G.

In the initialization phase of the greedy RLS algorithm
(lines 1-4 in Algorithm 2) the set of selected features is
empty, and hence the values of a, d, and C are initialized
to A~ty, A7, and A'XT, respectively, where 1 € R™ is
a vector having every entry equal to 1. The time complexity
of the initialization phase is dominated by the O(mn) time
required for initializing C. Thus, the initialization phase is
no more complex than one pass through the features.

We now consider finding the optimal update direction
given a set of n — |S| of available directions, that is, the
direction having the lowest LOO error. Computing the LOO
performance with formula (5) for the modified feature set
S U {i}, where i is the index of the feature to be tested,
requires the vectors & = Gy and d = diag(G), where

G = (Xs)"™Xs + (Xi)™X; + AD)~L.
Let us define a vector
u=C._;(1+X,C.;)! (7

which is computable in O(m) time provided that C is
available. Then, the matrix G can be rewritten as

G = G-GX)"1+x:6X)H'X,G
= G-uX;G ®)
where the first equality is due to the well-known Sherman-

Morrison-Woodbury formula. Accordingly, the vector a can
be written as

a = éy
= (G-uX;G)y
= a—u(X;a) )

in which the lowermost expression is also computable in
O(m) time. Further, the entries of d can be computed from

d; = Gy,
= (G - uXiG)j,j
= (G-u(C.i)")y,
= dj — llejﬂ' (10)

in a constant time, the overall time needed for computing d
again becoming O(m). Thus, provided that we have all the
necessary caches available, evaluating each feature requires
O(m) time, and hence one pass through the whole set of n
features needs O(mn) floating point operations.

Thus, provided that we have all the necessary caches
available, evaluating each feature requires O(m) time, and
hence one pass through the whole set of n features needs



O(mn) time. But we still have to ensure that the caches can
be initialized and updated efficiently enough.

When a new feature is added into the set of selected
features, the vector a is updated according to (9) and the
vector d according to (10). Putting together (6), (7), and
(8), the cache matrix C can be updated via

C - U(XbC),

where b is the index of the feature having the best LOO
value, requiring O(mn) time. This is equally expensive as
the above introduced fast approach for trying each feature
at a time using LOO as a selection criterion.

Finally, if we are to select altogether k features, the overall
time complexity of greedy RLS becomes O(kmn). The
space complexity is dominated by the matrices X and C
which both require O(mn) space.

IV. EXPERIMENTAL RESULTS

We recall that our greedy RLS algorithm leads to results
that are equivalent to those of the algorithms proposed
by [9] and by [10], while being computationally much
more efficient. The aforementioned authors have in their
work shown that the greedy forward selection with LOO
criterion approach compares favorably to other commonly
used feature selection techniques. Hence, in our experiments,
we focus on the scalability of our algorithm implementation
and compare it with the best previously proposed algorithm,
namely to the low-rank updated LS-SVM introduced by
[10]. We will not compare greedy RLS to the implementa-
tion proposed by [9], because it was by [10] already shown
to be slower than the low-rank updated LS-SVM algorithm.

To test the scalability of the method, we use randomly
generated data from two normal distributions with 1000
features of which 50 are selected. The number of examples is
varied. In the first experiment we vary the number of training
examples between 500 and 5000, and provide a comparison
to the low-rank updated LS-SVM method [10]. In the second
experiment the training set size is varied between 1000 and
50000. We do not consider the baseline method in the second
experiment, as it does not scale up to the considered training
set sizes. The runtime experiments were run on a modern
desktop computer with 2.4 GHz Intel Core 2 Duo E6600
processor, 8 GB of main memory, and 64-bit Ubuntu Linux
9.10 operating system.

We note that the running times of these two methods are
not affected by the choice of the regularization parameter,
or the distribution of the features or the class labels. This
is in contrast to iterative optimization techniques commonly
used to train, for example, support vector machines [16].
Thus we can draw general conclusions about the scalability
of the methods from experiments with a fixed value for the
regularization parameter, and synthetic data.

The runtime experiments are presented in Fig. 3. The
results are consistent with the algorithmic complexity anal-
ysis of the methods. The the low-rank updated LS-SVM
method of [10] shows quadratic scaling with respect to the
number of training examples, while the proposed method
scales linearly. Moreover, the figure shows the running times
of greedy RLS for up to 50000 training examples, in which
case selecting 50 features out of 1000 took a bit less than
twelve minutes.

V. CONCLUSION

We propose greedy regularized least-squares, a novel
training algorithm for sparse linear predictors. The predictors
learned by the algorithm are equivalent with those obtained
by performing a greedy forward feature selection with leave-
one-out (LOQ) criterion for regularized least-squares (RLS),
also known as the least-squares support vector machine or
ridge regression. That is, the algorithm works like a wrapper
type of feature selection method which starts from the empty
feature set, and on each iteration adds the feature whose
addition provides the best LOO performance. Training a
predictor with greedy RLS requires O(kmn) time, where k
is the number of non-zero entries in the predictor, m is the
number of training examples, and n is the original number of
features in the data. This is in contrast to the computational
complexity O(min{k3m?n, k?m3n}) of using the standard
wrapper method with LOO selection criterion in case RLS is
used as a black-box method, and the complexity O(km?n)
of the method proposed by [10], which is the most effi-
cient of the previously proposed speed-ups. Hereby, greedy
RLS is computationally more efficient than the previously
known feature selection methods for RLS. We demonstrate
experimentally the computational efficiency of greedy RLS
compared to the best previously proposed implementation.

We have made freely available a software package called
RLScore out of our previously proposed RLS based machine
learning algorithms?. An implementation of the greedy RLS
algorithm is also available as a part of this software.

The study presented in this paper opens several directions
for future research. For example, greedy RLS can quite
straightforwardly be generalized to use different types of
cross-validation criterion, such as N-fold or repeated N-
fold. These are motivated by their smaller variance compared
to the leave-one-out and they have also been shown to have
better asymptotic convergence properties for feature subset
selection for ordinary least-squares [17]. This generalization
can be achieved by using the short-cut methods developed
by us [18] and by [19]. In [13] we investigated this approach
for the RankRLS algorithm by developing a selection criteria
based on leave-query-out cross-validation.
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