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Abstract. There has been much progress in recent years towards build-
ing larger and larger computational models for biochemical networks,
driven by advances both in high throughput data techniques, and in
computational modeling and simulation. Such models are often given as
unstructured lists of species and interactions between them, making it
very difficult to understand the logicome of the network, i.e. the logi-
cal connections describing the activation of its key nodes. The problem
we are addressing here is to predict whether these key nodes will get
activated at any point during a fixed time interval (even transiently),
depending on their initial activation status. We solve the problem in
terms of a Boolean network over the key nodes, that we call the logi-
come of the biochemical network. The main advantage of the logicome
is that it allows the modeler to focus on a well-chosen small set of key
nodes, while abstracting away from the rest of the model, seen as bio-
chemical implementation details of the model. We validate our results by
showing that the interpretation of the obtained logicome is in line with
literature-based knowledge of the EGFR signalling pathway.

Keywords: Biomodeling · Boolean network · Logicome · EGFR path-
way · ODE models

1 Introduction

One of the central topics of interest in systems biology is to identify the function-
alities of a living cell and to understand how the huge number of interactions
within a cell facilitate such functionalities. The set of complex and involved
interactions lead to obtaining a large number of collected experimental data as
well as complex networks. These broad sources of information can prove to be
very useful in providing a realistic life picture of the phenomenon under study,
but can also make it difficult to analyze the system and can cause inaccuracy in
predicting the system’s behavior. Identifying the main players within a network
and understanding how they activate each other can help to overcome these
difficulties.

There have been many studies on the logical modelling of biological net-
works; for example, [4–6,30] discuss the correspondence between Boolean net-
works and ODEs; for an introduction to Boolean networks and ODEs we refer
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to [13,14] respectively. Fuzzy logic was used in [19] to yield the logical mod-
els corresponding to the biological networks. As a different approach, [27] build
the Boolean logic models by training a literature-based prior knowledge network
against biochemical data. These studies mainly proposed approaches where the
full understanding of the biological aspects of the phenomenon under study
was crucial and the goal was to obtain a mathematical model reproducing that
understanding. Our study goes in the reverse direction: it starts from an existing
mathematical model and aims to obtain an abstract, high-level understanding of
the functionality of the biological network underlying the model. Our goal is to
obtain a logical description of the activation conditions between the key nodes
of the network; even in the case when one starts from a detailed biological model
going towards the mathematical model, our reverse engineering approach brings
a new higher-level understanding of the functionality of the biological model we
started from. The result of our approach is formulated as a Boolean network
whose nodes are the key species we focus on; we coin the term logicome to name
this network.

Extracting a Boolean network model from a given ODE-based model is a
well-studied topic with many different solutions, see, e.g., [30] for a recent new
solution and a good overview of the topic. Typically, the Boolean network model
is seen as a companion of the ODE-based model, compensating for the lack of
detailed kinetic-level data for the model, or allowing for alternative global analy-
sis of model dynamics, such as attractor- or multi-stability- analysis, see [30].
A key step going from an ODE model to its corresponding Boolean network
model is the discretization scheme allowing to replace continuous variables with
their corresponding 0/1 variables. This is typically done by sampling the numer-
ical integration of the continuous variables at different time points and by dis-
cretizing their values at those points. This leads to the dynamics of the Boolean
model being interpreted in terms of discrete time series reflecting the behavior of
the original ODE model. Our approach is coarser: we aim to capture the activa-
tion of the key nodes of the model over the whole time interval (to be thought of
as much larger than those involved in the discretization of ODE models). This
includes capturing the transient activation of a node over that interval, even
if at the extremities of the interval the node may be inactive. The result is a
Boolean network that accompanies the starting ODE model in terms of describ-
ing asynchronous cause-effect relationships among its key nodes over a fixed time
interval.

As a case study we focus on the EGFR (epidermal growth factor receptor)
signaling pathway. Epidermal growth factors are key players in cell proliferation,
survival, migration and differentiation. EGFR signaling also has a major role in
EGFR-dependent signal transduction, see [29]. Therefore, understanding their
behavior is crucial in any cancer related studies, see [20]. For more information
on EGFR signaling pathways we refer to [2,29,32].

This paper is organized as follows. In Sect. 2, we present our methodology to
infer the logicome of biochemical networks. In Sect. 3, we introduce the case study
we used in this paper. In Sect. 4 we present the results of applying the method
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to the case study and analyze the produced results and finally we conclude with
some discussions in Sect. 5. All the models and data files used in this paper can
be found at: http://combio.abo.fi/research/logicome-models-2/.

2 Methodology

In this section we present our method to infer the logicome of an ODE-based
model. The steps are described in a generic way – their detailed implementation
is up to the modeler and it depends on the case study. In the next section we
discuss one particular way in which we used this method in the case of the EGFR
pathway.

Step 1 – Setup. We start with an ODE model for a biochemical network. We
assume also to have a set of “key nodes” whose influences over each others’
activation we aim to capture. The choice of the key nodes from among the
variables of the ODE model depends on the modeler and on the network
under study.

Step 2 – Discretization. To be able to describe the logicome of a network
in terms of Boolean network, we need to translate continuous simulation
data to a Boolean, “on/off”-based language. Therefore, as the second step we
incorporate a discretization algorithm into our method. Many discretization
methods exist, see for example [18,26]. In this study our discretization step is
based on a threshold-based approach in which we assign “1” to a species if at
any time during the simulation its value is above a given threshold, and “0”
otherwise. The precise choice of the threshold depends on the network under
study.

Step 3 – Simulation. We simulate all possible knock-out mutants; in other
words, all models where the key species are turned on/off in all possible
combinations. We then apply to each simulation result the discretization step
to obtain the Boolean results corresponding to each mutant. In this way we
produce a truth table describing the output of each simulation as a Boolean
function with the key nodes as its Boolean variables. Translating the input
Boolean values of the key nodes to absolute numerical values to be used in
the simulation can be done in several different ways, depending on the case
study. For example, the 0 value for a Boolean key node may be translated
to value 0 for the corresponding variable(s) in the knock-out mutant, while
value 1 may be translated to the threshold value chosen for that variable in
Step 2. The other, non-key nodes get the same initial values as in the original
model.

Step 4 – Logicome generation. In this step we generate the logicome corre-
sponding to the given biochemical network from the produced truth table in
the previous step. Different algorithms can be used to implement this step,
see for example [1,11,16,21]. In this paper we use the Logic Friday tool which
incorporates the Espresso algorithm proposed in [21].

http://combio.abo.fi/research/logicome-models-2/
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3 Case-Study: The EGFR Pathway

We focus in this paper on a signaling network that is strongly associated with the
development of cancer processes: the EGFR signaling pathway. In the following
subsections we provide a brief biological background and some computational
details of this model.

3.1 Biological Background

The epidermal growth factor receptor (EGFR) pathway regulates several impor-
tant cellular processes including cell proliferation, survival, differentiation and
development, see [20]. Because of its association with the various types of can-
cer processes, this pathway is a widely investigated signal transduction system.
The EGFR pathway can be seen as a union of several smaller pathways, also
called modules, see [3,31]. The proteins situated at the intersection between
these modules are called interface species. The analysis presented in [10] identi-
fies the locations of oncogenes and essential components of the EGFR signaling
cascade that define most of the interface regions. Our model is adopted from
[31] that uses the model originally presented in [28] and implements it in the
stochastic pi-calculus language together with the results identified by [10]. We
follow the approach of [31] and their modularization of the EGFR signaling path-
way in the following 7 modules: EGF, Grb2, Ras-Shc-Dependent /Independent,
Raf, MEK, and ERK. These modules communicate with each other through
the following 8 interface species: (EGF-EGFR*)2-GAP, (EGF-EGFR*)2-GAP-
Grb2-Sos, (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos, Ras-GTP, Ras-GTP*, MEK-
PP, Raf* and ERK-PP. We adopt these interface species as the key nodes in our
approach.

We briefly describe the functionality of the EGFR pathway focusing mainly
on the signal propagation within the interface species, as suggested in [10]; the
modules of the pathway are considered as black-boxes communicating to each
other through the interface species. The EGFR is situated on the extracel-
lular surface of the cell and signal transduction begins upon binding of lig-
and EGF (epidermal growth factor) to EGFR. The EGF-bounded receptor
induces dimerization and autophosphorylation of several members of intracel-
lular domains, which leads to the recruiting of several cytoplasmic enzymes and
adaptor proteins. This initiates to the activation of two principal pathways, one
Shc-dependent and another Shc-independent, that play a significant role in the
activation of downstream signaling processes like hydrolyzation of Ras-GDP and
activation of Ras-GTP that follows by dissociation of Ras-GTP from the recep-
tor complex. Further dissociation of Ras-GTP makes it inactive and promotes
the intrinsic activity of Ras protein regulated by the GTPase activating protein
(GAP) that is involved in several crucial cellular processes see [10,24]. It is
assumed that the dissociated Ras-GTP molecule causes phosphorylation of the
Raf protein that in-turn double phosphorylates MEK (turning it to MEK-PP)
and ERK (turning it to ERK-PP) proteins. The final result of the signaling
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cascade is the double phosphorylated ERK-PP that further regulates a number
of transcription factors and essential proteins for cell differentiation and growth.

A systematic analysis of control mechanisms (including positive/negative
feedback loops) underlying EGFR pathway are presented in [10,31]. We aim
to represent the functional relationships associated with the interface species
through a Boolean network – the logicome of the EGFR signaling pathway.

3.2 Mathematical Model, Simulation and Discretization

We associated a mass-action ODE-based model, see [8,14], to the reaction based
model of [10]. Each of the 103 variable molecular species of the model in [10]
gets a variable in our mathematical model. We wrote the reaction-based model
of the EGFR pathway in the COPASI software, see [9], and used its feature
to automatically generate the mass-action-based system of ordinary differential
equations associated to the model. We call the resulting model our basic model.

Following the approach of [31], we simulated in COPASI this model for an
EGF stimulus of 4981 molecules/pl which is enough to phosphorylate 50000
EGF-receptors. The simulation was run for 6000 s and the time series results of
each interface species were collected.

For our method we are interested in analyzing all knock-out mutants where
the interface species are active/inactive in all possible combinations. In the
knock-out mutants the initial values of the inactive interface species are set
to the value 0, while the active interface species are set to a specific threshold
value of 1% of that species’ maximum value in the simulation of the basic model
up to 6000 s. Since we considered 8 interface species, we have 256 = 28 knock-out
mutant simulations.

3.3 Generating the Logicome

Each knock-out mutant can be seen as a particular truth assignment over the
8 Boolean variables standing for the interface species. The results of the 256
knock-out simulations were discretized as follows.

Collecting the outputs of all knock-out mutants can be done in the form of
a Boolean function with 8 inputs and 8 outputs.

We used the LogicFriday software to generate the Boolean function associated
to the EGFR pathway based on the Boolean table collected above. We then
used the 5 types of Boolean gates illustrated in Fig. 1 to generate the logicome
associated to the EGFR signaling pathway.

(a) (b) (c) (d) (e)

Fig. 1. The Boolean gates for the logical outcome: (a) AND : AB, (b) OR : A + B,
(c) NOT : A, (d) NAND: AB, (e) NOR : A + B, where we denote the negation of A with
A, the disjunction of A and B with A + B, and the conjunction of A and B with AB.
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4 Results

The interface species are denoted in the logicome as the nodes of the Boolean
network in the way explained in Table 1. The Boolean functions generated as
the result of the steps described in Sect. 3 are shown in Table 2. We repeated the
same experiment where we set the initial values of the active key nodes to 10 %
(rather than 1 %) of their maximum value in the simulation of the basic model;
the corresponding Boolean formulation is presented in Table 3.

Table 1. The notation used for the interface species in the Boolean network.

Node Interface species

G0 (EGF-EGFR*)2-GAP

G1 Raf*

G2 MEK-PP

G3 Ras-GTP*

G4 ERK-PP

G5 (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos

G6 Ras-GTP

G7 (EGF-EGFR*)2-GAP-Grb2-Sos

Table 2 shows G1 as getting activated in all knock-out models and thus,
being set to constant 1. This means that for all combinations of active/inactive
key nodes (even those where G1 is initialized as inactive), G1 gets eventually
activated in the time interval [0, 6000] sec. This can be interpreted as G1 being
insensitive to (relatively) small changes in the levels of the other key nodes;
indeed, all the key nodes are 0 in the basic model, leading to activation of G1;
setting the initial values of the key nodes to 1 % of their maximum level in the
basic model does not change the situation. This result also suggests that in the
case of small perturbations in the initial values of key nodes, the activation of G1

is driven by other factors, outside the set of key nodes. The situation is different
if we look into bigger changes in the initial values of the key nodes, e.g., setting
them to 10 % of their maximum values in the basic model; as shown in Table 3,
G1 is in this case non-constant and influencing the behavior of G6. In Table 3, we
observe that the activation of G1 depends on the key nodes G3, G5 and G6 – this
is consistent with the results reported in [25].

Another interesting observation of the logicome in Table 2 is that all key
nodes get activated in the case of G3 starts inactive and G5 starts active. The
same observation is found in the results obtained for the threshold of 10 %, see
Table 3, and even for 20 % and 30 % see Tables 4 and 5. This is consistent with
the observation of [7,10,23,31] about the role played by the shc*-dependent
component (denoted by G5) and the Ras subfamily protein (denoted by G3) in
the activation of several pathway components, including all of our key nodes.
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Table 2. The Boolean functions describing the logicome of the EGFR signaling path-
way for the threshold of 1 %. An overline over a variable’s name denotes its negation,
the plus denotes disjunction, while the concatenation of two variables denotes their
conjunction.

Boolean functions

G0 := G3 + G5 + G0G4 + G4G7 + G0G6G7;

G1 := 1;

G2 := G2 + G3 + G5 + G6;

G3 := G0 + G2 + G3 + G4 + G5 + G6 + G7;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G3 + G5 + G0G6 + G6G7;

G7 := G3 + G5

Table 3. The Boolean functions describing the logicome of the EGFR signaling path-
way for the threshold of 10 %.

Boolean functions

G0 := G5 + G0G3G4 + G3G4G6 + G0G3G7 + G3G4G7;

G1 := G3 + G5 + G6;

G2 := G2 + G3 + G5 + G6;

G3 := G0 + G2 + G3 + G5 + G6 + G7;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G5 + G0G3 + G1G3 + G0G6 + G3G6 + G3G7 + G6G7;

G7 := G3G5 + G3G6 + G3G7 + G0G5G6 + G0G5G7 + G5G6G7

It is also interesting to note that the EGFR signaling pathway has an internal
mechanism for compensating the potential failure of G5 by G7. Based on [7,10,
31], G0 mediates the activation of both G5 and G7; in case G5 fails while G3

remains inactive then G7 gets activated and this is enough to activate all key
nodes. This is seen in Table 3, if G0 = G3 = G5 = G7 = 1, then all key nodes
get activated.

4.1 Sensitivity to the Numerical Setup of the Model

To investigate the sensitivity of our method to changes in the numerical setups of
the underlying ODE model, we re-ran all simulations for different values of EGF
and EGFR. We first experimented with different concentrations of EGF stimulus
keeping the same EGFR concentration of 50000 molecules and then with different
concentrations of EGFR keeping the same EGF stimulus of 4981 molecules. We
observe that the obtained logicomes are almost identical to the previous result
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Table 4. The Boolean functions describing the logicome of the EGFR signaling path-
way for the threshold of 20 %.

Boolean functions

G0 := G5 + G0G3G4 + G3G4G6 + G0G3G7 + G3G4G7;

G1 := G3 + G5 + G6;

G2 := G2 + G3 + G5 + G6;

G3 := G0 + G2 + G3 + G5 + G6 + G7;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G5 + G0G3 + G1G3 + G0G6 + G3G6 + G3G7 + G6G7;

G7 := G3G5 + G3G6 + G3G7 + G0G5G7 + G5G6G7

Table 5. The Boolean functions describing the logicome of the EGFR signaling path-
way for the threshold of 30 %.

Boolean functions

G0 := G5 + G0G3G4 + G3G4G6 + G0G3G7 + G3G4G7;

G1 := G3 + G5 + G6;

G2 := G2 + G3 + G5 + G6;

G3 := G0 + G3 + G5 + G6 + G7 + G1G2 + G2G4;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G5 + G0G3 + G1G3 + G0G6 + G3G6 + G3G7 + G6G7;

G7 := G3G5 + G3G6 + G3G7 + G0G5G7 + G5G6G7

presented in Table 2. To investigate the sensitivity of our method to different
threshold criteria, we repeated the experiments above with a threshold value of
30% of each interface species’ maximum value. By comparing results, we note
that the logicome results obtained with the threshold value of 10 %, 20 %, and
30 % (see Tables 3, 4, and 5) are much more complex than the previous one.

4.2 Incomplete Availability of the Knock-Out Mutants

In the way we described our method in Sects. 2 and 3, we implicitly assume the
full availability of the simulation results of all knock-out mutant models. We
considered the case when the data on several knock-out mutants is in fact not
available and compared the results to the case when all data is available. We
considered the simulations results of only 186 knock-out mutants and assumed
that the data on the other 70 knock-out mutants is unavailable. We used the
threshold value of 1 % and the numerical setups of EGF and EGFR as 4981 and
50000 molecules, respectively.
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Table 6. The Boolean functions associated with the logicome of the model where the
data of 70 knockout mutants are not available. The result is almost identical to that in
Table 2 where all data was available, showing that the method in this case was robust
to missing data.

Boolean functions

G0 := G3 + G5 + G0G4 + G4G7 + G0G6G7;

G1 := 1;

G2 := G2 + G3 + G5 + G6;

G3 := G2 + G3 + G4 + G5 + G6 + G7;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G3 + G5 + G0G6 + G6G7;

G7 := G3 + G5

The result obtained in this case is shown in the Table 6 and it is almost the
same as the result in Table 2 obtained by using the full data. This shows that in
this case the logicome extraction method was robust to the missing data; this
may of course be different for other models and for other missing data.

5 Discussion

We propose in this article an addition to the rich field of logic modeling of
biological networks, see, e.g., [4,15,19]. We start from a mathematical model
of the network, taking advantage of the growing availability of mathematical
models. The logicome approach proposed in this article allows the modeler to
focus on a selected set of key nodes, important for the network under study,
while abstracting away from the rest of the network; the output is a description
of their influence on each other (even transient) activation over a fixed time
interval.

The bottom-up modeling approaches (e.g., large-scale modeling [17], auto-
matic knowledge extraction [22], data-driven network construction [12], etc.)
have been very popular due to their ability to provide a very detailed picture,
to explain the data, and to reproduce the behaviour of the phenomenon under
study. The logicome is a companion to such detailed models; it gives a more
abstract, systematic and objective description of the functionalities of the model.
This is especially relevant in the case of big models built from many different
sub-models and for which a full global “blueprint” does not exist. The logicome
aims to be such a blueprint, deduced a-posteriori, based on an existing detailed
view of the model.

The output of the logicome approach depends on the numerical setup of
the method: both on the numerical setup of the basic mathematical model, and
on the choice of the threshold values in the discretization step. This is natural
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since the method is dependent on the numerical ODE-based simulations of the
basic model and of the knock-out mutants; this suggests choosing an already
well-fitted and -validated model for the network under study. The choice of the
threshold value is in fact a decision on how a species of the model can be labeled
as ‘active’; we suggested using a percentage of the maximum value reached by
that species in the simulation of the basic model, but other choices may also be
appropriate depending on the case study.

The computational efficiency of the method is dependent on the number of
key nodes selected in the analysis: with more key nodes selected, exponentially
more knock-out mutant models should be analyzed. Eliminating some of the
knock-out mutants is possible, and the result of the method will be in this case
an only-partial description of the logical dependencies between the key nodes.
On the other hand, the method scales up very well in the size of the basic model:
as long as the ODE-based models may be simulated efficiently, the method will
be practical; this means that networks with thousands of nodes may be analyzed,
as long as the number of key nodes n is so that it remains practical to run 2n

simulations.

References

1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a
small number of gene expression patterns under the Boolean network model. In:
Somogyi, R., Kitano, H. (eds.) Pacific Symposium on Biocomputing, vol. 4,
pp. 17–28. Citeseer (1999)

2. Britton, D., Hutcheson, I.R., Knowlden, J.M., Barrow, D., Giles, M., McClelland,
R.A., Gee, J.M., Nicholson, R.I.: Bidirectional cross talk between ERα and EGFR
signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res.
Treat. 96(2), 131–146 (2006)

3. Bruggeman, F.J., Westerhoff, H.V., Hoek, J.B., Kholodenko, B.N.: Modular
response analysis of cellular regulatory networks. J. Theor. Biol. 218(4), 507–520
(2002)

4. Chaves, M., Sontag, E.D., Albert, R.: Methods of robustness analysis for Boolean
models of gene control networks. IEEE Proc. Syst. Biol. 153(4), 154–167 (2006)

5. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence
of fission yeast. PloS ONE 3(2), e1672 (2008)

6. Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochem-
ical control networks. J. Theor. Biol. 39(1), 103–129 (1973)

7. Gong, Y., Zhao, X.: Shc-dependent pathway is redundant but dominant in mapk
cascade activation by egf receptors: a modeling inference. FEBS Lett. 554(3), 467–
472 (2003)

8. Gratie, D.-E., Iancu, B., Petre, I.: ODE analysis of biological systems. In:
Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS,
vol. 7938, pp. 29–62. Springer, Heidelberg (2013)

9. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L.,
Mendes, P., Kummer, U.: COPASI - a complex pathway simulator. Bioinformatics
22(24), 3067–3074 (2006)



48 C. Panchal et al.

10. Hornberg, J.J., Binder, B., Bruggeman, F.J., Schoeberl, B., Heinrich, R.,
Westerhoff, H.V.: Control of MAPK signalling: from complexity to what really
matters. Oncogene 24(36), 5533–5542 (2005)

11. Hwa, H.R.: A method for generating prime implicants of a Boolean expression.
IEEE Trans. Comput. 23(6), 637–641 (1974)

12. Janes, K.A., Yaffe, M.B.: Data-driven modelling of signal-transduction networks.
Nat. Rev. Mol. Cell Biol. 7(11), 820–828 (2006)

13. Kauffman, S.: Homeostasis and differentiation in random genetic control networks.
Nature 224, 177–178 (1969)

14. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in
Practice: Concepts, Implementation and Application. Wiley, Weinheim (2008)

15. Le Novere, N.: Quantitative and logic modelling of molecular and gene networks.
Nat. Rev. Genet. 16(3), 146–158 (2015)

16. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algo-
rithm for inference of genetic network architectures. In: Bryant, B., Milosavljevic, A.,
Somogyi, R. (eds.)Pacific Symposium on Biocomputing, vol. 3, pp. 18–29.
Citeseer (1998)

17. Macklin, D.N., Ruggero, N.A., Covert, M.W.: The future of whole-cell modeling.
Curr. Opin. Biotechnol. 28, 111–115 (2014)

18. Martin, S., Zhang, Z., Martino, A., Faulon, J.: Boolean dynamics of genetic reg-
ulatory networks inferred from microarray time series data. Bioinformatics 23(7),
866–874 (2007)

19. Morris, M.K., Saez-Rodriguez, J., Sorger, P.K., Lauffenburger, D.A.: Logic-based
models for the analysis of cell signalling networks. Biochemistry 49(15), 3216–3224
(2010)

20. Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map
of epidermal growth factor receptor signaling. Curr. Opin. Biotechnol. 1(1), 1–17
(2005)

21. Pantel, P., Pennacchiotti, M.: Espresso: Leveraging generic patterns for automat-
ically harvesting semantic relations. In: Carpuat, M., Duh, K. (eds.) Proceedings
of the 21st International Conference on Computational Linguistics and the 44th
Annual Meeting of the Association for Computational Linguistics, Association for
Computational Linguistics, pp. 113–120 (2006)

22. Pitkänen, E., Jouhten, P., Hou, J., Syed, M.F., Blomberg, P., Kludas, J., Oja, M.,
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