
Fast n-Fold Cross-Validation for Regularized Least-Squares

Tapio Pahikkala? Jorma Boberg?

Tapio Salakoski?
?Turku Centre for Computer Science (TUCS), Department of Information Technology, University of Turku

Lemmink̈aisenkatu 14 A, FIN-20520 Turku, Finland
firstname.lastname@it.utu.fi

Abstract

Kernel-based learning algorithms have recently become the state-of-the-art machine learning methods
of which the support vector machines are the most popular ones. Regularized least-squares (RLS),
another kernel-based learning algorithm that is also known as the least-squares support vector machine,
is shown to have a performance comparable to that of the support vector machines in several machine
learning tasks. In small scale problems, RLS have several computational advantages as compared to
the support vector machines. Firstly, it is possible to calculate the cross-validation (CV) performance
of RLS on the training data without retraining in each CV round. We give a formal proof for this
claim. Secondly, we can compute the RLS solution for several different values of the regularization
parameter in parallel. Finally, several problems on the same data set can be solved in parallel provided
that the same kernel function is used with each problem. We consider a simple implementation of
the RLS algorithm for the small scale machine learning problems that takes advantage of all the above
properties. The implementation is done via the eigen decomposition of the kernel matrix. The proposed
CV method for RLS is a generalization of the fast leave-one-out cross-validation (LOOCV) method for
RLS which is widely known in the literature. For some tasks, the LOOCV gives a poor performance
estimate for the learning machines, because of the dependencies between the training data points. We
demonstrate this by experimentally comparing the performance estimates given by LOOCV and CV in
a ranking task of dependency parses generated from biomedical texts.

1 Introduction

Kernel-based learning algorithms (Schölkopf and
Smola, 2002; Shawe-Taylor and Cristianini, 2004)
have recently become the state-of-the art machine
learning methods of which the support vector ma-
chines are the most popular ones. In this paper,
we consider Regularized least-squares (RLS) algo-
rithm (see e.g. Rifkin (2002); Poggio and Smale
(2003)), another kernel-based learning algorithm that
is also known as the least-squares support vector ma-
chine (Suykens and Vandewalle, 1999). They were
shown to have a performance comparable to that of
the support vector machines in several machine learn-
ing tasks. Traditionally, RLS type of algorithms
have been applied to regression problems but lately
they have also been used on other machine learning
problems. Recent classification tasks in which RLS
have been successfully applied are, for example, dis-
ambiguation problems in natural language (Popescu,
2004), DNA classification (Ancona et al., 2005), and
classification of intensive care nursing narratives (Hi-

issa et al., 2006). Another successful application area
has been ranking or ordinal regression (Tsivtsivadze
et al., 2005, 2006; Suominen et al., 2006; Pahikkala
et al., 2006c).

Cross-validation (CV) is a commonly used method
for the performance estimation and model selec-
tion for the learning algorithms. For RLS, it is
widely known that the leave-one-out cross-validation
(LOOCV) has a closed form whose computational
complexity is quadratic with respect to the number
of training examples. In reality, however, the training
set may contain data points that are highly dependent
with each other. In text categorization tasks, for ex-
ample, it may happen that the training set contains
several documents written by the same author while
that author may not have written the new examples
to be predicted with the learning machine. In this
kind of situation, the LOOCV performance estimate
becomes unreliable, because it may be much easier
to predict the labels of the documents when the ma-
chine is trained with documents written by the same
author. Fortunately, we often have a priori knowledge

of such clustering in the training data set and we can
perform the CV so that we leave out the whole clus-
ter of data points in each CV round. In this paper, we
show that also the leave-cluster-out cross-validation
can be performed for RLS with much smaller compu-
tational complexity than the naive approach in which
the RLS would be retrained in each CV round. To
our knowledge, this has not been considered in the
literature.

2 Regularization Framework

Let S = {(x1, y1), . . . , (xm, ym)} ∈ (X ×R)m be a
training set ofm training examples, wherexi ∈ X
are the training data points,yi ∈ R are their la-
bels, andX can be any set. We consider the Reg-
ularized Least-Squares (RLS) algorithm as a special
case of the following regularization problem known
as Tikhonov regularization (for a more comprehen-
sive introduction, see e.g. Poggio and Smale (2003)):

min
f

m∑
i=1

l(f(xi), yi) + λ‖f‖2k, (1)

wherel is the loss function used by the learning ma-
chine, f : X → Y is a function which maps the
inputsx ∈ X to the outputsy ∈ Y , λ ∈ R+ is a
regularization parameter, and‖ · ‖k is a norm in a Re-
producing Kernel Hilbert Space defined by a positive
definite kernel functionk. The second term is called
a regularizer. The loss function used with RLS for
regression problems is called least squares loss and is
defined as

l(f(x), y) = (y − f(x))2.

Note that if we usel(f(x), y) = max(y − f(x), 0),
we obtain the support vector machines (SVM) for
classification. Other choices of the loss function lead
to other popular classifiers, for example, the SVM re-
gression and kernel logistic regression. By the Rep-
resenter Theorem (see e.g. Schölkopf et al. (2001)),
the minimizer of equation (1) with the least-squares
loss function has the following form:

f(x) =
m∑

i=1

aik(x, xi), (2)

whereai ∈ R andk is a kernel function.

3 Implementation

We now state the solution of RLS in the case where
there are several output labels for each data point

(see e.g. Rifkin and Klautau (2004) for a more
comprehensive consideration). Below,Mi×j(R) de-
notes the set of real valued matrices of dimension
i × j. Suppose we have a set ofm training exam-
plesS = {(x1, y1), . . . , (xm, ym)} ∈ (X × Rp)m,
wherexi ∈ X are the input variables,X can be any
set, andyi are the corresponding vectors ofp output
variables. LetK ∈ Mm×m(R) be the kernel ma-
trix generated from the training data points using the
kernel functionk(x, z), that is,Kij = k(xi, xj). Let
Y ∈ Mm×p(R) be a matrix whose rows are the vec-
tors of the output variables, that is, it has one column
per each subproblem. Further, letG = (K + λI)−1,
whereI ∈ Mm×m(R) is the identity matrix. Be-
cause the kernel function from which the kernel ma-
trix is generated is positive definite, the matrixK+λI
is invertible whenλ > 0. Given a regularization pa-
rameterλ, the coefficient matrix is obtained as fol-
lows

A = GY ∈Mm×p(R) (3)

whose columns are the coefficient vectors of the RLS
solution (2) for eachp output (for a proof, see e.g.
Rifkin (2002)). Because the kernel matrixK is the
same for all of thep problems, we obtain all solutions
from (3) with approximately the cost of solving only
one problem.

3.1 Solving RLS via eigen decomposi-
tion of kernel matrix

Solution (3) can be obtained simply by calculating the
inverseG of the matrixK+λI. Instead of calculating
the inverse, we compute the solution by first calculat-
ing the eigen decomposition of the kernel matrix

K = V ΛV T, (4)

whereV is an orthogonal matrix that contains the
eigenvectors ofK and Λ is a diagonal matrix that
contains the corresponding eigenvalues. Then,G =
(V ΛV T+λI)−1 = V Λ̃λV T, whereΛ̃λ = (Λ+λI)−1

is a diagonal matrix that contains the eigenvalues of
G. Theith eigenvalue ofG is 1/(µi + λ), whereµi

is theith eigenvalue ofK. Note that we do not need
to compute the matrixG, because the solution (3) can
now be obtained as

A = V Λ̃λV TY. (5)

From (5) we observe that after we have calculated the
eigen decomposition ofK, we can easily compute a
whole array of RLS solutions for different values of
λ. To compute the solution (5) for a certain value of
λ, we need to calculate the product of the matrices

V Λ̃λ ∈ Mm×m(R) andV TY ∈ Mm×p(R) which
is fast when the number of subproblemsp is small
compared to the number of training examplesm. We
can then select the regularization parameter for each
subproblem with a cross-validation which we con-
sider below. Of course, different subproblems may
prefer different values ofλ. In that case, we do not
obtain the column vectors ofA from (5), but one by
one fromAp = V Λ̃λp

V TY , whereap is thepth col-
umn of A andλp is the value of the regularization
parameter preferred by thepth subproblem.

3.2 Efficient Computation of Cross-
Validation

We now consider an efficient computation of cross-
validation (CV) for the RLS algorithm. By CV we
indicate the method that is used to estimate the per-
formance of the learning algorithm with a given data
set. The outline of the method is the following. First,
the data set is partitioned into subsets called CV folds.
Next, the learning machine is trained with the whole
data set except one of the folds that is used to mea-
sure the performance of the machine. Each of the CV
folds is held out from the training set at a time and
the CV performance of the machine is obtained by
averaging over the performances measured with the
different folds.

In order to calculate the CV performance of a
learning machine explicitly, we need to train the ma-
chinen times, wheren is the number of the CV folds.
This is, in many cases, computationally cumbersome,
especially if the number of the folds is large. Fortu-
nately, it is possible to obtain the CV performance
of RLS with a smaller computational cost than in the
naive approach.

We now prove a lemma that we use below to derive
a faster method for the computation of CV. The proof
is similar to the proof of the leave-one-out lemma (see
e.g. Wahba (1990)). For simplicity, we prove only the
case in which the number of output variables is one.
However, it is easy to extend the lemma forp output
variables.

Lemma 1. LetL be a set of indices of the data points
that are held out from the training set and letfL be
the function obtained by training the RLS algorithm
with the whole data set except the set of data points
indexed byL. By definition,fL is the solution to the
following variational problem

min
f

∑
i/∈L

(f(xi)− yi)2 + λ‖f‖2k. (6)

The functionfL is also the solution to the following
variational problem

min
f

∑
i/∈L

(f(xi)− yi)2 +
∑
i∈L

(f(xi)− fL(xi))2

+λ‖f‖2k

Proof. We observe that for any functionf∑
i/∈L

(f(xi)− yi)2 +
∑
i∈L

(f(xi)− fL(xi))2 + λ‖f‖2k

≥
∑
i/∈L

(f(xi)− yi)2 + λ‖f‖2k

≥
∑
i/∈L

(fL(xi)− yi)2 + λ‖fL‖2k

=
∑
i/∈L

(fL(xi)− yi)2 +
∑
i∈L

(fL(xi)− fL(xi))2

+λ‖fL‖2k

Using the above lemma, we are able to state the re-
sult that allows us to calculate the values of the output
variables of the data points held out from the training
set without explicitly retraining the algorithm with
the rest of the training examples.

Let I ∈ Mm×m(R) denote an identity matrix and
let IL ∈ M|L|×m(R) be a matrix that contains the
rows of I indexed byL. We use the matrixIL to
“cut” out rows from other matrices, or alternatively
to “add” rows consisting of zeros. Below, with any
matrix M ∈ Mm×n(R), wheren ∈ N, we use the
subscriptL to denote the left multiplication byIL,
that is, we denoteML = ILM . Further, we denote
MLL = ILMIT

L for M ∈ Mm×m(R). Let Y ∈
Mm×p(R) be the label matrix corresponding to the
training data and let us denoteB = KG. Then

B = V ΛV TV Λ̃λV T = V ΛΛ̃λV T. (7)

By the equation (2), the predicted output of the RLS
algorithm for its training data is

Ŷ = KA = KGY = BY. (8)

Finally, let Y ′ ∈ Mm×p(R) denote the matrix con-
sisting of the output values of the training data points
obtained using the functionfL.

Theorem 1. The matrixY ′
L consisting of the output

values of the held out data points predicted withfL

can be obtained from

Y ′
L = (ILL −BLL)−1(ŶL −BLLYL). (9)

Proof. According to the Lemma 1, the functionfL is
obtained by training the RLS using the whole data set
with a label matrixY − IT

LYL + IT
LY ′

L. Knowing the
label matrix, we now use the equation (8) to compute
the output matrixY ′.

Y ′ = B(Y − IT
LYL + IT

LY ′
L)

= Ŷ −BIT
LYL + BIT

LY ′
L.

By multiplying with IL from left we get

Y ′
L = ŶL −BLLYL + BLLY ′

L

⇔ (ILL −BLL)Y ′
L = ŶL −BLLYL

⇔ Y ′
L = (ILL −BLL)−1(ŶL −BLLYL).

In order to the last equivalence to hold, we have to
ensure the invertibility of the matrixILL −BLL. Let
γi be theith eigenvalue ofB. From (7) we observe
thatγi = (ΛΛ̃λ)i,i = µi

µi+λ . Because0 ≤ γi < 1,
the matrixI −B is a positive definite. From the pos-
itive definiteness ofI −B, it follows that all its prin-
cipal submatricesILL − BLL have strictly positive
determinants (see e.g. Meyer (2000)) from which the
invertibility follows.

For a held out set of of size|L|, the time consum-
ing part in the computation of (9) is the calculation
of the matrixBLL. When we have solved the RLS
problem via the eigen decomposition of the kernel
matrix, the elements ofBLL can be computed us-
ing the eigenvectorsV and the diagonal elements of
ΛΛ̃λ, sinceB = V ΛΛ̃λV T. Thus, the computational
complexity of calculating the outputsY ′

L for the held
out set isO(|L|2m). If we perform ann-fold cross-
validation with the training set, the number and the
size of the held out sets aren andm/n, respectively,
and the overall complexity of the cross-validation is
O(n(m/n)2m) = O(m3/n).

The larger the number of folds in the cross-
validation is, the faster is its computation. In the ex-
treme case where the size of the held out set is1, the
computational complexity isO(m2), since we only
have to calculate the diagonal elements ofB in the
whole cross-validation process. Indeed, from Theo-
rem 1, we obtain as a special case the known result of
the leave-one-out cross-validation (LOOCV) for RLS
(this case has been proved, for example, by Vapnik
(1979); Wahba (1990); Green and Silverman (1994)).

Corollary 1. Let f(xj) and fj(xj) denote the out-
put of the RLS algorithm for the training examplexj ,
when the algorithm is trained with all examples and
all examples exceptxj , respectively. We can calcu-

late the value of the outputfj(xj) as follows

fj(xj) =
f(xj)−Bj,jYj

1−Bj,j
. (10)

From the computational complexity perspective,
the LOOCV should be preferred with the RLS. How-
ever, in practice, there are often cases where the
LOOCV should not be used to estimate the perfor-
mance of the learning algorithm because of depen-
dencies between the training data points. Note also
that the sizes of the cross-validation folds do not have
to be equal. Therefore, we can divide the training
set into folds of different sizes according to the de-
pendencies between the training points. Below, we
discuss those cases in more detail.

4 Experiments

With real world data, it is often the case that the data
points used to train a machine learning method are not
completely independent. For example, we may have
several text documents written by the same author in
text categorization tasks. A document may be very
similar to other the documents written by the same
author but very different compared to the documents
written by an other author. In these cases, the leave-
one-out cross-validation (LOOCV) performance of a
learning machine may not be a good estimate of the
true performance of the learning machine. This is,
because on the contrary to the case with the training
set, it is rarely the case that a document to be classi-
fied with a trained learning machine is written by the
same author as some of the documents in the training
set. Generally, we say that the training set consists of
clusters of data points. By a cluster we indicate a sub-
set of training examples that are mutually dependent.

Fortunately, we often have a priori knowledge of
such clustering in the training data set and we can per-
form the CV so that we leave out the whole cluster of
data points in each CV round. For example, in our
earlier experiments using support vector machines
and Bayesian classifiers on natural language disam-
biguation tasks (Pahikkala et al., 2005a,b,c, 2006a,b),
we often extracted several examples of the words to
be disambiguated from a single text document. When
we used bag-of-words kind of features extracted from
the whole text, the examples originating from the
same text document formed a cluster in the training
set. Clearly, it does not happen in practice that a
learning machine trained to detect context sensitive
spelling errors, is trained with examples originating
from the same document the examples to be predicted

are originated from. Thus, we had to perform the
cross-validation on the document level so that no two
examples from the same document end up in different
cross-validation folds.

Here we demonstrate the “clustered training set ef-
fect” by comparing the LOOCV performance of a
trained RLS to a leave-cluster-out cross-validation
(LCOCV) performance so that each fold in the
LCOCV consists of the training examples that form a
cluster in the training set. The demonstration is done
with the problem of dependency parse ranking of sen-
tences extracted from biomedical texts. Here we give
a brief introduction to the problem, the data, and the
solution approach. For a detailed description, see the
paper by Tsivtsivadze et al. (2005).

To generate the training data, we took one hundred
sentences from the BioInfer corpus (Pyysalo et al.,
2006). Each sentence in the corpus has a manu-
ally tagged linkage that corresponds to the “correct”
parse that a parser is supposed to output for the sen-
tence. For each sentence, we use link grammar parser
(Sleator and Temperley, 1991) to generate a set of
candidate parses. The number of candidate parses de-
pends of the sentence. If the parser generates more
than 20 parses for a sentence, we randomly select 20
of them and discard the rest. Otherwise, we keep all
candidate parses. For each candidate parse we calcu-
late a score value that indicates how close to the cor-
rect parse it is. The score value is the F-score calcu-
lated from the link differences between the candidate
parse and the correct parse as follows (Tsivtsivadze
et al., 2005):

F =
2TP

2TP + FP + FN
,

whereTP , FP , and FN are the numbers of true
positives (the links present in both the candidate and
the correct parse), false positives (links present in the
candidate parse but not in the correct one), and false
negatives (links present in the correct parse but not
in the candidate), respectively. The training set is
constructed from the candidate parses and their score
values. The task of the learning machine is, for a sen-
tence, to rank its candidate parses in the order of their
score values. The RLS algorithm is, in fact, trained to
regress the score values of the parses but in this paper,
we are only interested of the ranking of the candidate
parses for each sentence.

We measure the ranking performance by calcu-
lating Kendallsτb correlation coefficient (Kendall,
1970) for the parse candidate set of each sentence.
Note that the coefficient is calculated for each sen-
tence separately, since we are not interested of the

−15 −10 −5 0 5 10 15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: The ranking performance of the RLS al-
gorithm computed with LOOCV (dashed line) and
LCOCV (solid line). The x-axis denotes the value
of the regularization parameter in a logarithmic scale.
The y-axis is the ranking performance measured with
τb correlation coefficient.

mutual order of the parses originating from differ-
ent sentences. The overall performance for the whole
data set is obtained by taking the average of the cor-
relation coefficients of the sentences in the data set.

The kernel function, that we use as a similarity
measure of the parses, is described in detail by Tsivt-
sivadze et al. (2005). The kernel function has the
drawback that two parses originating from a same
sentence have almost always larger mutual similar-
ity than two parses originating from different sen-
tences. Therefore, the data set consisting of the parses
is heavily clustered in the feature space determined
by the kernel function. The clustered structure of
the data can have a strong effect on the performance
estimates obtained by cross-validation, because data
points that are in the same cluster as a held out point
have a dominant effect on the predicted output of the
held out point. This does not, however, model the
real world, since a parse ranker is usually not trained
with parses originating from the sentence from which
the new parse with an unknown F-score is originated.
The problem can be solved by performing the cross-
validation on the sentence level so that all the parses
generated from a sentence would always be either in
the training set or in the test set.

In order to compare the performance estimates
given by the LOOCV and LCOCV, we train an RLS
algorithm with the data set described above. Re-
call that after we have a trained RLS, we obtain
the LOOCV output for each parse in the data us-
ing (10). From the LOOCV output, we calculate the

F-scores for each sentence and compute their aver-
age. We calculate the LCOCV performance by leav-
ing each sentence out from the training set at a time
and computing the F-scores for their parses with (9).
We make a grid search for the regularization param-
eter λ of the RLS algorithm with the grid points
2−15, 2−14, . . . , 214. With the grid search, we can
test the performances of LOOCV and LCOCV in the
model selection of RLS.

The results of the comparison are illustrated in
Figure 1. From the figure, we observe that the
performance difference between the LOOCV and
the LCOCV is, with some values of the regulariza-
tion parameter, over0.3 correlation points. Thus,
LOOCV clearly overestimates the ranking perfor-
mance. Moreover, the LOOCV prefers small values
of the regularization parameter (the most preferable
value of the regularization parameter is2−2) while
the LCOCV prefers a more regularized solution (the
most preferable value of the regularization parame-
ter is 24). Therefore, we can also conclude that the
LOOCV may not be a good method for the model
selection when the training set is clustered. Indeed,
when we test the ranking performance of the RLS
with one hundred test sentences unseen to the RLS,
we obtain correlations0.37 and 0.38 with the ma-
chines trained with the whole training set and with the
regularization parameters preferred by the LOOCV
and LCOCV, respectively.

5 Conclusion

The regularized least-squares (RLS) algorithm has
been shown to be a competitive alternative to the
standard support vector machines in several machine
learning tasks. It also have several computational ad-
vantages, such as solving several tasks in parallel, fast
tuning of the regularization parameter, and fast leave-
one-out cross-validation (LOOCV).

The LOOCV method, however, is not always a
suitable method for performance estimation or model
selection because of dependencies between the train-
ing data points. In several learning problems, the
training data set may be clustered so that the predic-
tion of a held out data point will be unrealistically
easy if the data points that belong in the same cluster
with the held out data point are kept in the training set.
Since it may not happen in the real world that a data
point, whose output is to be predicted with a learn-
ing machine, belongs in the same cluster with some
of the training data points, the LOOCV estimate does
not reflect the reality.

We introduce and prove a closed form of ann-fold

cross-validation performance estimate for the RLS
algorithm. The closed form can be used to calcu-
late a leave-cluster-out cross-validation (LCOCV), in
which a whole cluster of training examples is held out
from the training set in each cross-validation round
avoiding the harmful effect of the clustered training
set.

We experimentally demonstrate the effect of the
clustered data set on the LOOCV performance esti-
mate with a ranking task of dependency parses gen-
erated from biomedical texts. With the same data and
task, it is also demonstrated that the LCOCV is better
than LOOCV as a model selection tool.

Acknowledgments

This work has been supported by Tekes, the Finnish
Funding Agency for Technology and Innovation.

References

Nicola Ancona, Rosalia Maglietta, Annarita
D’Addabbo, Sabino Liuni, and Graziano Pesole.
Regularized least squares cancer classifiers from
dna microarray data. BMC Bioinformatics, 6
(Suppl 4):S2, 2005.

P.J. Green and B.W. Silverman.Nonparametric
Regression and Generalized Linear Models, A
Roughness Penalty Approach. Chapman and Hall,
London, 1994.

Marketta Hiissa, Tapio Pahikkala, Hanna Suomi-
nen, Tuija Lehtikunnas, Barbro Back, Eija Helena
Karsten, Sanna Salanterä, and Tapio Salakoski. To-
wards automated classification of intensive care
nursing narratives. InThe 20th International
Congress of the European Federation for Medical
Informatics (MIE 2006), Maastricht, Netherlands,
2006. To appear.

Maurice G. Kendall. Rank Correlation Methods.
Griffin, London, 4. edition, 1970.

Carl D. Meyer. Matrix analysis and applied linear
algebra. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 2000.

Tapio Pahikkala, Jorma Boberg, Aleksandr Mylläri,
and Tapio Salakoski. Incorporating external in-
formation in bayesian classifiers via linear feature
transformations. In Tapio Salakoski, Filip Ginter,
Sampo Pyysalo, and Tapio Pahikkala, editors,Pro-
ceedings of the 5th International Conference on

NLP (FinTAL 2006), volume 4139 ofLecture Notes
in Computer Science, pages 399–410, Heidelberg,
Germany, 2006a. Springer-Verlag.

Tapio Pahikkala, Filip Ginter, Jorma Boberg, Jouni
Järvinen, and Tapio Salakoski. Contextual weight-
ing for support vector machines in literature min-
ing: an application to gene versus protein name
disambiguation. BMC Bioinformatics, 6(1):157,
2005a.

Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg,
Jouni J̈arvinen, and Tapio Salakoski. Matrix repre-
sentations, linear transformations, and kernels for
natural language processing, 2006b. Submitted.

Tapio Pahikkala, Sampo Pyysalo, Jorma Boberg,
Aleksandr Myll̈ari, and Tapio Salakoski. Improv-
ing the performance of bayesian and support vec-
tor classifiers in word sense disambiguation using
positional information. In Timo Honkela, Ville
Könönen, Matti P̈ollä, and Olli Simula, editors,
Proceedings of the International and Interdisci-
plinary Conference on Adaptive Knowledge Rep-
resentation and Reasoning, pages 90–97, Espoo,
Finland, 2005b. Otamedia OY.

Tapio Pahikkala, Sampo Pyysalo, Filip Ginter, Jorma
Boberg, Jouni J̈arvinen, and Tapio Salakoski. Ker-
nels incorporating word positional information in
natural language disambiguation tasks. In Ingrid
Russell and Zdravko Markov, editors,Proceedings
of the Eighteenth International Florida Artificial
Intelligence Research Society Conference, pages
442–447, Menlo Park, Ca, 2005c. AAAI Press.

Tapio Pahikkala, Evgeni Tsivtsivadze, Jorma Boberg,
and Tapio Salakoski. Graph kernels versus graph
representations: a case study in parse ranking. In
ECML/PKDD’06 workshop on Mining and Learn-
ing with Graphs (MLG’06), 2006c. To appear.

Tomaso Poggio and Steve Smale. The mathematics of
learning: Dealing with data.Notices of the Amer-
ican Mathematical Society (AMS), 50(5):537–544,
2003.

Marius Popescu. Regularized least-squares classifi-
cation for word sense disambiguation. In Rada
Mihalcea and Phil Edmonds, editors,Senseval-3:
Third International Workshop on the Evaluation of
Systems for the Semantic Analysis of Text, pages
209–212, Barcelona, Spain, July 2004. Association
for Computational Linguistics.

Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari
Björne, Jorma Boberg, Jouni Järvinen, and Tapio

Salakoski. Bioinfer: A corpus for information ex-
traction in the biomedical domain, 2006. Submit-
ted.

Ryan Rifkin. Everything Old Is New Again: A Fresh
Look at Historical Approaches in Machine Learn-
ing. PhD thesis, MIT, 2002.

Ryan Rifkin and Aldebaro Klautau. In defense
of one-vs-all classification.Journal of Machine
Learning Research, 5:101–141, 2004.

Bernhard Scḧolkopf, Ralf Herbrich, and Alex J.
Smola. A generalized representer theorem. In
D. Helmbold and R. Williamson, editors,Proceed-
ings of the 14th Annual Conference on Compu-
tational Learning Theory and and 5th European
Conference on Computational Learning Theory,
pages 416–426, Berlin, Germany, 2001. Springer-
Verlag. ISBN 3-540-42343-5.

Bernhard Scḧolkopf and Alexander J. Smola.Learn-
ing with kernels. MIT Press, Cambridge, MA,
2002.

John Shawe-Taylor and Nello Cristianini.Kernel
Methods for Pattern Analysis. Cambridge Univer-
sity Press, Cambridge, 2004.

Daniel D. Sleator and Davy Temperley. Parsing
english with a link grammar. Technical Report
CMU-CS-91-196, Department of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA,
October 1991.

Hanna Suominen, Tapio Pahikkala, Marketta Hi-
issa, Tuija Lehtikunnas, Barbro Back, Eija Helena
Karsten, Sanna Salanterä, and Tapio Salakoski.
Relevance ranking of intensive care nursing nar-
ratives. Inproceedings of KES2006 10th Interna-
tional Conference on Knowledge-Based & Intelli-
gent Information & Engineering Systems, 2006. to
appear.

J. A. K. Suykens and J. Vandewalle. Least squares
support vector machine classifiers.Neural Process.
Lett., 9(3):293–300, 1999.

Evgeni Tsivtsivadze, Tapio Pahikkala, Jorma Boberg,
and Tapio Salakoski. Locality-convolution ker-
nel and its application to dependency parse rank-
ing. In Moonis Ali and Richard Dapoigny, edi-
tors, Proceedings of the 19th International Con-
ference on Industrial, Engineering & Other Ap-
plications of Applied Intelligent Systems (IEA/AIE
2006), volume 4031 ofLecture Notes in Com-
puter Science, pages 610–618, Heidelberg, Ger-
many, 2006. Springer-Verlag.

Evgeni Tsivtsivadze, Tapio Pahikkala, Sampo
Pyysalo, Jorma Boberg, Aleksandr Mylläri, and
Tapio Salakoski. Regularized least-squares for
parse ranking. In A. Fazel Famili, Joost N. Kok,
Jośe Manuel Pẽna, Arno Siebes, and A. J. Feelders,
editors,Proceedings of the 6th International Sym-
posium on Intelligent Data Analysis, volume 3646
of Lecture Notes in Computer Science, pages
464–474, Heidelberg, Germany, September 2005.
Springer-Verlag.

V. Vapnik. Estimation of Dependences Based on Em-
pirical Data [in Russian]. Nauka, Moscow, 1979.
(English translation: Springer Verlag, New York,
1982).

Grace Wahba.Spline Models for Observational Data.
Series in Applied Mathematics, Vol. 59, SIAM,
Philadelphia, 1990.

