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ABSTRACT

We explore word position-sensitive models and their re-
alizations in word sense disambiguation tasks when using
Naive Bayes and Support Vector Machine classifiers. It
is shown that a straightforward incorporation of word po-
sitional information fails to improve the performance of
either method on average. However, we demonstrate that
our special kernel that takes into account word positions
statistically significantly improves the classification per-
formance. For Support Vector Machines, we apply this
kernel instead of the ordinary Bag-of-Words kernel, and
for the Bayes classifier the kernel is used for smoothed
density estimation. We discuss the benefits and drawbacks
of position-sensitive and kernel-smoothed models as well
as analyze and evaluate the effects of these models on a
subset of the Senseval-3 data.

1. INTRODUCTION

Word Sense Disambiguation (WSD) is the process of re-
solving the meaning of a word by deciding between a
number of possible word senses. A word is said to be
polysemous if it has several senses. The word “bank” is
a traditional example of a polysemous word: “bank” can
refer to a river bank, a financial institution, or the building
where a financial institution resides, for example.

In order to disambiguate the sense of an ambiguous
word, any WSD method has to incorporate information
about its context, that is, the words surrounding it in the
text. The Bag-of-Words (BoW) model is a typical choice
for many text classification tasks, including WSD tasks.
In the BoW model, the order of the words is discarded
and only the number of occurrences of each word is taken
into account. Several alternative models that (partly) pre-
serve word order information have been proposed, includ-
ing models using N-gram and collocation features. More-
over, sequence-based similarity measures such as word
sequence kernels (Cancedda et al. (2003)) have been pro-
posed. In WSD tasks, the BoW model discards not only
the order of the words, but also information on the posi-
tions of the words with respect to the word to be disam-
biguated. General sequence-based features and similarity
measures also fail to take into account this kind of infor-
mation.

In this paper, we consider models that take into ac-
count word positional information. A straightforward way
to incorporate the word positions is to represent each word
of the context together with its position and to consider
these word-position pairs as distinct features (see e.g. Au-
dibert (2004)). We will refer this approach to as basic
word position-sensitive (BP) model. Ginter et al. (2004)
presented a weighted BoW approach, where the context
words are weighted in such a way that the words closer
to the ambiguous word receive higher values, motivated
by the assumption that closer words are more relevant
for disambiguation. In Pahikkala et al. (2005), we in-
troduced a position-sensitive kernel function which gen-
eralizes the aforementioned approaches. Using context-
sensitive spelling error correction as a model WSD prob-
lem, it was demonstrated that this kernel can improve the
performance of the Support Vector Machine (SVM) clas-
sifier in natural language disambiguation tasks. In this
paper, we further analyze this kernel function and con-
sider two models, which we will here call the smoothed
word position-sensitive (SP) and smoothed word position
and distance sensitive (SPD) models. For the Naive Bayes
classifier, these models are realized as data representations
using kernel density estimation techniques to obtain class
conditional probabilities of word-position features. For
the SVMs, these models are realized as kernel functions.

We argue that word positional information can play an
important role in WSD tasks and explore the use of this
information in the two popular classifiers. The classifica-
tion performance of the Naive Bayes classifier is evalu-
ated with the BoW, BP, SP and SPD representations on a
subset of the Senseval-3 data (Mihalcea et al. (2004)) and
compared to the performance of SVMs with correspond-
ing kernel functions.

This paper is organized as follows. In Section 2 we
introduce the definition of a context and present the Naive
Bayes and SVM classifiers. In Section 3 the data used in
our experiments and the performance evaluation criteria
are presented. Section 4 introduces the proposed models
and their realizations with the Naive Bayes and SVM clas-
sifiers. We also discuss the benefits and drawbacks of the
models. In Section 5 results on Senseval-3 test data are
presented and discussed. Finally, in Section 6 we summa-



rize the results and present some ideas for improving the
models.

2. BINARY CLASSIFICATION WITH NAIVE
BAYES AND SVM CLASSIFIERS

We consider WSD as a binary classification task, in which
the training setS is comprised ofm labeled examples
(x1, y1), . . . , (xm, ym), wherexi ∈ X are training data
points andyi ∈ Y , Y = {−1,+1}, are the corre-
sponding class labels. In our case, the training setS is
{(τ1, y1), . . . , (τm, ym)}, whereyi ∈ {−1,+1} corre-
spond to the word senses, and the contextsτ i are defined
as follows. Letτ denote a word to be disambiguated and
let τ = (τ−t, . . . , τ−1, τ0, τ1, . . . , τr), τ0 = τ , be the
context ofτ . The words precedingτ are τ−t, . . . , τ−1

in the order they appear in the text, and correspondingly
τ1, . . . , τr are the words which followτ in the text. For a
wordτp, the indexp is referred to as its position. Next we
define the effect of a context span parameters when con-
sidering contexts. For fixeds, we take always the largest
contextτ = (τ−t, . . . , τ−1, τ0, τ1, . . . , τr) so thatt ≤ s
andr ≤ s. Note that if there exists words preceding and
following the word to be disambiguated, thent = r = s,
otherwiset < s or r < s. Furthermore, letV be a set of
all distinct words of all the contexts in the training set.

2.1. Naive Bayes Classifier

LetW be the set of all the features ofτ . These features de-
pend on the data representations considered in Section 4.
For the Naive Bayes classifier, we use the following deci-
sion function:

f(τ) = P (+1)
∏

w∈W

P (w|+1)−P (−1)
∏

w∈W

P (w|−1),

(1)
whereP (w|+ 1) andP (w| − 1) are the probabilities that
the featurew appears in a positive and in a negative ex-
ample, respectively, andP (+1) andP (−1) are the prior
probabilities of the positive and negative classes.

The probabilities can be directly estimated from
the training data using maximum likelihood estimation
(MLE) as follows. For each classy ∈ Y and feature
w ∈ W ,

P (y) =
N(y)∑

y′∈Y N(y′)
, (2)

P (w|y) =
N(w, y)∑

w′∈W N(w′, y)
, (3)

where N(y′) is the number of examples in the classy′ ∈
Y , and N(w, y) is the number of times featurew appears
in the examples of the classy. The MLE estimates are typ-
ically smoothed to avoid zero probabilities in prediction;
in this paper we use Add-one smoothing, where all num-
bers of feature occurrences are incremented by one over
the counted value (see e.g. Chen and Goodman (1996)).

2.2. SVM Classifier

We consider SVMs as a special case of the following
regularization problem known as Tikhonov regularization
(for a more comprehensive introduction, see e.g. Rifkin
(2002); Vapnik (1998)):

min
f

m∑
i=1

l(f(τ i), yi) + λ‖f‖2
k, (4)

wherel is the loss function used by the learning machine,
f : X → Y is a function which maps the input vectors
x ∈ X to the output labelsy ∈ Y , λ ∈ R+ is a regulariza-
tion parameter, and‖ · ‖k is the norm in the Reproducing
Kernel Hilbert Space defined by a positive definite kernel
functionk. The second term is called a regularizer. With
SVMs we use linear soft margin loss function (also called
hinge loss):

l(f(τ), y) = max(1− yf(τ), 0).

By the Representer Theorem, the minimizer of (4) has the
following form:

f(κ) =
m∑

i=1

aik(κ, τ i),

whereai ∈ R andk is the kernel function associated with
the Reproducing Kernel Hilbert Space mentioned above.

Kernel functions are similarity measures of data points
in the input spaceX, and they correspond to an inner
product in a feature spaceH to which the input space data
points are mapped. Formally, kernel functions are defined
as

k(τ , κ) = 〈Φ(τ),Φ(κ)〉,

whereΦ : X → H. The input spaceX can be any set, in
our case, it is the set of contexts.

Fow SVMs, we use the so called normalized kernel

k̃(τ , κ) =
k(τ , κ)√

k(τ , τ)k(κ, κ)

in order to normalize the data in the feature space (see e.g.
Graf et al. (2003)).

3. PERFORMANCE MEASURE AND
EVALUATION DATA

In this section, we describe the dataset used in the experi-
ments and how the performance of the classification meth-
ods with various representations and kernels was mea-
sured.

3.1. Measure of performance

We measure the performance of the classifiers using the
area under the ROC curve (AUC) (see e.g. Fawcett
(2003)). The ROC curve is a relation between the true-
positive and the false-positive rates at various classifica-
tion thresholds. ROC is preferable to other popular mea-
sures, such as accuracy and precision-recall analysis, be-
cause it captures classifier performance over the whole
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Figure 1. Number of occurrences of the word “to” at different positions (x-axis) in the context of the word “appear” in
the sense “to come into view” (left) and “to seem” (right). The occurrence of the word “to” immediately after the word
“appear” is a very strong indicator of the second sense.

dataset instead of a single cutoff point and is invariant
with respect to the prior class probabilities. AUC corre-
sponds to the probability that given a randomly chosen
positive example and a randomly chosen negative exam-
ple, the classifier will correctly determine which is which.

3.2. Data used for evaluation

To evaluate the performance of the methods and models,
we use the Senseval-3 English lexical sample train and
test datasets EnglishLS.train and EnglishLS.test1 (Mihal-
cea et al. (2004)), where words are to be disambiguated
between senses defined by WordNet (for nouns and adjec-
tives) and Wordsmyth (for verbs).

To facilitate parameter estimation, analysis and the
use of the basic AUC measure for performance evalua-
tion, we performed the following simplifying processing
steps on the data: we apply the defined sense-mapping
giving “coarse” senses, accept only one correct answer
per instance, consider only binary classification between
the two most common senses, and examine only those
WSD tasks where the minority class contains at least 50
instances.

The Senseval-3 dataset consists of separate training
and test sets. We used ten times repeated stratified 10-fold
cross-validation on the training sets to perform parameter
and performance estimation on the various models con-
sidered in Section 4, and performed single tests on the test
data to validate the results and estimate statistical signif-
icance. With the exception of the validation results pre-
sented in Section 5, all results discussed below are from
the parameter estimation phase.

4. MODELING OF CONTEXTS

In this section, we present and evaluate the various data
representations and kernels used with Naive Bayes and
SVM classifiers.

1Available at http://www.senseval.org/senseval3

4.1. Bag-of-Words model

The common BoW model is used with the two classifica-
tion methods as follows. For the Naive Bayes classifier,
the class conditional probabilitiesP (v|y) corresponding
to (3), that is, the probability that the wordv appears in
a context belonging to the classy, can be estimated using
MLE:

P (v|y) =
N(v, y)∑

v′∈V N(v′, y)
, (5)

where N(v, y) denotes how many times the wordv has
occurred in the contexts with the classy in the training
set. For SVMs, we can use the BoW kernel, defined as

k(τ , κ) =
∑
v∈V

N(v, τ)N(v, κ), (6)

where N(v, τ) is the number of occurrences of the wordv
in the contextτ .

4.2. Word position-sensitive models

Next we consider and evaluate the effect of different word
position-sensitive representations and kernels on classifi-
cation performance and demonstrate how an alternative to
the strict binary division between position-insensitive and
position-sensitive models can overcome data sparseness
issues and improve the performance.

4.2.1. Basic word position-sensitive model

Let s be a context span parameter and let N(v, p, y), where
v ∈ V , −s ≤ p ≤ s, y ∈ Y , denote how many times the
wordv has occurred at positionp in the contexts with class
y in the training set (see Figure 1 for illustration). When
determining N(v, p, y), we consider only the contexts that
have the positionp.

For the Naive Bayes classifier, we present the basic
word position-sensitive (BP) representation, a straightfor-
ward way to incorporate word positional information. The
class conditional probabilityP (v, p|y) corresponding to



(3), that is, the probability that the wordv appears at the
positionp in a context belonging to the classy is estimated
as follows:

P (v, p|y) =
N(v, p, y)∑

v′∈V

∑s
p′=−s N(v′, p′, y)

. (7)

For SVMs, we can define a BP kernel analogously to the
BoW kernel:

k(τ , κ) =
∑
v∈V

s∑
p=−s

N(v, p, τ)N(v, p, κ), (8)

where N(v, p, τ) = 1 if τ has the positionp and the word
v is at the positionp, and otherwise N(v, p, τ) = 0.

Compared to the BoW model, position-sensitive mod-
eling of contexts has an obvious potential advantage: it
is capable of capturing differences in the relationship be-
tween features and senses with respect to the positions of
the words. An illustrative example of this in disambiguat-
ing the meaning of the verb “appear” between the senses
“to seem” and “to come into view” is the occurrence of the
word “to” in the context. While in the position-insensitive
BoW model the word “to” is only a relatively weak indi-
cator of the sense “to seem”, in the BP model it can be
observed that the occurrence of the word “to” immedi-
ately after the word to be disambiguated is a very strong
indicator of this sense, while occurrences of the word in
other positions are not good indicators of either sense (see
Figure 1). Though the difference is perhaps exceptionally
notable in this example, similar distinctions are likely to
be found for other words also. The BP model thus allows
the classifiers to distinguish between weak and strong fea-
tures that would not be considered separate in the BoW
model.

While the BP model preserves strictly more informa-
tion than the BoW model, it has the potential drawback
of notably increasing the sparseness of the data. This in
turn has the effect of reducing the accuracy of the Naive
Bayes maximum likelihood estimates, and diagonalizing
the kernel matrix used by SVMs.

Model
Classifier BoW BP
Bayes 85.2 80.6
SVM 83.6 81.4

Table 1. Performance with the BoW and BP models.

The performance of the classifiers with these two
models is given in Table 1. The performances are aver-
aged over the datasets, where the optimal context spans
is selected separately for both classifiers, both models and
each dataset from20, 21, . . . , 28. The BP model decreases
the performance of both of the methods. This suggests
that on average the potential performance benefits of the
BP model are overweighed by the drawbacks discussed
above.

4.2.2. Smoothed word position-sensitive model

By introducing the smoothed word position-sensitive (SP)
model, we aim to identify intermediates between the op-
posites of the position-insensitive BoW model and the BP
model. Intuitively, SP relaxes the requirement of BP that
words must occur exactly at the same position to be con-
sidered as the same feature. We will now consider means
to realize the SP model when using the Naive Bayes and
SVM classifiers.

John and Langley (1995) suggest to use kernel den-
sity estimation (we refer to Silverman (1986) for more
information on kernel density estimation) when estimat-
ing continuous variables for Bayesian classifiers. While
the word-position random variable is discrete, and hence
a histogram is a natural way to estimate its density, the es-
timate can still be bumpy because of the lack of training
data. This problem can be solved by using a Parzen den-
sity estimate instead. A popular way to do it is to use a
Gaussian kernel,

g(p, q) = e−θ(p−q)2 , (9)

whose width is controlled by the parameterθ. The esti-
mate of the class conditional probability of a certain word-
position pair is then a modification of (3):

P (v, p|y) =

∑s
q=−s N(v, q, y)g(p, q)∑

v′∈V

∑s
p′,q′=−s N(v′, q′, y)g(p′, q′)

,

(10)
that is, the estimate is a convolution of the sample em-
pirical distribution of the word position with the Gaussian
kernel (see e.g. Hastie et al. (2001)). Note that the add-
one smoothing described in Section 2.1 is performed for
each word-position feature after the Parzen density esti-
mate is made and the normalization is then performed over
all word-position pairs in the classy.

For SVMs, the SP kernel is defined as

k(τ , κ) =
∑
v∈V

s∑
p,q=−s

N(v, p, τ)N(v, q, κ)g(p, q). (11)

The parameterθ controls the extent of the smooth-
ing so that for large values ofθ the smoothed model ap-
proaches the BP model, while forθ = 0 the SP model
matches the BoW model. The SP model thus generalizes
over both models and allows intermediates between these
two extremes.

Model
Classifier BoW BP SP
Bayes 85.2 80.6 86.7
SVM 83.6 81.4 85.4

Table 2. Performance with the BoW, BP and SP model.

Performance with the smoothed model is given in Ta-
ble 2. For the SP model, we performed a grid search of the
parameterss (as above) andθ (on the logarithmic scale,
including in addition the values of0 and∞). The results
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Figure 2. Effect of context span on disambiguation per-
formance with the words “add” and “disc” with Bayes and
SVM using the BoW model.

indicate that with an appropriate setting of theθ parame-
ter, the SP model outperforms both the BoW and BP mod-
els in the parameter selection phase.

4.2.3. Incorporating distance-based smoothing

In this section, we explore in detail the effect of increas-
ing context size on classification performance and dis-
cuss the incorporation of positional information also from
words that are far from the word to be disambiguated us-
ing distance-based smoothing.

The size of the context has a well-documented effect
on the performance of WSD methods (see e.g. Yarowsky
and Florian (2002)). As in the case of the choice between
position-insensitive and position-sensitive models, there
are both intuitive benefits and drawbacks for increasing
the context size.

The words that are closest to the word to be disam-
biguated are likely to be more important than words that
are farther in the context. Thus, limiting the size of the
context may allow the classification method to better fo-
cus on the most relevant features and decreases the amount
of noise. On the other hand, limiting the size of the con-
text increases the sparseness of the data. Further, even
very distant words can be relevant when deciding the cor-
rect sense, especially in cases where the one sense per dis-
course assumption (see e.g. Yarowsky (1995)) holds.

A balance between the positive and negative effects
of large contexts can be found by estimating performance
for several context sizes and selecting the cutoff size that
gives best performance. As illustrated in Figure 2, this
optimum can vary greatly depending on the problem: for
the word “disc”, the performance is poor for very short
contexts and improves almost monotonically with increas-
ing the context size. Conversely, for “add”, performance
peaks at the short context size of 2 and drops notably as
the size increases. The overall effect of the context size
is similar for both Bayes and SVM with these problems
when using the BoW model.

While short contexts discard most of the potentially
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Figure 3. Functiong(p, q) corresponding to four models:
BoW (top left), BP (top right), SP (bottom left), and SPD
(bottom right).

available information in the context, short contexts may
nevertheless represent real optima for models such as
BoW (as for the word “add” above). Indeed, for both
classifiers and all three models considered above, average
performance over all ambiguous words peaks at remark-
ably low values of the context span parameter – between
two and eight – suggesting that none of the models allows
the machine learning method to benefit from information
carried by distant words (see Figure 5 below). Therefore,
we next consider a model where the distant words may
contribute to the disambiguation performance.

Using a fixed cutoff makes the implicit assumption
that the words within the cutoff distance are all equally
important, and words that are further carry no importance.
To more accurately capture the intuition that the impor-
tance of words decreases smoothly with distance from the
word to be disambiguated, we can adopt a model where
the contribution of the words is smoothed according to this
distance. To perform this smoothing, we use the function

g(p, q) = e−α(p2+q2) + β, (12)

wherep andq are distances from the word to be disam-
biguated. The parameterα controls the effect of the dis-
tances andβ defines a “minimum weight” given to words
at any distance.

This distance-based smoothing function can be com-
bined with the position-based smoothing defined above,
yielding the function

g(p, q) = e−α(p2+q2)−θ(p−q)2 + β. (13)

The model that we obtain when using this function in (10)
and (11) will be referred to as the smoothed word position
and distance sensitive (SPD) model. This model general-
izes over all three models considered above by choosing
the appropriate parameter values. Settingα = β = 0 cor-
responds to the SP model, and if we further choose a very
large value ofθ, this model approaches the BP model. The
BoW model is obtained by settingα = θ = β = 0 (see
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Figure 4. Number of occurrences of “?” (question mark) at different positions (x-axis) in the context of the word “ask” in
the sense “to request or seek” (left) and “to question; inquire” (right). The continuous lines are the corresponding kernel
smoothed numbers of occurrences. Note that the scales of the y-axis are different in the two plots.

Figure 3). For SVM, using the function (13) corresponds
to the SPD kernel we introduced in Pahikkala et al. (2005).

The SPD representation is illustrated in Figure 4 us-
ing the occurrences of “?” (question mark) in the con-
text of the ambiguous word “ask”. Question marks oc-
cur frequently in nearby positions before “ask” in the
sense “to question”, and occurrences in other positions
are relatively rare in either sense. Position-based smooth-
ing spreads the bumps at the nearby positions, while the
distance-based smoothing causes the density to vanish at
distant positions. Thus, the smoothed numbers of word
occurrences may be more useful as question marks occur
at far away positions close to random in both senses and
hence do not indicate either sense.

Model
Classifier BoW BP SP SPD
Bayes 85.2 80.6 86.7 87.3
SVM 84.6 81.4 85.4 87.7

Table 3. Performance with the BoW, BP, SP and SPD
models.

The performance with separately optimized spans is
given in Table 3. The parameters were optimized with a
full grid search fors and θ (as above),α (on the loga-
rithmic scale, including in addition the value of0) andβ
(from 0.0, 0.02, . . . , 0.1). These results indicate that SPD
outperforms BoW, BP, and SP in the parameter selection
phase.

The average performance of the Naive Bayes and
SVM classifiers with the BoW, BP, SP and SPD represen-
tations and kernels with respect to the context span is plot-
ted in Figure 5. While the BoW, BP and SP models all fail
to benefit from large context spans, the performance with
SPD increases almost monotonically with context span.
This suggests that with appropriate parameters, the SPD
model performs as expected, that is, the words further in
the context contribute to disambiguation. In addition, for
any choice of the span parameter, SPD outperforms the
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Figure 5. Performance with the BoW, BP, SP and SPD
representations and kernels with respect to context span:
Naive Bayes (top) and SVM (bottom). Performance is av-
eraged over all datasets. The context span is on a logarith-
mic scale.

other considered models in the parameter selection phase.

5. EXPERIMENTS ON TEST DATA

In addition to the cross-validation experiments on the En-
glishLS.train dataset discussed in the previous sections,
we tested the performance of the various models on a sub-



Representation
Word # BoW BP SP SPD
add.v 125 95.1 96.0 96.0 96.9
appear.v 109 88.3 91.9 93.1 93.0
argument.n 100 67.1 64.5 66.0 70.9
ask.v 109 93.3 96.1 96.3 95.4
atmosphere.n 67 71.0 58.6 71.0 70.9
degree.n 118 94.5 97.2 97.9 97.3
disc.n 65 98.9 67.5 98.9 99.1
image.n 54 97.0 73.1 97.0 97.0
note.v 64 68.6 75.8 75.5 75.3
paper.n 78 84.7 84.5 84.6 88.2
performance.n 73 95.7 60.1 95.7 95.7
produce.v 83 85.5 70.2 85.5 85.4
shelter.n 68 69.7 79.3 80.1 79.3
sort.n 92 80.2 83.2 80.5 82.1
AVERAGE 85.0 78.4 87.0 87.6

Kernel
Word # BoW BP SP SPD
add.v 125 95.5 95.8 95.8 97.4
appear.v 109 88.8 91.3 91.1 90.8
argument.n 100 66.1 64.4 64.1 70.0
ask.v 109 88.6 94.2 94.7 94.8
atmosphere.n 67 62.1 58.8 62.1 66.7
degree.n 118 96.1 98.0 97.4 96.6
disc.n 65 98.3 68.5 98.3 98.7
image.n 54 85.7 74.1 73.9 88.9
note.v 64 67.6 66.3 61.6 71.5
paper.n 78 80.1 84.3 88.6 91.6
performance.n 73 85.8 55.7 85.8 85.8
produce.v 83 78.6 69.0 78.6 77.9
shelter.n 68 82.8 78.9 83.5 82.6
sort.n 92 81.7 83.4 82.6 83.4
AVERAGE 82.7 77.3 82.7 85.5

Table 4. Test results and test set sizes (#) for Naive Bayes (left) and SVMs (right). The results of the best performing
models per ambiguous word are typed in bold.

set of the EnglishLS.test dataset, formed as described in
Section 3.2. For both classifiers and each model, we chose
the parameter combination that resulted in the best per-
formance in cross-validation, and then performed training
on the EnglishLS.train dataset and prediction on the En-
glishLS.test dataset. Performance was measured as the
area under the ROC curve as above, and statistical signifi-
cance was tested using standard paired two-tailed t-tests.

Table 4 (left) gives the test results for the various rep-
resentations with the Naive Bayes classifier. As suggested
by earlier results, the BP representation is on average no-
tably worse than the BoW representation, by more than
30 percentage units in some cases. Nevertheless, for some
words the performance appears to increase even with this
basic representation. For the SP representation, the per-
formance is better or equal to the BoW performance for
all but two words and statistically significantly better on
average (p < 0.05). For the SPD representation, the per-
formance is again better than that of the baseline BoW
representation for all but two ambiguous words, and the
average performance is significantly better (p < 0.01).

The test results for SVM are given in Table 4 (right)
and mirror the results for Bayes for most cases. The BP
kernel performs worse than BoW on average, and partic-
ularly notably worse for some of the same words (“disc”,
“performance”) as for Bayes. Surprisingly, the SP ker-
nel only reaches the performance level of BoW; this fail-
ure is discussed in more detail below. Similarly to Bayes,
the SPD kernel performs statistically significantly better
(p < 0.01) than the baseline kernel. One notable differ-
ence between the Bayes and SVM results is in the relative
performance of the SP model. For Bayes, SP significantly
outperforms BoW, but the difference between the SP and
SPD models is only0.6 percentage units on average and
not statistically significant. For SVM, the SP kernel fails
to outperform BoW, and is significantly outperformed by
the SPD kernel (p < 0.05).

As SP is a generalization that includes both BoW and
BP as special cases, cases where SP performs worse than
either BoW or BP suggest a failure of the parameter selec-
tion strategy. Similarly, as SPD generalizes over SP, cases
where its performance is worse than that of any other of
the models may suggest that overfitting has occurred. As
each of these types of failures occur for both the Naive
Bayes and SVM classifiers for several words, the test re-
sults presented here indicate that the used parameter selec-
tion strategy may not have been appropriate for the small
training sets, which consisted on average of 174 exam-
ples. In our preliminary experiments, we used stratified
10-fold cross-validation instead of the ten times repeated
stratified 10-fold cross-validation for which results are re-
ported here. Without the repetition, we observed even
more severe overfitting in parameter estimation. Never-
theless, even the repeated cross-validation strategy failed
to select the optimal parameters in many cases.

While the development of alternate parameter selec-
tion strategies falls outside the scope of this paper, we note
that our previous results suggest that when parameters are
appropriately selected, the SPD kernel achieves systemat-
ically better results as one could expect: in Pahikkala et al.
(2005), using 1000 examples and 10-fold cross-validation
in parameter estimation, we observed no notable overfit-
ting and a significant and more substantial performance
advantage with the position-sensitive kernels with SVMs.
Nevertheless, these test results emphasize an important
property generally related to the use of more powerful
models; as the capacity of the models increases, so does
the risk of overfitting.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have explored the use of position-
sensitive representations and kernels for improving the
performance of Bayesian and Support Vector classifiers
in word sense disambiguation tasks. We demonstrated



that the basic word position-sensitive (BP) model fails to
improve performance, and speculated that the increased
sparseness of data using this model may be a main source
of this failure. We addressed this issue through the use
of the smoothed position-sensitive (SP) model, and found
that in the parameter selection phase this model performs
better than the BoW and BP models, indeed for any choice
of context size. We additionally discussed the effect of in-
creasing context size and explored the use of a smoothed
word position and distance sensitive (SPD) model to allow
the beneficial incorporation of information from words
that are distant from the word to be disambiguated. When
validating the models with the test data, we found that
while the results indicated some failures in the applied
parameter selection strategy, the SPD models achieve sta-
tistically significantly better results (p < 0.01) than the
BoW baseline for both classification methods studied. We
expect that using an appropriate parameter selection strat-
egy and sufficiently large data sets, the performance of
the SP and SPD models could be further improved. We
conclude that position-sensitive models offer a promising
alternative to commonly used position-insensitive models
and that the model can be used to improve the perfor-
mance of both Naive Bayes and Support Vector Machine
classifiers.

To increase the applicability of the position-sensitive
models to small datasets, the study of parameter selec-
tion methods may be a useful future direction. Further
validation of the performance of the Naive Bayes clas-
sifier with the kernel-smoothed position-sensitive repre-
sentations should also be performed on other datasets and
WSD problems. Moreover, as many elements of the SP
and SPD models are independent of the features on which
they are applied, the new models could be combined with
features other than words, such as part-of-speech, collo-
cation, or N-gram features, giving further opportunities to
improve classification performance.
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