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Abstract

In this paper, we introduce a new kernel function designed
for the problem of word sense disambiguation. The pre-
sented kernel function employs two different types of posi-
tional information related to words present in the contexts of
the words to be disambiguated. For each pair of words in two
contexts, the proposed kernel takes into account both their
distances from the ambiguous words and also the difference
of their mutual positions. We apply the kernel to context-
sensitive spelling correction with SVMs and show that it sig-
nificantly outperforms other considered kernels.

Introduction
Many natural language processing applications require ac-
curate resolution of the various kinds of ambiguity present
in natural language, giving rise to a class of disambiguation
problems. In this paper, we focus on lexical disambigua-
tion problems, where disambiguation is done at the level
of words. A common example of such a problem is word
sense disambiguation (WSD), where the task is to resolve
the correct sense for an instance of a polysemous word, for
example, the word bank where the ambiguity is between the
senses “river bank” and “financial institution”.

A lexical disambiguation problem closely related to WSD
is context-sensitive spelling error correction, where the mis-
spelling of the original word belongs to the language, such
as, for example, desert misspelled as dessert. This mis-
take cannot be detected by standard lexicon-based checkers,
since dessert belongs to the English lexicon. A set of similar
words that belong to the lexicon and that are often confused
with the other words in the set is called a confusion set. For
example, {piece, peace} can be considered as a binary con-
fusion set.

Lexical disambiguation problems other than WSD can
also be used as alternatives for the purpose of evaluating
WSD systems. For example, (Yarowsky 1994) studies the
problem of restoring accents in Spanish and French texts
as a substitute for the WSD problem. It is easy to cast
context-sensitive spelling error correction as a WSD prob-
lem such that each word of the confusion set is considered
as a “sense”. A common motivation to use a substitute prob-
lem for the WSD is that data necessary for evaluating the
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methods can be obtained automatically for these problems,
whereas data for the WSD problem have to be annotated by
hand.

In order to disambiguate the sense of an ambiguous word,
any WSD method has to incorporate the information about
its context, that is, the words surrounding it in the text. A
common way of representing the context is a bag-of-words
(BoW), where no information of the positions of the words
in the context is preserved. Positional information is directly
incorporated by the ordered BoW model (Audibert 2004),
where each word of the context is represented together with
its position and thus two occurrences of one word at differ-
ent positions in the context are considered different features.
Previously, we introduced a weighted BoW approach, where
the context words are weighted in such a way that the words
closer to the ambiguous word receive higher values, moti-
vated by the assumption that closer words are more relevant
for disambiguation (Ginter et al. 2004).

We present here a new kernel function that generalizes the
aforementioned BoW approaches. The proposed WSD ker-
nel further incorporates a new type of positional information
not present in the previously introduced BoW approaches.
Apart from the weight associated with a context word’s ab-
solute distance from the ambiguous word itself, the proposed
kernel also takes into account for two words in the compared
contexts the mutual difference in the words’ positions rela-
tive to the ambiguous word.

We evaluate the method using Support Vector Machines
(SVMs), because they have been repeatedly shown to pro-
vide state-of-the-art performance in natural language disam-
biguation tasks. We use context-sensitive spelling error cor-
rection as the model problem and show a significant gain
in performance compared to the weighted BoW and to the
standard BoW approach.

Binary Classification with Support Vector
Machines

We begin with a short description of SVMs. A more compre-
hensive introduction can be found, for example, in (Rifkin
2002; Vapnik 1998).

In a binary classification task, the training data is com-
prised ofm labeled examples (x1, y1), . . . , (xm, ym), where
xi ∈ X are training data points and yi ∈ {−1,+1} are the



corresponding class labels.
SVMs can be considered as a special case of the following

regularization problem known as Tikhonov regularization:

min
f

∑

i

l(f(xi), yi) + λ‖f‖2
k, (1)

where i ranges from 1 tom, l is the loss function used by the
learning machine, f : X → Y is a function which maps the
input vectors x ∈ X to the output labels y ∈ Y , λ ∈ R+ is a
regularization parameter, and ‖ · ‖k is a norm in a Reproduc-
ing Kernel Hilbert Space defined by a positive definite kernel
function k. The second term is called a regularizer. The loss
function used by SVMs for binary classification problems is
called linear soft margin loss or hinge loss and is defined as

l(f(x), y) = max(1 − yf(x), 0).

By the Representer Theorem, the minimizer of (1) has the
following form:

f(x) =
∑

i

aik(x, xi),

where ai ∈ R and k is the kernel function associated with
the Reproducing Kernel Hilbert Space mentioned above.

Word Sense Disambiguation Kernels
In this section, we consider kernel functions especially de-
signed for word sense disambiguation. Kernel functions are
similarity measures of data points in the input space X , and
they correspond to an inner product in a feature space H
to which the input space data points are mapped. Formally,
kernel functions are defined as

k(x, x′) = 〈Φ(x),Φ(x′)〉,

where Φ : X → H . The input space X can be any set.
Mercer’s theorem states that if k is a symmetric positive

definite function, it is a valid kernel. The following closure
properties of kernels can be easily derived from the Mercer’s
theorem (Cristianini & Shawe-Taylor 2000). If a1 and a2 are
positive real numbers and k1(x, x

′) and k2(x, x
′) are ker-

nels, then a1k1(x, x
′) + a2k2(x, x

′) and k1(x, x
′)k2(x, x

′)
are also kernels. Moreover, if ψ1 is a real valued func-
tion and ψ2 is an R

d valued function, where d ∈ N, then
ψ1(x)ψ1(x

′) and k(ψ2(x), ψ2(x
′)) are kernels. Further-

more (see, e.g. (Smola & Schölkopf 2004), where further
references can be found), function k(x− x′) is a kernel if it
has a positive Fourier transform.

In our experiments, we trained SVMs to disambiguate the
sense of a word between two possible senses based on its
context. The contexts are extracted from documents that
contain occurrences of the ambiguous words. If a document
contains several such words, one context can be extracted
for each occurrence. The contexts as such are not used as
elements of the input space X , but they are represented as
follows.

Representation of Contexts
Let τ denote a word to be disambiguated and let τ =
(τ−t, . . . , τ−1, τ1, . . . , τr) be the context of τ . The words

preceding τ are τ−t, . . . , τ−1 in the order they appear in the
text, and correspondingly τ1, . . . , τr are the words which
follow τ in the text. The word τ itself does not belong to
τ . For a word τp, the index p is referred to as its position.
Note that the numbers t and r do not have to be equal, and
there does not have to be any words preceding or following
τ .

Incorporation of Word Positional Information
Previously, we developed an approach that applied the in-
formation of the positions of the words with respect to the
word to be disambiguated (Ginter et al. 2004). In this pa-
per, we will refer to it as weighted bag-of-words (WBoW)
approach. The idea of the WBoW is that the words near τ
are likely more important than further words, and therefore
they are given higher weight.

WBoW vector space model of contexts can be formalized
as follows. Let C be a set of all possible contexts and let
V = {v1, . . . , vn} be an ordered set of all distinct words of
the contexts of C. Let further Pos(v, τ) = {p | v = τp ∈ τ}
denote the set of the positions p in which a word v ∈ V
occurs in a context τ . The weight assigned for the word
positions is a function w : Z − {0} → R+. Following
(Ginter et al. 2004) we define the weighting function

w(p) =
1

|p|α
+ β,

where α, β ≥ 0 are the parameters for the weighting. If
α > 0, the weighting function has a hyperbolic shape with
highest values immediately around τ , and the bigger α is,
the steeper the weight values grow towards τ . The parameter
β is an offset of the values, whose role is to reduce the ratio
between the weights of words that are near τ and the weights
of words which are far from τ .

Let φ now be the function which maps contexts to WBoW
vectors:

Φ : C → R
n, τ 7→ (φ1(τ), . . . , φn(τ)),

where
φh(τ) =

∑

p

w(p)

and p ranges through all values in Pos(vh, τ). The inner
product

〈Φ(τ),Φ(κ)〉 =
∑

h

φh(τ)φh(κ), (2)

where h ranges all numbers from 1 to n, of two contexts
Φ(τ) and Φ(κ) can be used as a kernel function by SVMs
and other kernel-based methods. Note that the setting α =
β = 0 corresponds to the ordinary BoW approach. We will
refer to the kernel (2) as a WBoW kernel.

Incorporation of Mutual Word Positional
Differences
The WBoW approach described above uses only the posi-
tional information of each word occurrence separately. The
kernel function (2), however, depends on two contexts at the
same time and some mutual positional information of the
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Figure 1: Consider a word v which has two occurrences in
both contexts τ and κ. Each of the four lines between the
occurrences correspond to one term in the sum (4).

word occurrences could also be incorporated into it. For ex-
ample, if both two contexts have an occurrence of a certain
word at similar positions, the kernel function could favor this
at the expense of two contexts having the word occurrences
at very different positions, for instance, far before and far
after the word to be disambiguated.

Consider two instances τ and κ of the word to be dis-
ambiguated and let τ and κ denote their contexts. In the
WBoW approach, all mappings φh(τ) are weighted sums of
occurrences of the word vh in the context τ . If we consider
only a single word vh and the corresponding mapping φh,
the product of the representations of the contexts τ and κ is

φh(τ)φh(κ) =

(

∑

p

w(p)

)

·

(

∑

q

w(q)

)

(3)

=
∑

p,q

w(p)w(q), (4)

where p ranges all values in Pos(vh, τ) and q ranges over
Pos(vh, κ). Hence, the sum is over all combinations of the
occurrences of the word vh in the two contexts. The sum (4)
is illustrated in Figure 1.

The terms of the sum (4) are products of values of the
weighting of two positions. We can generalize this kind of
situation by using a function depending on the positions p
and q:

g(p, q) : (Z − {0}) × (Z − {0}) → R+.

If we use g(p, q) in the place of w(p)w(q) in (4), we get

φh(τ)φh(κ) =
∑

p,q

g(p, q). (5)

If the same is done for every word in V , the result is a new
kernel function

k(τ , κ) = 〈Φ(τ),Φ(κ)〉 (6)

=
∑

h

∑

p,q

g(p, q), (7)

As we mentioned earlier, the sum (4) depends only on the
distance from the word to be disambiguated. In the follow-
ing we take into the account also the difference of mutual
positions in two contexts. This idea is illustrated in Figure 2.

One such function is e−(p−q)2 , for example. However,
this function does not take into account the distances of the
words from the word to be disambiguated, but they can be

τ v

vκ

Figure 2: A word v with an occurrence in contexts τ and κ.
There are three line segments in between the contexts. The
top line is the distance of the occurrence of the word v from
τ in the upper context and the bottom line is the same for κ.
The middle line is the absolute difference of the two words
positions.

captured by a kernel function e−p2

e−q2

= e−(p2+q2). A nat-
ural way to combine these information sources is to multiply
e−(p−q)2 by e−(p2+q2).

In our experiments, we use the function

g(p, q) = e−α(p2+q2)−θ(p−q)2 + β, (8)

where α ≥ 0 is a parameter that controls distances, θ ≥ 0
is a parameter that controls the mutual positions, and β is
an offset parameter. Note that the function we obtain by
combining (7) and (8) is a valid kernel function due to the
closure properties we presented above.

If α > 0, the level-curves of g(p, q) are ellipses whose
major axes are always parallel with the line p = q. The
major axes of the ellipses are determined by α and the ratio
of the minor axis and the major axis is α

α+2θ
. Thus, the

ellipses are circles if θ is zero.
We may now present the following observations concern-

ing the function (8) (see Figure 3 for illustrations).

• For α = θ = β = 0, we have a constant function 1. This
corresponds the standard BoW kernel.

• For θ = 0, only the term e−α(p2+q2) has importance. This
information is very similar to the information provided by
WBoW approach.

• For α = 0, solely the mutual positions of the context
words are taken into account, not their distances from the
ambiguous words.

• For θ → ∞ and α = 0, we have a close resemblance to
the ordered BoW kernel, where for each context word the
exact position is important.

• For θ → ∞, we have again similarities to the ordered
BoW kernel. However, since α 6= 0, just the words close
to the ambiguous words have importance.

A disadvantage of this approach is that the number of
terms in the sum (5) is |Pos(v, τ)| × |Pos(v, κ)|. This num-
ber can be quite high if both contexts have several occur-
rences of some word v. In the WBoW approach, (3) can be
computed by only |Pos(v, τ)| + |Pos(v, κ)| − 2 additions.
Moreover, the sums in (3) need only be calculated once. For
computational efficiency when evaluating the new kernel, in
each context we consider only the closest occurrence to the
word to be disambiguated. With this simplification, the sum
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Figure 3: Schematic level curves of g(p, q)-values of WBoW kernel and the new kernel with different values for the parameters
α and θ. The parameter β is set to zero. The axes are word positions p and q in contexts τ and κ, respectively.

(5) has only one term and the kernel can be computed as ef-
ficiently as the WBoW kernel. In the experiments we show
that even with this simplification, the proposed kernel out-
performs the WBoW kernel, which uses all context words.

We also normalize the data in the feature space using the
so called normalized kernel (see e.g. (Graf, Smola, & Borer
2003))

k̃(x, x′) =
k(x, x′)

√

k(x, x)k(x′, x′)
.

Empirical Validation

To validate the performance of the proposed kernel empir-
ically, we consider the context-sensitive spelling error cor-
rection problem as a WSD problem. We extract the datasets
from the Reuters News corpus (Rose, Stevenson, & White-
head 2002) and consider the seven largest binary confusion
sets among the sets used by (Golding & Roth 1999) in their
context-sensitive spelling error correction experiments. We
stem all documents using the Porter stemmer (Porter 1980).

We measure the performance of the classifiers using the
area under the ROC curve (AUC) (Fawcett 2003). The
ROC curve is a relation between the true-positive and the
false-positive rates at various classification thresholds. Un-
like other popular measures such as accuracy and precision-
recall analysis, the AUC measure is invariant with respect to
the prior class probabilities. AUC corresponds to the prob-
ability that given a randomly chosen positive example and
a randomly chosen negative example, the classifier will cor-
rectly determine which is which.

Parameter Selection

In all experiments, we first selected parameter values by per-
forming 10-fold cross-validation on a parameter estimation
dataset of 1000 documents with various parameter combina-
tions. Only one example per document is used, and these are
selected so that the probability for each instance to be cho-
sen is equal in the set of all contexts of all documents. We
searched for the optimal parameter value combinations us-
ing coarse grid searches similar to that suggested by (Keerthi
& Lin 2003). The regularization parameter λ in (1) was also
separately optimized for each parameter combination.

We compared four different approaches: The standard
BoW kernel, the WBoW kernel, the new kernel with θ = 0
and the new kernel with unrestricted parameter values. The
performance of the BoW kernel is known to depend on
the context size and tends to degrade if the contexts are
too large. Hence, we introduce a context span parameter
s. For fixed s, we take always the largest context τ =
(τ−t, . . . , τ−1, τ1, . . . , τr), so that t ≤ s and r ≤ s. Note
that if there exists swords preceding and following the word
to be disambiguated, then t = r = s, and otherwise t < s
or r < s. For the WBoW kernel, we estimated the best
combination of the weighting parameters α and β, and the
context span parameter s. Based on the results of initial ex-
periments, we use the following parameter selection scheme
for the new kernel: we first consider the case θ = 0, and
find the best combination for s, α and β. Then these values
for s and β are used for the new kernel in general case, and
only the values for α and θ are optimized. For the standard
BoW kernel, we search the optimal context span s with val-
ues 1, 2, 3, . . . , 256 and the full text. For other kernels we
only tested the values 1, 4, 16, 64, 256 and the full text.
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Figure 4: Optimal β and s parameters for different confusion sets for the new kernel and contour plots of performance with
different values of α and θ. The x- and y- axes represent α and θ, respectively, both on a logarithmic scale. The optimal value
combination is marked by a cross. The confusion set {I, me} is not shown as it favored a context span s = 1, where α has no
effect. For {I, me}, values α = 0, θ = 1 and β = 0 were selected.

BoW WBoW
Confusion set s s α β

among, between 4 64 1 0.0
amount, number 5 256 1 0.04
country, county 109 256 1.5 0.04

I, me 1 1 2 0.2
its, it’s 1 16 1.5 0.2

raise, rise 1 256 1.5 0.02
than, then 2 4 1.5 0.04

Table 1: Optimal parameters values for BoW and WBoW.

The chosen parameter combinations for BoW and WBoW
are presented in Table 1. The selected s parameter values
suggest that the WBoW approach prefers much longer con-
texts. This agrees with our previous findings using a similar
weighting scheme (Ginter et al. 2004).

In Figure 4, the optimal β and s parameters for the new
kernel are given and the effect of the α and θ parameters
on performance is illustrated. Similarly as for the WBoW
kernel, the selected s values indicate that much longer con-
texts are preferred than for the BoW kernel. The α, θ-
parameter spaces are relatively regular for all confusion sets,
but there are significant differences in their shapes. For
example, while the confusion sets {amount, number} and
{raise, rise} favour relatively high values of θ, for the con-
fusion set {country, county} there is little difference in per-
formance for different values of θ given a good choice of α,
whereas the confusion set {its, it’s} favours small values of
θ. This suggests that the mutual positions of context words

may be more important for the first two confusion sets, and
that effectively ignoring mutual word positions is best for
the confusion set {its, it’s}.

Validation Results

To validate the performance of the methods with the se-
lected parameters and to test for statistical significance for
each confusion set we use the robust 5 × 2-cv test (Alpay-
din 1999) on separate validation sets of 20000 documents
that were not used in parameter selection. The test avoids
the problem of dependence between folds in N -fold cross-
validation schemes and results in a more realistic estimate
than, for example, the t-test. We extracted 1000 training ex-
amples from the validation training set of 10000 documents
in the same way as we formed the parameter estimation set.
All possible examples were extracted and tested from the
validation testing set of 10000 documents.

The results of the final validation are presented in Table 2.
Although the BoW kernel baseline is relatively high (aver-
age 93.6% AUC), all the other three methods significantly
outperform BoW on most confusion sets, with a notable av-
erage difference of 4.1% for the new kernel. Thus, we were
able to reduce 64% of errors on average. There is little
difference in performance between the WBoW kernel and
the new kernel with θ = 0 (0.4% average in favour of the
new kernel), supporting the analysis that this special case of
the new kernel captures similar information as the WBoW
kernel. This further indicates that the new kernel can per-
form competitively despite the computational simplification
of only considering the closest word of each type.



BoW WBoW New kernel, θ = 0 New kernel
Confusion set AUC AUC ∆1 AUC ∆1 ∆2 AUC ∆1 ∆2 ∆3

among, between 90.95 93.03 2.1 93.43 2.5 0.4 94.93 4.0 1.9 1.5
amount, number 87.99 93.04 5.0 93.16 5.2 0.1 94.62 6.6 1.6 1.5
country, county 96.88 98.77 1.9 99.03 2.1 0.3 99.03 2.2 0.3 0.0

I, me 95.87 95.72 -0.1 95.72 -0.1 0.0 99.10 3.2 3.4 3.4
its, it’s 95.97 97.63 1.7 97.97 2.0 0.3 98.17 2.2 0.5 0.2

raise, rise 89.96 94.28 4.3 95.11 5.1 0.8 98.54 8.6 4.3 3.4
than, then 97.38 98.33 0.9 98.91 1.5 0.6 99.15 1.8 0.8 0.2

Average 93.57 95.83 2.3 96.19 2.6 0.4 97.65 4.1 1.8 1.5

Table 2: Validation results. ∆1 values give difference to the BoW kernel, ∆2 to the WBoW kernel and ∆3 to the new kernel
with θ = 0. Statistically significant differences are typed in bold.

The new kernel with unrestricted parameters significantly
outperforms all other considered methods on most confusion
sets. The difference is especially notable – more than 3%
better than the performance of any other considered method
– for the confusion sets {raise, rise} and {I, me}, both of
which favour relatively high values of the θ parameter. The
results indicate that there are different preferences in empha-
sis on relative context word positioning and that the new ker-
nel can beneficially capture intermediate choices between
strictly ordered and unordered alternatives.

Discussion and Conclusions
In this paper, we have shown that the performance of SVMs
can be improved by incorporating the information on the po-
sitions of the words in the context of the ambiguous word
into a kernel function. A straightforward way to do this is
to adopt the WBoW approach and use a linear kernel over
WBoW vectors. We refined this approach further by incor-
porating also for each pair of words in two contexts the dif-
ference of their mutual positions and showed that this infor-
mation significantly improves the performance of SVMs.

As future work, we may consider one sense per discourse
hypothesis (see e.g. (Yarowsky 1995)) that can be used to
improve the simultaneous disambiguation of word senses
in the same document. Moreover, the performance of the
SVM with the new kernel might be further improved, for
example, by using collocations in order to capture the local
syntax around the term to be disambiguated. However, the
proposed kernel uses the local information, and therefore it
already captures the information represented by collocations
to some extent.
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