
Transductive Ranking via Pairwise Regularized
Least-Squares

Tapio Pahikkala Hanna Suominen Jorma Boberg Tapio Salakoski
Turku Centre for Computer Science (TUCS)

University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, 20520 Turku, Finland

firstname.lastname@utu.fi

1. INTRODUCTION
Ranking data points with respect to a given preference cri-
terion is an example of a preference learning task. Tasks
of this kind are often considered as classification problems,
where the training set is composed of data point pairs, in
which one point is preferred over the other, and the class
label of a pair indicates the direction of the preference (see,
e.g., [5, 6]). Following the terminology of [4], our focus is
on label ranking, that is, each data instance is associated
with a set of labels that we aim to rank in order of a certain
utility scoring. The data instance can be, for example, a
query of a web search engine, and the label set consists of
the documents obtained by the query. The utility score of a
document would then its relevance to the query.

The paper is organized as follows. In Section 2, we propose
a ranking algorithm which is based on minimizing the regu-
larized least-squares (RLS) error (see, e.g., [9]) of the score
differences. The information regarding the score differences
that the algorithm is supposed to learn is stored in a graph
defined for the training set. In Section 3, we first introduce
an efficient method for computing hold-out estimates for the
proposed algorithm. Finally, using the hold-out method, we
propose a transductive version of the algorithm.

2. PAIRWISE LEAST-SQUARES
In [8], we proposed the RankRLS learner for a general pur-
pose preference learning. The learner minimizes the RLS
error of the output variable differences. We proved that
training of the learner has the same computational complex-
ity as training of the standard RLS regressor for the same
data set. We compared the RankRLS learner with the stan-
dard RLS regressor in the task of dependency parse ranking
and found that for this task, the ranking performance of
RankRLS is significantly better than that of the standard
RLS regressor.

In this section, we continue the study by specifying the
RankRLS for label ranking. We use the term input vari-
able, or simply input, to refer to a pair comprised of an
instance and one of its associated labels. At first, we con-
struct a training set from input variables and scores corre-
sponding to a given set of data instances. Then, we define
an undirected graph whose vertices are the training inputs.
Two vertices are connected with an edge if they correspond
to the same data instance, and hence the graph consists of
a set of isolated complete subgraphs. For example, in the

graph generated for the web search queries and documents,
two vertices are connected if their corresponding documents
are obtained by the same query. The Laplacian matrix of
the graph is used to encode the connection information into
the algorithm. Finally, we show that while the number of
possible score differences grows quadratically with respect
to the number of training inputs, RankRLS is as efficiently
trained as the standard RLS regressor for the individual
score values.

Let the input space X be the set of possible input variables
and let R be the set of scores. We call the set of possible
input-score pairs Z = X × R the example space. Further,
the term instance refers to a set of examples in this context
and hence the instance space V is defined to be the family
of all finite subsets of Z.

Let us denote RX = {f : X → R}, and let H ⊆ RX be
the hypothesis space. To measure how well a hypothesis
f ∈ H is able to rank the inputs of the instances, we consider
the following definition of the disagreement error which is
similar to the one defined in [3]:

E(v, f) =
1

2

|v|
2

!−1 X
z,z′∈v

d(y − y′, f(x)− f(x′)) (1)

where v ∈ V; x, x′ ∈ X ; y, y′ ∈ R; z = (x, y), z′ = (x′, y′);

d(α, β) =
1

2

???sign
`
α
´
− sign

`
β
´???;

and sign(·) is the signum function

sign(r) =

8<: 1 when r > 0
0 when r = 0

−1 when r < 0
.

The constant 1
2

`|v|
2

´−1
ensures that the disagreement er-

ror is between 0 and 1. The direction of preference of a
data point pair (z, z′) is determined by sign(y − y′). Simi-
larly, the predicted direction of preference is determined by
sign

`
f(x)− f(x′)

´
.

Our formulation of this type of a preference learning task is:
find a function f ∈ H that minimizes the expectation of the
disagreement error. Of course, we do not usually know the
distribution of the instances. Instead, we are given a finite
number q of instances generated by some unknown distribu-
tion. From the given instances, we take every input variable,

say altogether m inputs, and define X = (x1, . . . , xm) ∈
(Xm)T to be a sequence of inputs, where (Xm)T denotes
the set of row vectors whose elements belong to X . Analo-
gously, we define Y = (y1, . . . , ym)T ∈ Rm be a sequence of
the corresponding score values. We also denote zi = (xi, yi),
1 ≤ i ≤ m. Thus, m =

Pq
l=1 |vl|, where |vl| is the number of

examples in the lth instance. To keep an account to which
instance each example belongs, we define Ul ⊆ {1, . . . , m},
where 1 ≤ l ≤ q, to be the index set whose elements refer
to the indices of the examples that belong to the lth in-
stance vl. Of course, Ul ∩ Ul′ = ∅ if l 6= l′. Next, we define
an undirected weighted graph for the training data whose
vertices are the indices of all the inputs of all the instances
given for the training examples zi, 1 ≤ i ≤ m. The graph is
determined by the adjacency matrix W whose elements are

Wi,j =

 `|v|
2

´−1
when i, j ∈ Ul ∧ i 6= j

0 otherwise
.

We observe that the graph W consists of a set of isolated
complete subgraphs corresponding to the different instances.
Altogether, we define the training set to be the triple S =
(X, Y, W).

In order to construct an algorithm that selects a hypothesis
f from H, we have to define an appropriate cost function
that measures how well the hypotheses fit to the training
data. We would also like to avoid too complex hypothe-
ses that overfit at the training phase and are not able to
generalize to unseen data. Following [10], we consider the
framework of regularized kernel methods in which H is so-
called reproducing kernel Hilbert space defined by a positive
definite kernel function k. Then, the learning algorithm that
selects the hypothesis f from H is defined as

A(S) = argmin
f∈H

J(f),

where

J(f) = c(f(X), Y, W) + λ‖f‖2
k, (2)

f(X) = (f(x1), . . . , f(xm))T, c is a real valued cost function,
λ ∈ R+ is the regularization parameter, and ‖ · ‖k is the
norm in H. By the generalized representer theorem [10],
the minimizer of (2) has the following form:

f(x) =

mX
i=1

aik(x, xi), (3)

where ai ∈ R and k is the kernel function associated with the
reproducing kernel Hilbert space mentioned above. For the
training set, we define the symmetric m ×m kernel matrix
K to be a matrix whose elements are Ki,j = k(xi, xj). For
simplicity, we also assume that K is a strictly positive defi-
nite matrix. This can be ensured, for example, by perform-
ing a small diagonal shift. Using this notation, we rewrite
f(X) = KA and ‖f‖2

k = ATKA, where A = (a1, . . . , am)T.

A natural way to encode the preference information into a
cost function is to use the disagreement error (1) for each
pair of training examples. Formally,

c(f(X), Y, W) =
1

2

mX
i,j=1

Wi,jd(yi − yj , f(xi)− f(xj)). (4)

The weighting with W ensures that each instance has an
equal weight in the cost funtion. It is well-known that this

type of cost functions lead to intractable optimization prob-
lems. Therefore, instead of using (4), we use functions ap-
proximating it. Namely, we adopt the following type of
least-squares approximation of d(α, β) so that we are, in
fact, regressing the differences yi − yj with f(xi)− f(xj):ed(α, β) = (α− β)2.

Before presenting the solution for the minimization problem
using the least-squares approximation, we introduce some
notation used. Let L be the Laplacian matrix (see, e.g., [1])
of the graph W . Its entries are defined by

Li,j =

 Pm
j=1 Wi,j when i = j

−Wi,j otherwise
.

The next theorem characterizes a method we call RankRLS.

Theorem 1. Let S = (X, Y, W) be a training set and let

A(S) = argmin
f∈H

J(f), (5)

where

J(f) = c(f(X), Y, W) + λ‖f‖2
k (6)

and

c(f(X), Y, W) =
1

2

mX
i,j=1

Wi,j
ed(yi − yj , f(xi)− f(xj)). (7)

be the algorithm under consideration. A coefficient vector
A ∈ Rm that determines a minimizer of (6) for a training
set S is

A = (LK + λI)−1LY, (8)

where L is the Laplacian matrix of the graph W .

Proof. According to the representer theorem, the mini-
mizer of (6) is of the form (3), that is, the problem of finding
the optimal hypothesis can be solved by finding the coeffi-
cients ai, 1 ≤ i ≤ m. We observe that for any vector r ∈ Rm

and undirected weighted graph W of m vertices, we can
write

1

2

mX
i,j=1

Wi,j(ri − rj)
2 =

mX
i,j=1

Wi,jr
2
i −

mX
i,j=1

Wi,jrirj

=

mX
i=1

r2
i

mX
j=1

Wi,j −
mX

i,j=1

Wi,jrirj

= rTDr − rTWr

= rTLr,

where D is a diagonal matrix whose entries are defined as
Di,i =

Pm
j=1 Wi,j , and L = D −W is the Laplacian matrix

of the graph determined by W . Therefore, by selecting r =
Y −KA, we rewrite the cost function (7) in a matrix form
as

c(Y, f(X)) = (Y −KA)TL(Y −KA),

and hence the algorithm (5) is rewritten as

A(S) = argmin
A

J(A),

where

J(A) = (Y −KA)TL(Y −KA) + λATKA.

We take the derivative of J(A) with respect to A:

d

dA
J(A) = −2KL(Y −KA) + 2λKA

= −2KLY + (2KLK + 2λK)A

We set the derivative to zero and solve with respect to A:

A = (KLK + λK)−1KLY

= (LK + λI)−1LY,

where the last equality follows from the strict positive defi-
niteness of K.

The calculation of the solution (8) requires multiplications
and inversions of m × m matrices. Both types of opera-
tions are usually performed with methods whose computa-
tional complexities are O(m3), and hence the complexity of
RankRLS is equal to the complexity of the standard RLS
regression.

3. TRANSDUCTIVE LEARNING
In this section, we first introduce an efficient way to compute
hold-out estimates for RankRLS for label ranking. Then, we
show how the hold-out can be used to derive a transductive
version of the algoritm.

In [7], we described an efficient method for calculating hold-
out estimates for the standard RLS algorithm in which sev-
eral examples were held out simultaneously. The hold-out
computations can be performed for RankRLS in a similar
way. Here, we consider the case where the lth instance will
be left out from the training set and used as a test instance
for a learning machine trained with the rest of the training
instances. Recall that the term instance refers to a set of
input-score pairs, that is, not to an individual example only,
and the input variables that correspond to the lth instance
are indexed by Ul ⊂ {1, . . . , m}. Below, we use a shorthand
notation U instead of Ul. Leaving more than one instance
out can be defined analogously. In that case, U would re-
fer to a union of Ul, where l goes through every hold-out
instance.

With any matrix (or a column vector) M that has its rows
indexed by a superset of U , we use the subscript U so that
the matrix MU contains only the rows that are indexed by
U . Similarly, for any matrix M that has its rows indexed
by a superset of U and columns indexed by a superset of V ,
we use MUV to denote a matrix that contains only the rows
indexed by U and the columns indexed by V . Further, we
denote U = {1, . . . , m} \ U , and fU = A(XU , YU , WUU).

Let Q = LUUKUU + λIUU . Then, the predicted scores for
the inputs of the held out instance can be obtained, by def-
inition, from

fU (XU) = KUUQ−1LUUYU . (9)

However, having already calculated the solution with the
whole training set, the predictions for the held out in-
stance can be performed more efficiently than with the naive
method.

Let R = LK + λI and P = R−1. By definition, LUlUl
= 0

for all 1 ≤ l ≤ q, and hence we can write Q−1 = (RUU)−1.
Further, due to the matrix inversion lemma,

(RUU)−1 = PUU − PUU (PUU)−1PUU .

When (5) has been solved with the whole training set, we
already have the matrix P stored in memory, and hence the
computational complexity of calculating the matrix prod-
ucts and inversions (in the optimal order) involved in (9) is
O(m2 + |U |3). This is more efficient than the naive method
of calculating the inverse of Q with complexity O(m3). The
hold out method can be used to calculate a cross-validation
efficiently.

Next, we consider a transductive version of the RankRLS
algorithm. We assume that one (or several) of the q in-
stances is given without the scoring information. In con-
trast to the hold-out procedure discussed above, the learn-
ing algorithm is given a chance to exploit the information
in test instances, that is, the instances without the scoring
information: the input of the algorithm consists of the in-
stances with the scoring information, the respective score
values, and the instances without scoring information. As
previously, the aim is to predict the score values for the
test instances. We do this by selecting such score values
that minimize the least-squares approximation of the cross-
validated ranking error on the whole data set. Our idea is
inspired by the method proposed in [2], where output vari-
ables of the unlabeled instances were selected so that the
leave-one-out cross-validated regression error on the whole
data set was minimized. In contrast, we perform a more
general cross-validation procedure, because holding out an
instance means excluding every example associated with it.
In addition, we aim to minimize the ranking error instead
on the regression error.

Formally, the transductive RankRLS algorithm is con-
structed as follows. Let V be the index set of the inputs
that belong to instances without the score values. Then,
the score values YV are obtained from

YV = argminbY ∈R|V |
J, (10)

where

J =
“X

U

c(fV
U (XU), Y V

U , WUU)
”

+ γ‖bY − fV (XV)‖2, (11)

U goes through every cross-validation fold, c is the cost func-
tion defined in (7), γ > 0, fV

U
= A(XU , Y V

U
, WUU), and Y V

is a sequence of score values in which the elements indexed

by V are set to bY . The second term of (11) penalizes the

divergence of bY from fV (XV).

The minimizer of (11) is characterized by the following the-
orem.

Theorem 2. The solution of (10) is

bY = (
X
U

E + γIV V)−1(
X
U

F + γfV (XV)), (12)

where

E =

„
LSS −LSSGSH

−GT
SHLSS GT

UHLUUGUH

«
,

F =

„
LSSGSBYB

GT
ZHLZZYZ −GT

UHLUUGUBYB

«
,

G = KUU (PUU − PUU (PUU)−1PUU)LUU ,

S = V ∩ U,

H = V ∩ U,

Z = V ∩ U , and

B = V ∩ U.

Proof. We write (11) in a matrix form:

J =
X
U

(Y V
U − fV

U (XU))TLUU (Y V
U − fV

U (XU))

+γ(bY − fV (XV))T(bY − fV (XV)).

We observe that, when the rows and the columns of the
matrices and vectors are rearranged appropriately,

fV
U (XU) =

„
GSH GSB

GZH GZB

«„ bYH

YB

«
,

LUU =

„
LSS 0
0 LZZ

«
,

Y V
U =

„ bYS

YZ

«
, and

bY =

„ bYSbYH

«
.

Hence,

J =
X
U

“bY T
S LSS

bYS

−2bY T
S LSSGSH

bYH

−2bY T
S LSSGSBYB

−2bY T
H GT

ZHLZZYZ

+2bY T
H GT

UHLUUGUBYB

+bY T
H GT

UHLUUGUH
bYH

”
+γ(bY T bY − 2bY TfV (XV)) + C

= bY T

 X
U

E

! bY − 2bY T

 X
U

F

!
+γ(bY T bY − 2bY TfV (XV)) + C,

where C is a constant that does not depend on bY . We take

the derivative of J with respect to bY :

d

dbY J = 2

 X
U

E

! bY − 2

 X
U

F

!
+ γ(2bY − 2fV (XV)).

Finally, we set the derivative to zero and solve with respect

to bY : bY = (
X
U

E + γIV V)−1(
X
U

F + γfV (XV)),

that is equal to (12).

When the matrix products in (12) are calculated in the op-

timal order, the computational complexity of predicting bY
with the transductive RankRLS is O(m3).

Acknowledgments
This work has been supported by Tekes, the Finnish Funding
Agency for Technology and Innovation.

4. REFERENCES
[1] M. Belkin, I. Matveeva, and P. Niyogi. Regularization

and semi-supervised learning on large graphs. In
J. Shawe-Taylor and Y. Singer, editors, Proceedings of
the 17th Annual Conference on Learning Theory,
volume 3120 of Lecture Notes in Computer Science,
pages 624–638. Springer, 2004.

[2] O. Chapelle, V. Vapnik, and J. Weston. Transductive
inference for estimating values of functions. In S. A.
Solla, T. K. Leen, and K.-R. Müller, editors, Advances
in Neural Information Processing Systems 12, pages
421–427. The MIT Press, Cambridge, MA, 1999.

[3] O. Dekel, C. Manning, and Y. Singer. Log-linear
models for label ranking. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information
Processing Systems 16. MIT Press, Cambridge, MA,
2004.

[4] J. Fürnkranz and E. Hüllermeier. Preference learning.
Künstliche Intelligenz, 19(1):60–61, 2005.

[5] R. Herbrich, T. Graepel, and K. Obermayer. Support
vector learning for ordinal regression. In Proceedings
of the Ninth International Conference on Articial
Neural Networks, pages 97–102, London, 1999.
Institute of Electrical Engineers.

[6] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining,
pages 133–142, New York, NY, USA, 2002. ACM
Press.

[7] T. Pahikkala, J. Boberg, and T. Salakoski. Fast n-fold
cross-validation for regularized least-squares. In
T. Honkela, T. Raiko, J. Kortela, and H. Valpola,
editors, Proceedings of the Ninth Scandinavian
Conference on Artificial Intelligence (SCAI 2006),
pages 83–90, Espoo, Finland, 2006. Otamedia Oy.

[8] T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg,
and T. Salakoski. Learning to rank with pairwise
regularized least-squares. In T. Joachims, H. Li, T.-Y.
Liu, and C. Zhai, editors, SIGIR 2007 Workshop on
Learning to Rank for Information Retrieval, pages
27–33, 2007.

[9] R. Rifkin. Everything Old Is New Again: A Fresh Look
at Historical Approaches in Machine Learning. PhD
thesis, MIT, 2002.

[10] B. Schölkopf, R. Herbrich, and A. J. Smola. A
generalized representer theorem. In D. Helmbold and
R. Williamson, editors, Proceedings of the 14th Annual
Conference on Computational Learning Theory and
and 5th European Conference on Computational
Learning Theory, pages 416–426, Berlin, Germany,
2001. Springer-Verlag.

