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ABSTRACT
Learning preference relations between objects of interest is
one of the key problems in machine learning. Our approach
for addressing this task is based on pairwise comparisons
for estimation of overall ranking. In this paper, we pro-
pose a simple preference learning algorithm based on regu-
larized least squares and describe it within the kernel meth-
ods framework. Our algorithm, that we call RankRLS, mini-
mizes a regularized least-squares approximation of a ranking
error function that counts the number of incorrectly ranked
pairs of data points. We consider both primal and dual ver-
sions of the algorithm. The primal version is preferable when
the dimensionality of the feature space is smaller than the
number of training data points and the dual one is prefer-
able in the opposite case. We show that both versions of
RankRLS can be trained as efficiently as the corresponding
versions of standard regularized least-squares regression, de-
spite the fact that the number of training data point pairs
under consideration grows quadratically with respect to the
number of individual points. As a representative example of
a case where the data points outnumber features we choose
the Letor dataset. For the opposite case, we choose the
parse ranking task. We show that on the Letor dataset the
primal RankRLS performs comparably to RankSVM and
RankBoost algorithms that are used as baselines. More-
over, we show that the dual RankRLS notably outperforms
the standard regularized least-squares regression in parse
ranking. We suggest that the main advantage of RankRLS
is the computational efficiency both in the primal and the
dual versions, especially since the efficient implementation
of the latter is not straightforward, for example, for the sup-
port vector machines.

1. INTRODUCTION
Ranking can be considered as a task in which the aim is to
learn a function capable of arranging data points according
to a given preference relation [6]. Tasks of this type are
often cast as classification problems, where the training set
is composed of data point pairs, in which one point is pre-
ferred over the other, and the class label of a pair indicates
the direction of the preference [8, 10]. Although the prefer-
ence learning algorithm usually has smaller computational
complexity then that of classification algorithm the major
drawback associated with this approach is that the number
of data point pairs grows quadratically with respect to the
size of the dataset, thus making training of the algorithm
on the whole dataset too cumbersome.

Recently, it has been shown that the RLS classifiers (see
e.g. [18]), also known as the least-squares support vector
machines [21], have a classification performance comparable
to the regular support vector machines (SVM). We propose
a ranking algorithm which is based on minimizing the regu-
larized least-squares (RLS) error when predicting the output
variable differences on the pairs of data points, and hence
call it RankRLS. We show that while the number of possible
output variable differences grows quadratically with respect
to the number of training inputs, the training is as efficient
as the training of a standard RLS regressor for the individ-
ual output variables. The information regarding the output
variable differences, that the algorithm is supposed to learn,
is stored in a graph defined for the training set. The di-
rection of preference between some pairs of the data points
may be irrelevant for the task in question. For example,
suppose that we are given a set of web-search results ob-
tained with a set of queries and our aim is to rank them
according to the user preference. In that case, we are not
interested in the order of the web documents obtained from
different queries. The only relevant pairs of data points are
the ones in which both of the web documents are obtained
from the same query. Similarly, in the task of parse ranking
that we consider in our experiments, we are not interested
in the directions of reference between parses generated for
different sentences.

We also derive a primal version of our algorithm that is
more efficient than the kernel version when the number of
training data points is larger than the number of features.



Many other ranking algorithms, such as RankSVM [8] for
example, can be efficiently trained with this type of data.
The ranking performance difference between RankSVM and
our method depends only on the type of the loss function
(the hinge loss in RankSVM and the least-squares loss in our
case). However, we may suggest that our method is the most
applicable when used with kernel functions due to the effi-
cient regression of the pairwise output variable differences.
To our knowledge, while this type of SVM algorithms have
been proposed for tasks where the number of pairwise dif-
ferences to be learned is reasonably small, these algorithms
are not efficient when the number of the differences is large.
A common approach in this case is to reduce the number of
pairs to be learned using, for example, clustering techniques
(see e.g. [17, 3]).

2. PAIRWISE REGRESSION
First, we construct a training set from a given set of m
data points. A data point z = (x, y) consist of an input
variable x ∈ X and an output variable y ∈ R, where X ,
called the input space, can be any set. In our web search
example, an input variable is a query-document pair and
its associated output variable is the relevance of the doc-
ument to the query, that is, y > 0 when the document
matches the query and y = 0 otherwise. Next, we define
an undirected graph whose vertices correspond to the train-
ing inputs. Two vertices in the graph are connected with
an edge if the corresponding pair of data points is relevant
to the task. For example, in a web search task, two query-
document pairs are connected with an edge if the query-
document pairs are the results of the same query. We de-
termine the graph via m × m adjacency matrix W , that
is, Wi,j = 1 when the vertices indexed by i and j are con-
nected, and Wi,j = 0 otherwise. Note that we set Wi,i = 1
for all i. Further, let X = (x1, . . . , xm) ∈ (Xm)T be a
sequence of inputs, where (Xm)T denotes the set of row
vectors whose elements belong to X . Correspondingly, we
define Y = (y1, . . . , ym)T ∈ Rm be a sequence of the corre-
sponding output variables. Altogether, we define the train-
ing set to be the triple S = (X, Y, W ).

2.1 Regularization Framework
Let us denote RX = {f : X → R}, and let H ⊆ RX be the
hypothesis space. In order to construct an algorithm that
selects a hypothesis f from H, we have to define an appro-
priate cost function that measures how well the hypotheses
fit to the training data. We would also like to avoid too com-
plex hypotheses that overfit at training phase and are not
able to generalize to unseen data. Following [19], we con-
sider the framework of regularized kernel methods in which
H is so-called reproducing kernel Hilbert space (RKHS) de-
fined by a positive definite kernel function k. The kernel
functions (see e.g. [7, 20]) are defined as follows. Let F
denote the feature vector space. For any mapping

Φ : X → F ,

the inner product

k(x, x′) = 〈Φ(x), Φ(x′)〉

of the mapped data points is called a kernel function. We
also denote the sequence of feature mapped inputs as

Φ(X) = (Φ(x1), . . . , Φ(xm)) ∈ (Fm)T

for all X ∈ (Xm)T. Further, we define the symmetric kernel
matrix K ∈ Rm×m, where Rm×m denotes the set of real
matrices of type m×m, as

K = Φ(X)TΦ(X) =

0B@ k(x1, x1) · · · k(x1, xm)
...

. . .
...

k(xm, x1) · · · k(xm, xm)

1CA
for all X ∈ (Xm)T. Unless stated otherwise, we assume
that the kernel matrix is strictly positive definite, that is,
ATKA > 0 for all A ∈ Rm, A 6= 0. This can be ensured, for
example, by performing a small diagonal shift.

Following [19], we define RKHS determined by the input
space X and the kernel k : X × X → R as

H =

(
f(x) =

∞X
i=1

βik(x, xi), βi ∈ R, xi ∈ X , ‖f‖k < ∞

)
,

where ‖f‖k denotes the norm of the function f in H. Us-
ing RKHS as our hypothesis space, we define the learning
algorithm as

A(S) = argmin
f∈H

J(f),

where

J(f) = c(f(X), Y, W ) + λ‖f‖2k, (1)

f(X) = (f(x1), . . . , f(xm))T, c is a real valued cost func-
tion, and λ ∈ R+ is a regularization parameter controlling
the tradeoff between the cost on the training set and the
complexity of the hypothesis. By the generalized represen-
ter theorem ([19]), the minimizer of (1) has the following
form:

f(x) =

mX
i=1

aik(x, xi), (2)

where ai ∈ R. Using this notation, we rewrite f(X) = KA
and ‖f‖2k = ATKA, where A = (a1, . . . , am)T.

To measure how well a hypothesis f ∈ H is able to predict
the direction of preference for the data point pairs that are
relevant to the task, we consider the following cost function
that simply counts the number of incorrectly predicted pairs
(see e.g. [4] for a similar type of approach):

c(f(X), Y, W ) =
1

2

mX
i,j=1

Wi,jd(yi − yj , f(xi)− f(xj)) (3)

where

d(α, β) =
1

2

???sign
`
α

´
− sign

`
β

´???
and sign(·) is the signum function.

sign(r) =

8<: 1 when r > 0
0 when r = 0

−1 when r < 0
.

The direction of preference between data points zi = (xi, yi)
and zj = (xj , yj) is determined by sign(yi − yj). Sim-
ilarly, the predicted direction of preference is determined
by sign

`
f(xi) − f(xj)

´
. For example, let zi = (xi, yi) and

zj = (xj , yj) be two data points, where xi and xj correspond
to document-query pairs resulting from the same query. The



document corresponding to xi is relevant to the query in
question and the document corresponding to xj is not, that
is, yi > 0 and yj = 0. Then, the document-query pair xi is
preferred over xj .

It is well-known that the use of cost functions like (3) leads
to intractable optimization problems. Therefore, instead of
using (3), we use functions approximating it. Namely, we use
the following type of least-squares approximation of d(α, β)
so that we are, in fact, regressing the differences yi−yj with
f(xi)− f(xj): ed(α, β) = (α− β)2. (4)

Note also that when using (4), not only the sign of yi − yj

but also its magnitude determine the objective function (1).

Before presenting the solution for the minimization problem
using the least-squares approximation, we introduce some
notation used. Let L = D − W be the Laplacian matrix
(see e.g. [2]) of the graph W , where D is a diagonal matrix
whose entries are defined as Di,i =

Pm
j=1 Wi,j .

2.2 Dual RankRLS
The next theorem characterizes a method we call dual
RankRLS or simply RankRLS.

Theorem 1. Let S = (X, Y, W ) be a training set and let

A(S) = argmin
f∈H

J(f), (5)

where

J(f) = c(f(X), Y, W ) + λ‖f‖2k (6)

and

c(f(X), Y, W ) =
1

2

mX
i,j=1

Wi,j
ed(yi − yj , f(xi)− f(xj)). (7)

be the algorithm under consideration. A coefficient vector
A ∈ Rm that determines a minimizer of (6) for a training
set S is

A = (LK + λI)−1LY, (8)

where L is the Laplacian matrix of the graph W .

Proof. According to the representer theorem, the mini-
mizer of (6) is of the form (2), that is, the problem of finding
the optimal hypothesis can be solved by finding the coeffi-
cients ai, 1 ≤ i ≤ m. We observe that for any vector r ∈ Rm

and an undirected weighted graph W of m vertices, we can
write

1

2

mX
i,j=1

Wi,j(ri − rj)
2 =

mX
i,j=1

Wi,jr
2
i −

mX
i,j=1

Wi,jrirj

=

mX
i=1

r2
i

mX
j=1

Wi,j −
mX

i,j=1

Wi,jrirj

= rTDr − rTWr

= rTLr,

where D and L are the degree matrix and the Laplacian ma-
trix of the graph determined by W . Therefore, by selecting

r = Y − KA, we rewrite the cost function (7) in a matrix
form as

c(f(X), Y, W ) = (Y −KA)TL(Y −KA),

and hence the algorithm (5) is rewritten as

A(S) = argmin
A

J(A),

where

J(A) = (Y −KA)TL(Y −KA) + λATKA. (9)

We take the derivative of J(A) with respect to A:

d

dA
J(A) = −2KL(Y −KA) + 2λKA

= −2KLY + (2KLK + 2λK)A

We set the derivative to zero and solve with respect to A:

A = (KLK + λK)−1KLY

= (LK + λI)−1LY,

where the last equality follows from the strict positive defi-
niteness of K.

The calculation of the solution (8) requires multiplications
and inversions of m × m-matrices. Both types of opera-
tions are usually performed with methods whose computa-
tional complexities are O(m3), and hence the complexity of
RankRLS is equal to the complexity of the RLS regression.

We also observe that in the unregularized case when λ =
0, the standard least-squares regression solution is also a
solution of (5), that is, A = K−1Y is one of the minimizers
of (9).

2.3 Primal RankRLS
In some cases, the number of training data points is much
larger than the number of dimensions n in the feature space,
that is, we assume that we can write F = Rn, where n < m.
Then, the sequence of mapped inputs is a matrix

Φ(X) = (Φ(x1), . . . , Φ(xm)) ∈ Rn×m

and the function (2) minimizing (1) can be equivalently ex-
pressed as

f(x) = Φ(x)TΦ(X)A = Φ(x)Tw, (10)

where

w = Φ(X)A

denotes the normal vector of the hyperplane corresponding
to the RLS solution in the feature space. Output prediction
for new data points is, of course, more efficient with (10)
than with (2) when n < m.

We next show that, when n < m, the training process can
also be performed in a more efficient way than with dual
RankRLS (8). Note, that here we do not have to assume
the strict positive definiteness of K. We call this method
the primal version of RankRLS. With the primal version, the
computational complexity of the training process becomes
more dependent on n rather than on the training set size m.



Now we write the algorithm (5) as

A(S) = argmin
w

J(w),

where

J(w) = (Y − Φ(X)Tw)TL(Y − Φ(X)Tw) + λwTw.

We take the derivative of J(w) with respect to w:

d

dw
J(w) = −2Φ(X)L(Y − Φ(X)Tw) + 2λw

= −2Φ(X)LY + (2Φ(X)LΦ(X)T + 2λI)w.

We set the derivative to zero and solve with respect to w:

w = (Φ(X)LΦ(X)T + λI)−1Φ(X)LY. (11)

The computational complexity of the matrix inversion is in
this case O(n3).

Recall that L = D−W . The multiplication of the matrices
L and Φ(X) can be performed efficiently using the following
sparse low-rank decomposition of W . Let P ∈ Rn×q be a
matrix whose rows are indexed by the query-document pairs
and the columns are indexed by the queries. The value of
Pi,j is 1 when the ith document-query pair is associated with
the jth query and 0 otherwise. Then, the adjacency matrix
can be written as W = PPT.

For example, assume that we have two queries of which the
first is associated with two and the second with three docu-
ments. Then, the adjacency matrix W and its corresponding
P matrix are

W =

0BBB@
1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

1CCCA , P =

0BBB@
1 0
1 0
0 1
0 1
0 1

1CCCA . (12)

Using the sparse low-rank decomposition of W , the multi-
plication of L and Φ(X) can be written as

Φ(X)LΦ(X)T = Φ(X)DΦ(X)T − Φ(X)PPTΦ(X)T,

where D is the degree matrix of L. The multiplication of
Φ(X) with D can be performed in O(nm) time, because D
is a diagonal matrix. Moreover, the multiplication of Φ(X)
with P requires also only O(nm) operations, since Φ(X) has
n rows and there are exactly m nonzero elements in P . The
multiplications that dominate the computational complexity
are Φ(X)D with Φ(X)T and Φ(X)PPT with Φ(X)T which
both need O(n2m) time.

Thus, the overall complexity of the primal RankRLS is
O(n3 +n2m) of which the first term corresponds to the ma-
trix inversion involved in (11) and the second to the matrix
multiplications, that is, the primal RankRLS can be trained
as efficiently as the primal RLS regression. Further, when
the dimensionality n of the feature space is considered to be
a constant, the training time is linear with respect to the
number of training examples.

2.4 Training via Eigen Decomposition
We also note that by calculating the eigen decomposition of
LK in (8), it is possible to obtain the solutions for several

values of the regularization parameter in the computational
cost of calculating just one solution. Formally, let V be the
eigenvector matrix of LK and let Λ be a diagonal matrix
containing the corresponding eigenvalues. The decomposi-
tion can be calculated in O(m3) time. If we store in memory
the precomputed matrix V and the vector Q = V −1LY , the
solution for a regularization parameter value λ can be cal-
culated from

A = V (Λ + λI)−1Q,

in O(m2) time, since (Λ + λI) is a diagonal matrix.

An analogous trick can be used also in the primal form
(11) by calculating the eigen decomposition of the matrix
Φ(X)LΦ(X)T. In that case, the complexity of the decom-
position calculation is O(n3) and the solutions for different
values of regularization parameter can be obtained in O(n2)
time.

3. EXPERIMENTS
We first present an evaluation of RankRLS on the Letor1

data set that was provided by the workshop organizers. The
amount of training data in Letor is very large compared to
the number of features. Therefore, we use the primal version
of the RankRLS algorithm whose computational complexity
depends on the dimensionality of the feature space instead
of the number of training data points. The results of the
experiments are presented in Section 3.1. The performance
of RankRLS is very similar to that of the provided baseline
methods RankSVM [8] and RankBoost [5]. Moreover, the
standard RLS regression [15] is found to be inferior to the
ranking algorithms in two out of the three Letor datasets.

However, we believe that the main advantage of RankRLS
is its efficiency when used in high dimensional feature space.
This is the case, for example, when complex kernel functions
are used. Therefore, we also conduct experiments with the
task of parse ranking using graph kernels. The parse ranking
results are presented in Section 3.2.

In both tasks, document ranking and parse ranking, we
use an adjacency matrix W that encodes which pairs of
document-query pairs or parses are relevant to the task. To
keep an account which query or sentence each document-
query pair or parse is associated with, we define Ul ⊆
{1, . . . , m}, where 1 ≤ l ≤ q and q is the number of queries
or sentences used to create the training set and Ul is the in-
dex set whose elements refer to the indices of the document-
query pairs or parses that are associated with the lth query
or sentence. Of course, Ul ∩ Ul′ = ∅ if l 6= l′, because each
document-query pair or parse is associated with only one
query or sentence. Then, the adjacency matrix correspond-
ing to the ranking tasks is

Wi,j =


1 when i, j ∈ Ul

0 otherwise
.

We also test whether the tied pairs of data points are bene-
ficial in the training process. With a tie, we refer to a pair
consisting of data points (x, y) and (x′, y′) in which y = y′.

1http://research.microsoft.com/users/tyliu/LETOR/



In this case, the adjacency matrix is

Wi,j =


1 when i, j ∈ Ul and yi 6= yj

0 otherwise
.

The sparse low-rank decomposition of the Laplacian matrix
that corresponds to the setting where such pairs are ex-
cluded can be constructed analogously to the one described
in Section 2.3.

3.1 Document Ranking
We perform experiments to evaluate the capability of the
RankRLS to rank query-document pairs, a task common
within the field of information retrieval. These experiments
are run on the publicly available Letor benchmark dataset.
Our results are compared to those of two state-of-the-art
ranking algorithms, RankSVM and RankBoost. We also
make a comparison to the standard RLS regressor.

The task of ranking query-document pairs is a problem cen-
tral to document retrieval - given a query some of the avail-
able documents are more relevant in regards to it than some
others. Because the user will usually be most interested in
the top results returned, document retrieval systems are typ-
ically evaluated using performance measures such as mean
average precision (MAP) [1] or normalized discounted cu-
mulative gain (NDCG) [9] that give more weight to the cor-
rectness of those rankings highest in the ranking hierarchy.

Letor (LEarning TO Rank) is a collection of three datasets
extracted from three corresponding information retrieval
data collections, namely the OHSUMED, TREC2003 and
TREC2004 datasets. The whole collection consists of a set
of document-query pairs, with 16140 related to OHSUMED,
49171 to TREC2003 and 74170 to TREC2004. Each
document-query pair is represented as an example with a
quite small number of highly abstract features, the amount
of which is 25 in OHSUMED and 44 in the TREC collec-
tions. In the TREC collections each example is labeled as
1 (relevant) or 0 (non-relevant). For OHSUMED examples
there are three possible labels: 2 (relevant), 1 (possibly rel-
evant) and 0 (non-relevant).

Our experiments are performed on each of the three datasets
separately. We preprocess the datasets by normalizing all
the feature values in them to values between 0 and 1 on per
query basis. Thus, the feature mapping Φ(X) just trans-
forms the original features to the normalized ones preserv-
ing the dimensionality of the input space, since we only use
the linear kernel over the normalized features. We evaluate
the performance of the algorithms with the precision at po-
sition 1 to 10, MAP, and NDCG at position 1 to 10. In the
case of OHSUMED dataset, examples with label 2 are con-
sidered relevant and the rest non-relevant when calculating
the MAP-scores.

We use 5-fold cross-validation for parameter choosing and
performance evaluation. In each trial three of the folds are
used for training, one for choosing the value of the regular-
ization parameter λ, and one for testing the performance of
the trained model. During the parameter selection phase,
we also decide whether the tied pairs of data points should
be excluded from the training process, since this turned out
to have a noticeable effect on the ranking performance. The

Task RRLS RLS RSVM RBoost

OHSUMED 0.447 0.450 0.447 0.440

TREC2003 0.257 0.212 0.256 0.212

TREC2004 0.359 0.304 0.350 0.384

Table 1: MAP-performance comparison of
RankRLS and the baseline methods on the Letor
dataset

RRLS RLS RankSVM RankBoost

NDCG@1 0.549 0.527 0.495 0.498
NDCG@2 0.492 0.499 0.476 0.483
NDCG@3 0.477 0.491 0.465 0.473
NDCG@4 0.465 0.474 0.459 0.461
NDCG@5 0.453 0.461 0.458 0.450
NDCG@6 0.450 0.454 0.455 0.442
NDCG@7 0.451 0.459 0.447 0.439
NDCG@8 0.447 0.460 0.445 0.436
NDCG@9 0.447 0.458 0.443 0.433
NDCG@10 0.443 0.452 0.441 0.436

Table 2: OHSUMED: NDCG@n-performance com-
parison for RankRLS, RLS, RankSVM and Rank-
Boost

fold split used is the same as the one defined in the Letor
dataset. We use the MAP performance measure to select the
regularization parameter and to decide whether to include
the ties.

The results are presented in Tables 1-7. All the values are
averaged over the five folds. Table 1 contains the MAP-
performance values for the algorithms on each of the three
datasets. In addition, we provide NDCG and precision val-
ues at levels 1 to 10 for each of the datasets. Results for
OHSUMED are presented in tables 2 and 3, for TREC2003
in tables 4 and 5, and for TREC2004 in tables 6 and 7.

We observe the performance of RankRLS to be compara-
ble to the baseline ranking methods. None of the three
ranking algorithms clearly outperforms the others in this
comparison. Interestingly, the standard RLS regression per-
forms better than all the ranking algorithms on OHSUMED
dataset, whereas it is clearly inferior on the TREC2003 and
TREC2004 datasets. To conclude, while RankRLS has a

RRLS RLS RankSVM RankBoost

P@1 0.644 0.635 0.634 0.605
P@2 0.614 0.615 0.619 0.595
P@3 0.586 0.602 0.592 0.586
P@4 0.570 0.580 0.579 0.562
P@5 0.557 0.560 0.577 0.545
P@6 0.546 0.541 0.558 0.525
P@7 0.534 0.545 0.536 0.516
P@8 0.524 0.539 0.525 0.505
P@9 0.516 0.525 0.517 0.494
P@10 0.505 0.510 0.507 0.495

Table 3: OHSUMED: P@n-performance comparison
for RankRLS, RLS, RankSVM and RankBoost



RRLS RLS RankSVM RankBoost

NDCG@1 0.400 0.320 0.420 0.260
NDCG@2 0.370 0.350 0.370 0.280
NDCG@3 0.355 0.315 0.379 0.270
NDCG@4 0.351 0.310 0.363 0.272
NDCG@5 0.350 0.302 0.347 0.279
NDCG@6 0.341 0.301 0.341 0.280
NDCG@7 0.344 0.298 0.340 0.287
NDCG@8 0.342 0.296 0.345 0.282
NDCG@9 0.344 0.301 0.342 0.282
NDCG@10 0.346 0.303 0.341 0.285

Table 4: Trec2003: NDCG@n-performance compar-
ison for RankRLS, RLS, RankSVM and RankBoost

RRLS RLS RankSVM RankBoost

P@1 0.400 0.320 0.420 0.260
P@2 0.350 0.340 0.350 0.270
P@3 0.307 0.273 0.340 0.240
P@4 0.285 0.245 0.300 0.230
P@5 0.272 0.220 0.264 0.220
P@6 0.247 0.207 0.243 0.210
P@7 0.243 0.194 0.234 0.211
P@8 0.230 0.182 0.233 0.193
P@9 0.222 0.182 0.218 0.182
P@10 0.214 0.176 0.206 0.178

Table 5: Trec2003: P@n-performance comparison
for RankRLS, RLS, RankSVM and RankBoost

RRLS RLS RankSVM RankBoost

NDCG@1 0.480 0.400 0.440 0.480
NDCG@2 0.427 0.373 0.433 0.473
NDCG@3 0.421 0.360 0.409 0.464
NDCG@4 0.419 0.364 0.406 0.439
NDCG@5 0.407 0.354 0.393 0.437
NDCG@6 0.408 0.351 0.397 0.448
NDCG@7 0.410 0.355 0.406 0.457
NDCG@8 0.416 0.356 0.410 0.461
NDCG@9 0.418 0.359 0.414 0.464
NDCG@10 0.433 0.370 0.42 0.472

Table 6: Trec2004: NDCG@n-performance compar-
ison for RankRLS, RLS, RankSVM and RankBoost

RRLS RLS RankSVM RankBoost

P@1 0.480 0.400 0.440 0.480
P@2 0.400 0.347 0.407 0.447
P@3 0.369 0.316 0.351 0.404
P@4 0.347 0.293 0.327 0.347
P@5 0.309 0.261 0.291 0.323
P@6 0.291 0.238 0.273 0.304
P@7 0.270 0.225 0.261 0.293
P@8 0.253 0.210 0.247 0.277
P@9 0.240 0.197 0.236 0.262
P@10 0.235 0.197 0.225 0.253

Table 7: Trec2004: P@n-performance comparison
for RankRLS, RLS, RankSVM and RankBoost

Standard RLS RankRLS

0.444 0.500

Table 8: Comparison of the parse ranking perfor-
mances of standard RLS and RankRLS.

performance similar to those of RankSVM and RankBoost,
its computational advantages make it an attractive alterna-
tive.

3.2 Parse Ranking
We also evaluate the performance of RankRLS on the task
of ranking of the parses of an unseen sentence. In these ex-
periments, we use the BioInfer corpus [16] which consists of
1100 manually annotated sentences. A detailed description
of the parse ranking problem and the data used in the ex-
periments is given in [22]. Each parse is associated with a
goodness score that indicates how close to the correct parse
it is. As a similarity measure for parses, we use the best
performing representation and graph kernel considered in
[14]. The dimensionality of the feature space corresponding
to the kernel function is large, and hence the dual RankRLS
is preferable in this case. The ranking performance is mea-
sured with the Kendall’s correlation coefficient τb [11]. It is
considered a standard measure of rank correlation in cases
where one is interested in complete ranking between the ob-
jects. Moreover, it takes into account ties when estimating
correlation, which is crucial in parse ranking problems where
the amount of tied parses can be large. The correlation is
calculated separately for each sentence and the overall per-
formance for a set of sentences is averaged.

First, we train a standard RLS regressor that we use as a
baseline method. Its performance for correctly predicting
the preference relations is evaluated afterwards. Next, we
train RankRLS to regress the relevant output variable dif-
ferences, that is, the differences between the goodness scores
of parses that are generated from the same sentence.

Both RankRLS and RLS regressor have a regularization pa-
rameter λ that controls the trade-off between the minimiza-
tion of the training error and the complexity of the function.
Further, the kernel function has parameters. In order to se-
lect the parameter values, we divide the set 1100 annotated
sentences into two data sets containing 500 and 600 sen-
tences. The first dataset is used for the parameter estima-
tion and the second one is reserved for the final evaluation.
The appropriate values of the regularization and the kernel
parameters are determined by grid search with 10-fold cross-
validation on the parameter estimation data. The parameter
selection is performed separately for each experiment.

Finally, the algorithms are trained on the whole parameter
estimation data set with the selected parameter values and
tested with the sentences reserved for the final validation.
The results of the validation are presented in Table 8. The
results show that the RankRLS algorithm outperforms the
standard RLS regressor.

4. CONCLUSION AND FUTURE WORK
In this paper, we propose a kernel based algorithm for learn-
ing preferences. The algorithm minimizes a regularized



least-squares error of the output variable differences that
are relevant to the task in question. We show that while the
number output variable differences to be regressed grows
quadratically with respect to the number of training data
points, the algorithm can be trained as efficiently as a stan-
dard regularized least-squares regression for the individual
outputs. Therefore, the dual version of the algorithm is par-
ticularly suitable in cases where the number of dimensions
in the feature space is much larger than the number of train-
ing data points. As a representative example of such case
we consider parse ranking task. We demonstrate that dual
RankRLS notably outperforms the standard RLS regressor.

We also derive a primal version of the algorithm whose com-
putational complexity mostly depends on the number of di-
mensions in the feature space rather than the number train-
ing data points. Therefore, this version is preferable when
there are more data points than features. As a represen-
tative example of such case we choose the Letor informa-
tion retrieval dataset for our experiments. The performance
of the primal RankRLS is compared to that of RankSVM
and RankBoost, two algorithms which can also be efficiently
trained in such setting. We show that RankRLS achieves
performance comparable to the baseline methods on the task
of ranking query-document pairs. Thus, RankRLS appears
to be a simple and efficient alternative to the state of the
art rank learning algorithms for document retrieval tasks.

In the future, we plan to test the capability of our method
to optimize different types of ranking performance measures
such as Wilcoxon-Mann-Whitney statistics and its gener-
alizations. Moreover, we aim to evaluate a transductive
version of RankRLS, that we introduced in [13], on infor-
mation retrieval tasks. In our previous work [12], we have
proposed a fast method for computing the hold out perfor-
mance of an RLS learner which can then be used for comput-
ing cross-validation together with searching for the optimal
regularization parameter efficiently. We plan to investigate
if a similar kind of procedure can also be constructed for
RankRLS.
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