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Abstract. Recently, several kernel functions designed for a data that
consists of graphs have been presented. In this paper, we concentrate
on designing graph representations and adapting the kernels for these
graphs. In particular, we propose graph representations for dependency
parses and analyse the applicability of several variations of the graph ker-
nels for the problem of parse ranking in the domain of biomedical texts.
The parses used in the study are generated with the link grammar (LG)
parser from annotated sentences of BioInfer corpus. The results indicate
that designing the graph representation is as important as designing the
kernel function that is used as the similarity measure of the graphs.

1 Introduction

Structured data are a commonplace in areas such as natural language process-
ing (NLP). One of the most frequently encountered data structures in NLP
are graphs. Kernel methods (see e.g. [1, 2]) have been among the most success-
ful and computationally effective learning algorithms that can take advantage
of the structured representation of the data. Recently, kernel functions on in-
stances that are represented by graphs were introduced by [3–7]. Inspired by this
research, we propose graph representations for dependency parses and analyse
the applicability of the graph kernels for the problem of parse ranking in the
domain of biomedical texts.

The link grammar (LG) parser [8] used in our research is a full dependency
parser based on a broad-coverage hand-written grammar. The parses are gener-
ated by the LG parser applied to BioInfer corpus [9] containing 1100 annotated
sentences. Due to the complexity of the biomedical text, the number of parses
generated per sentence is large. Recently, we introduced a method for depen-
dency parse ranking [10] that uses regularized least-squares (RLS) algorithm [11]
and grammatically motivated features. The method, called RLS ranker, worked
notably better giving 0.42 correlation compared to 0.16 of the LG heuristics
measured with the Kendall’s τb correlation coefficient [12]. In [13], we further
developed the method by designing nonlinear kernel functions suitable for the
problem.



In this study, we concentrate on designing graph representations, which is
often overlooked. We demonstrate that designing an appropriate graph repre-
sentation has a notable influence on the final results, comparable to the influ-
ence of the kernel function. RLS using graph kernels is applied to the proposed
graph representations and the results indicate an improved correlation of 0.45.
A detailed description of the data, RLS algorithm and the experimental setup
used in this paper is given in [10]. We also show that the proposed approach can
be considered as a generalization over previously described method [10].

2 Graph Kernels

We now give a brief introduction to kernels considered in this study. Formally,
let X denote the input space, which can be any set, and H denote the feature
space. For any mapping Φ : X → H, k(x, z) = 〈Φ(x), Φ(z)〉 is a kernel function.
Following [3], we define a labeled graph representation of data points as follows.
Below, Mi×j(R) denotes the set of real valued matrices of dimension i × j and
[M ]i,j denotes the element of matrix M in the i-th row and j-th column. Let
L = {l}r, r ∈ N

+ be an enumeration of all possible labels. Let G = (V, E, h) be
a graph that consists of the set of vertices V , the set of edges E ⊆ V × V , and
a function h : V → L that assigns a label to each vertex of a graph. We assume
that the edge set of G is represented as an adjacency matrix A ∈ M|V |×|V |(R)
whose rows and columns are indexed by the vertices V , and [A]i,j is one if the
vertices vi ∈ V and vj ∈ V are connected with an edge, and zero otherwise.
We also assume that the function h is represented as a label allocation matrix
L ∈ M|L|×|V |(R) so that its element [L]i,j is one if vertex vj ∈ V has a label
li ∈ L and zero otherwise.

We also define the following relaxed version of the graph labeling. Let L be
a vector space, for example, L = R

p. We can then define h : V → L to be a
function that assigns a label vector to each vertex of a graph. Its correspond-
ing representation as a label allocation matrix is L ∈ M|L|×|V |(R) so that the
columns of the matrix are the label vectors of the vertices.

Again, we follow [3], and define a class of kernel functions on labeled graphs.
Let us consider the nth power An of the adjacency matrix of the graph G. Then,
[An]i,j is the number of walks of length n from vertex vi to vertex vj . When
we take the labels of the vertices into account, we observe that [LAnLT]i,j is
the number of walks of length n between vertices labeled li and lj . Let G and
G′ be labeled directed graphs and let 〈M, M ′〉F denote the Frobenius product
of matrices M and M ′, that is, 〈M, M ′〉F =

∑
i,j [M ]i,j [M

′]i,j . Let further γ ∈
Mn×n(R) be a positive semidefinite matrix whose eigen decomposition is UΛUT,
where U is a matrix that contains the eigenvectors of γ and Λ is a diagonal matrix
containing the eigenvalues of γ. We define the kernels kn between the graphs G

and G′ as follows

kn(G, G′) =
∑n

i,j=0[γ]i,j〈LAiLT, L′A′jL′T〉F
=

∑|L|
k,l=1

∑n
i,j=0

[γ]i,j [LAiLT]k,l[L
′A′jL′T]k,l

=
∑|L|

k,l=1

∑n
i=0 φi,k,l(G)φi,k,l(G

′)

(1)



where it is easy to see that, when γ is positive semidefinite, the features are
defined as φi,k,l(G) =

∑n

j=0
[
√

ΛUT]i,j [LAjLT]k,l. By specializing [γ]i,j in (1),
we obtain several kernel functions with different interpretations. For example, if
we set [γ]i,j = θiθj , where θ ∈ R

+ is a parameter, we obtain the kernel

k̂n(G, G′) = 〈L(

n∑

i=0

θiAi)LT, L′(

n∑

i=0

θiA′i)L′T〉F . (2)

This kernel can be interpreted as an inner product in a feature space in which
there is a feature φk,l per each label pair (k, l) so that its value φk,l(G) for a
graph G is a weighted count of walks of length up to n from the vertices labeled
l to the vertices labeled k. On the other hand, by setting [γ]i,j = θi when i = j

and zero otherwise, we obtain the kernel

k̃n(G, G′) =
n∑

i=0

θ2i〈LAiLT, L′A′iL′T〉F , (3)

which can be interpreted as an inner product in a feature space in which there
is a feature φi,k,l per each tuple (i, k, l), where l and k are labels and i is a
length of a walk. Its value φi,k,l(G) for a graph G is θi times the count of
walks of length i from the vertices labeled l to the vertices labeled k. Finally,
with certain conditions on the coefficients [γ]i,j , we can also define k∞(G, G′) =
limn→∞ kn(G, G′). One such kernel function is, for example, the exponential

graph kernel kexp(G, G′) = 〈LeβALT, L′eβA′

L′T〉F , where β is a parameter and

eβA can be written as eβA = limn→∞

∑n
i=0

βi

i!
Ai. In this case, the coefficients

[γ]i,j are determined by the parameter β as follows: [γ]i,j = βi

i!
βj

j!
.

2.1 Graph Representations of the Parses

The output of the LG parser contains the following information for each input
sentence. The linkage consisting of pairwise dependencies between pairs of words
termed links. An example of a parsed sentence is presented in Fig.1. In addition
to the linkage structure, the parses contain information about the link types
(the grammatical roles assigned to the links) used to connect word pairs. The
link types present in Fig.1 are Mp, Js, Ss, etc. Further, the parse contains the
part-of-speech (PoS) tags of the words, such as verb (v), noun (n) and adjective
(a) categories. In Fig.1, the assigned PoS tags, for example, to the words ab-

sence, alpha-syntrophin, leads are n, n v, respectively. Different parses of a single
sentence have a different combination of these elements.

In our previous study [10], we proposed several grammatically motivated
features that could be extracted from the above described dependency parses,
namely the link type, link length, PoS, word & link type, word & PoS, link type &
link length, grammatical bigram, and link bigram features that we will describe
below in more detail. In this paper, we are using graph kernels as similarity
measures of the data points. Therefore, we now define a graph representation for
the parses. The representation is designed so that we are able to simulate the
previously proposed (and some additional) features with the graph kernel.
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Fig. 1. Example of parsed sentence (top). Graph representation of the beginning of
the parse (middle). Walks of length 2 present in the parse (bottom). Note that some of
the loops (the edges starting from and ending to the same node) have weights larger
than one, that is, there are several repetitions of the corresponding walks.

Graph representation. Let p be a parse generated from a sentence s and let
G = (V, E, h) denote the graph representation of p. An example of the graph
representation is presented in Fig.1. Let us first define the vertices of p. For each
word in the sentence s, there is a corresponding vertex v ∈ V and the vertex is
labeled with the word (the word vertices and their labels do not depend from
the parse). Thus, if a word occurs several times in the sentence s, all of the
occurrences have their own vertices in the graph but the labels of the vertices
are equal. For each link in the parse p, there is a corresponding vertex in V that
is labeled with its link type. Similarly to the word vertices, a parse may have
several occurrences of the same link type. In p, each word is assigned a PoS, for
which there is a corresponding vertex in V labeled with the PoS. Further, each
link in p has a length (the number of words that a link in the sentence spans)
for which there is a corresponding vertex in V labeled with the length. In Fig.1,
they are the vertices labeled with integers, for example, 1, 1, 3, etc.

The edges of G are defined as follows. A word vertex and its corresponding
PoS vertex are connected with an edge. A link vertex and its corresponding
length vertex are connected with an edge. If two words are connected with a
link in the parse p, the corresponding link vertex is connected with an edge to
both of the corresponding word vertices. The connection of a word vertex in
the graph with a link vertex (for example in Fig.1: absence—Mp, absence—Ss,
of—Js, etc.) can be considered as the word & link type feature described in our
previous study. Below, we show how these connections are used to create also
word bigram and link bigram described previously [10].

Random walk features. Let G = (V, E, h) be a graph representation of a
parse. Let us consider the second power of the adjacency matrix A of G, that
is, the walks of length 2 in the graph representation of the corresponding parse.



Those walks in the graph representation are illustrated in Fig.1. Note that in-
tersection of the sets of the walks of length one and two is empty due to the
bipartite property of the graph. Also because of this property, all of the walks of
length 2 have both the start and the end vertices in the same subset. Among the
walks of length two there is, for example, a walk between two word vertices iff
they are connected with a link in the parse, and between two link vertices iff the
links are connected to the same word in the parse. Such connections were called
grammatical bigrams and link bigrams in [10]. We also obtain walks between be-
tween PoS vertices and link vertices, and between word vertices and link length
vertices. Finally, a vertex has as many cycles as there are edges connected to
it. If we consider the higher powers of the adjacency matrices, we obtain new
features, for example, link length pairs in the fourth power. In the higher pow-
ers, we also obtain word and link bigrams, where the words and links are not
connected to each other in the parse.

Vector labeled graph representation. Using multiple labels for vertices offers
a way to incorporate more information into the graph representation. This kind
of representations have been considered by [6], for example. In addition to the
graph representation presented above, we define the following vector labeled
representation. Again, let p be a parse generated from a sentence s and let
G = (V, E, h) denote the graph representation of p. For each word in the sentence
s, there is a corresponding vertex v ∈ V and the vertex is labeled with the word
and its PoS. In other words, all the elements of the label vector are zero except
the ones indexed by the word and its PoS. For each link in the parse p, there
is a corresponding vertex in V that is labeled with its link type and its length.
Thus, instead of having the PoS and link length vertices as in the previous graph
representation of parses, they are used as vertex labels in this representation.
We refine the representation further using the following five labels for the link
length instead of just one. Let l be the length of a link. Instead of using only l,
we use l − 2, l − 1, l, l + 1, l + 2. Using this set of labels, we are able to match
similarities between links whose lengths are close to each other, while the single
label is useful only for exact matching of the link lengths. This representation has
certain connections that the previous one does not have, such as the connections
between word and link length as well as between PoS and link type. On the
other hand, it misses the connections between word and PoS as well as between
link type and link length that are in the previous representation.

When we consider the walks of length 2, that is, the label connections ob-
tained using the second power of the adjacency matrix, we observe that the
missing connections between word and PoS, for example, are among those walks.
Note, however, that there are also connections between words and the PoS of
their neighboring words, and there is no way to distinguish between these con-
nections and the connections between words and their own PoS. The same prob-
lem arises from the connections between link type and link length that are also
among the walks of length 2.



3 Experiments

We give a detailed description of the problem and the data in [10]. We evalu-
ate the different variations of the graph kernel by performing a 10-fold cross-
validation on the sentence level so that all the parses generated from a sentence
would always be in the same fold (see [14] for a fast n-fold cross-validation al-
gorithm for RLS). The RLS algorithm has the regularization parameter λ that
controls the trade-off between the minimization of the training error and the
complexity of the regression function. The appropriate values of this parameter
is determined together with the kernel parameters by grid search with 10-fold
cross-validation.

In our experiments, we evaluate the kernels k̂n and k̃n up to the third power
with different parameters. In addition, we evaluate the following version of the
exponential graph kernel k̄exp(G, G′) = 〈LAeβALT, L′A′eβA′

L′T〉F . We multiply
the exponentiated adjacency matrix eβA by A, because then by setting β = 0,
we obtain the original adjacency matrix A as a special case, and we can set the
preferred weight of the higher powers by a grid search on β.

We start by evaluating the graph kernel k0 with [γ]0,0 = 1, that is, the
zeroth power of the adjacency matrix. The obtained performance of the RLS
ranker with k0 is 0.377. This corresponds to a kernel that counts the elementary
features that are present in both parses, that is, the words, link types, PoS tags,
and link lengths. Recall that the word vertices only depend on the sentence, and
therefore they are useless for the parse ranking. In our previous study [10], we also
found out that the other elementary features are not as good as the combination
features. We continue by evaluating k1 with [γ]i,j = 1 when i = j = 1 and zero
otherwise. In other words, we use only the original adjacency matrices of the
graphs determined by the edges defined in Sect.2. The result of this experiment
is 0.406 correlation points. The performance differences in these two experiments
are in correspondence to our previous study [10], in which we observed that the
ranking performances with the four elementary features were low compared to
their combinations that are present in the first power of the adjacency matrices.

The second powers of the adjacency matrices contain the elementary features
present in the zeroth power, the rest of the combination features proposed in the
previous study that are present in the first and the second powers, and also some
new combination features in the second power. To get a weighted combination of
the first and the second power features, we evaluate the following kernel function

k(G, G′) = 〈L(A + θA2)LT, L′(A′ + θA′2)L′T〉F , (4)

where θ is a parameter for which we perform a grid search in range 2−5, 2−4, . . . , 25.
The above kernel is equal to k̂2 in (2) except that we exclude the zeroth power.

Note that due to the bipartite property, the kernel is also equal to k̃2 in (3) with
the zeroth power excluded. The performance with the best θ parameter is 0.429
correlation points.



To analyse the usefulness of the walk features of length longer than 2, we
evaluate the following two kernels

k(G, G′) = 〈L(A + θA2 + θ2A3)LT, L′(A′ + θA′2 + θ2A′3)L′T〉F , (5)

and
k(G, G′) = 〈LALT, L′A′L′T〉F + θ〈LA2LT, L′A′2L′T〉F

+θ2〈LA3LT, L′A′3L′T〉F ,
(6)

where the best θ parameters are found with a grid search. The first kernel is
similar to k̂3 in (2) with the zeroth power excluded, and the second kernel is

similar to k̃3 in (3) with the zeroth power excluded. The performance using
the first and the second kernels with the best parameters are 0.422 and 0.429
correlation points, respectively. We also performed some experiments with the
fourth powers of the adjacency matrices but the results were worse than the
above two. The performance with the exponential graph kernel k̄exp(G, G′) is
0.425 correlation points. According to the results, is seems that the walks of
length larger than 2 are not useful features when this kind of graph representation
is used. In fact, they seem to be even harmful when they are mixed with the
lower order features, for example, in the kernel (5).

We also evaluate the vector labeled graph representation presented in Sect.2.
The results with the original adjacency matrix and with the kernel (4) are 0.364
and 0.377, respectively. They are clearly worse than the ones with the single
labeled graph representation and therefore we do not conduct more experiments
with the vector labeled representation. The low performance is probably due to
the noisy combination features that we discuss in Sect.2.1. The results indicate
that designing the graph representation is as important as designing the kernel
function.

In order to validate the results with an unseen test set, we conduct a final
validation experiment on 600 sentences reserved for that purpose. We select the
single labeled graph representation and the kernels (4) and (6) with the best
performing parameter combinations, that is, the settings that give the highest
ranking performance in the parameter estimation experiments. The ranker is
trained with the parameter estimation data and the results with the kernels (4)
and (6) are 0.444 and 0.447 correlation points, respectively.

4 Conclusion

We propose graph representations for dependency parses and analyse the ap-
plicability of several variations of the graph kernels for the problem of parse
ranking in the domain of biomedical texts. We use the graph kernels to generate
features that are based on the start and end labels of random walks between
vertices in the graphs. The feature vector corresponding to a data point is de-
termined by its graph representation and the kernel function. Both of them have
to be selected carefully in order to ensure a good performance of the machine
learning method. Several kernel functions have already been proposed for a data



that consists of graphs. In addition, our results underline the importance of the
design of a good graph representation for the data points. The performance
achieved is promising when compared to our previous studies [10] and could be
even further improved by designing representations capturing additional prior
knowledge about the problem to be solved.
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4. Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and

efficient alternatives. In Schölkopf, B., Warmuth, M.K., eds.: COLT’03, Springer
(2003) 129–143

5. Kashima, H., Inokuchi, A.: Kernels for graph classification. In: ICDM Workshop
on Active Mining. (2002)

6. Suzuki, J., Sasaki, Y., Maeda, E.: Kernels for structured natural language data.
In Thrun, S., Saul, L.K., Schölkopf, B., eds.: NIPS 16, MIT Press (2003)

7. Vishwanathan, S., Smola, A.J., Vidal, R.: Binet-cauchy kernels on dynamical
systems and its application to the analysis of dynamic scenes. International Journal
of Computer Vision (2006) To appear.

8. Sleator, D.D., Temperley, D.: Parsing english with a link grammar. Technical
Report CMU-CS-91-196, Carnegie Mellon University, Pittsburgh, PA (1991)

9. Pyysalo, S., Ginter, F., Heimonen, J., Björne, J., Boberg, J., Järvinen, J., Salakoski,
T.: Bioinfer: A corpus for information extraction in the biomedical domain (2006)
Submitted.

10. Tsivtsivadze, E., Pahikkala, T., Pyysalo, S., Boberg, J., Mylläri, A., Salakoski, T.:
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