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Preface

This is the proceedings of the Workshop on “Computationadi#s for Cell Pro-
cesses”, organized in Turku, Finland, on May 27, 2008. Thekglmp is a satellite
event of the “Formal Methods 2008” conference organizedurk@. The goal of the
workshop is to bring together researchers in computer seig¢especially in formal
methods) and mathematics (both discrete and continuousematics), interested in
the opportunities and the challenges of systems biologg.prbgram consists of three
invited lectures by Professor Monika Heiner (Brandenbuniyersity of Technology),
Professor Jane Hillston (University of Edinburgh), and Buss Harmer (University
Paris-Diderot), as well as five contributed papers. Thensifie program of the work-
shop spans an interesting mix of approaches to systemsggjaianging from quan-
titative to qualitative techniques, from continuous tocdéte mathematics, and from
deterministic to stochastic methods. The contributed rsapere peer-reviewed by a
program committee consisting of Ralph-Johan Back (Abo Akail, Igor Goryanin
(University of Edinburgh), lon Petre (Abo Akademi), GordBlotkin (University of
Edinburgh), Corrado Priami (Microsoft Research - Univigrsif Trento, Centre for
Computational and Systems Biology), and Grzegorz Rozenfi¢niversity of Lei-
den). We thank them all for helping selecting such an intergscientific program.
We also thank Turku Centre for Computer Science for pubiigittiese proceedings in
their general publication series.

Turku, May 7, 2008 Ralph-Johan Back and lon Petre
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Petri Nets for Systems and
Synthetic Biology

Monika Heiner

Brandeburg University of Technology

monika.heiner@gmx.de

Abstract

This talk describes a Petri net-based framework for maugkind analysing
biochemical pathways, which unifies the qualitative, séstic and continuous
paradigms. Each perspective adds its contribution to thenstanding of the sys-
tem, thus the three approaches do not compete, but compiezaeh other. A
signal transduction pathway is used as running example.sé&prently the fo-
cus is on transient behaviour analysis, and specifically odehchecking by dis-
cussing related properties in the qualitative, stochastétcontinuous paradigms.
Although the framework is based on Petri nets, it can be egptiore widely to
other formalisms which are used to model and analyse bioiclaémetworks.

This is joined work with David Gilbert and Robin Donaldson.






Bio-PEPA: A Formal Method
for Integrated Systems
Biology Modelling

Jane Hillston

University of Edinburgh

jeh@inf.ed.ac.uk

Abstract

PEPA is a stochastic process algebra which was introducttiearly 1990s
for modelling computer and communication systems. Morem#y there has been
some interest in applying PEPA, and other stochastic psoakgbras, to mod-
elling intracellular networks. However there are some amdntal diferences
between biochemical pathways and computer systems. Thesedken the main
motivators for Bio-PEPA, a new language tailored to modglliochemical reac-
tion pathways. In this talk | will present the Bio-PEPA foriisen and the analysis

techniques which it supports.
This is joint work with Federica Ciocchetta.






Rule-based modelling of
cellular signalling

Russ Harmer

University Paris-Diderot

russ.harmer@gmail.com

Abstract

During its progression through the cell cycle, a cell musttcwally make
choices based primarily on its external environment. FamngXe, growth arrest
—quiescence—can arise if the cell considers its immediati@ity to be over-
crowded; or in the absence offfaient nutrients. In order to make such decisions,
cells must link specialized transmembrane receptor prst¢hat sample external
conditions, to transcriptional (and other) regulation wiaat we call intracellular
signalling pathwaysetworks. These networks act as a form of computation that
integrates incoming signals—representing presence amnabsof, for example,
growth, survival or death signals—and appropriately gsléwe cell's fate. The
signalling system can thus be seen as a computational meadiits1 own right
and it becomes valid to ask what kind of programming a cellintnmsically en-
gage in with these means. For, indeed, the means seem higfitgd: much
of signalling can be reduced to binding and unbinding of giret accompanied
by potential modification of one protein by another—such laesphorylation or
ubiquitination.

We present the kappa-calculus, a formal language of agedtsutes, repre-
senting proteins and their interactions, which capturessimple, yet apparently
highly expressive, computational paradigm. Ruleg tlirectly represent, rather
than encode (as do ODEs), biological knowledge and can teusebn as self-
documenting and as units of discussion in their own rightrédweer, the construc-
tion of a model reduces to the writing of—or selection, fromexisting database,
of—the rules that describe the interactions of that systénmodel can thus be
more easily built in the first place and far more easily exéehar modified. More-
over, rules make explicit not only the agents involved in laeriaction but also
their sites (representing their binding motifs or domairiBhis renders practical
the modelling of phenomena such as point mutations, recepitibodies or ki-
nase inhibitors. We illustrate these points with a largemg{a (roughly 300 rules)
of a model of the ErbB signalling network.
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Bio-PEPA with SBML-like
events

Federica Ciocchetta

Laboratory for Foundations of Computer Science,
The University of Edinburgh, Edinburgh EH9 3JZ, Scotland

fciocche@inf.ed.ac.uk

Abstract

In this work we present an extension of Bio-PEPA, a languagently defined
for the modelling and analysis of biological systems, todiaevents Broadly
speaking, events are constructs that represent changes system due to some
trigger conditions. Some mappings from Bio-PEPA with esdntanalysis tools
are reported. in order to test our approach, we presentahslation of two bio-
logical models into Bio-PEPA with events.

1 Introduction

Computational models play an important role in systemsogipl Indeed they help to
study, analyze and predict the behaviour of biologicalesyst In recent years there
have been some applications of process algebras for thesamaf biological systems
[20, 18, 5, 6]. In most cases the analysis is performed usiiigspie’s stochastic
simulation algorithm [11]. Other possibilities exist, suas the mapping to fierential
equations [4].

Many biological models need to capture both discrete antimeoous phenomena
[1, 2, 16]. These models are callagibrid systemsA first example of hybrid system
involves the activation of a certain activity when the cartcation of enabling quan-
tities is above the desired threshold. A second exampleaenrssa signal or stimuli
that becomes null after some time leading to some changé®imteractions of the
system.

In this work we present an extension of Bio-PEPA [6, 7], a leage recently de-
fined for the modelling and analysis of biological systemshandleevents Broadly
speaking, events are constructs that represent chandmessydtem due to some trigger
conditions. Here we are interested in simple forms of eve®pecifically we refer to
the definition of events reported in the SBML specificatios][TThese kinds of events
can be found in biochemical networks, such as the ones in Bit®\é database [17] or
defined in some experimental settings. Indeed, in order tefrgmMe experiments, it
may be necessary to render the possible change to the sykienfpr instance, to the
introduction of some reagents or the interruption of sonterexal stimuli.

The idea underlying our work is the following:

Biological models with events= Bio-PEPA with events= Analysis
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A first challenge concerns the modelling: we need to add everthe Bio-PEPA
system. A second aspect is the analysis. Some maps must bedd&tim Bio-PEPA
to analysis tools. Specifically we map our language to HyBrtomata (HA) [12].
Furthermore, we can consider modifications of Gillespitggoathm [11] or ODEs in
order to tackle events. Events are added to our languageetsodelements and the
rest of the syntax is unchanged. There are two motivationthfe choice: first of all
we keep the specification of the model as simple as possézenslly this approach is
appropriate when we study the same biochemical system buthfierent experimen-
tal regimes. Indeed we can modify the list of events withawytehanges to the rest of
the system.

The use of mathematical formalisms in order to represestsetie changes in bio-
logical systems is not new [3, 1, 2, 16]. In [3] the authorspre a map from stochastic
Concurrent Constraint Programming (SCCP) to HA. The HA gateel in this way are
said to be able to capture some aspects of the dynamics wigibbsaif standard dier-
ential equations are used instead. In [1] the authors pesb@siybrid system approach
to modelling an intra-cellular network using continuouetiential equations to model
some part of the system and mode-switching to describe tegas in the underlying
dynamics. The authors of [16] discuss the use of discretegdsin biological systems
and present some examples by using the formalism HybridSA4L [Finally, hybrid
Concurrent Constraint Programming is used to model somediaal systems with
both discrete and continuous changes in [2]. In none of thes&s are SBML-like
events considered explicitly, but the focus is on generhtidysystems.

An approach to model events similar to the ones consider#dspaper has been
proposed in th&eta Workbench (BetaWg] and in the associated programming lan-
guageBlenX][21]. In both the cases the analysis is limited to the sta@tasnulation
by Gillespie. The BetaWB is a tool for modelling and simuigtbiological processes,
based on Beta-binders, a recently introduced processralgaliable for the biological
applicative domain. The language allows us to represené specific cases of events.
Events can be considered as global rules of the environrmggered only when the
conditions associated with them are satisfied. Each evéimé¢isomposition of a con-
dition and an action verb. The possible actions are the jbiwa entities, the split of
one entity into two, the delete and the creation of a new\erich event is associated
with a rate.

In BlenX more general events can be represented. As in tted/#&ta single event
is the composition of a condition and of an action, but theditions can involve also
the simulation time and the step size, in addition to the remab entities. Specifi-
cally, conditions are used to trigger the execution of amewden some elements are
presents in the system, when a particular condition is mih & given rate or at a
precise simulation time or simulation step.

The rest of the paper is organised as follows. Section 2 tepodescription of
Bio-PEPA. In Section 3 we extend Bio-PEPA with SBML-like et®and we discuss
the possible kinds of analysis that can be performed fromAiter that, Section 4
illustrates the modelling in Bio-PEPA of a biochemical netlwwith an event. Finally,
in Section 5, some conclusions are reported.

2 Bio-PEPA

Bio-PEPA [6, 7] is a new language for the modelling and analgsbiochemical net-
works. It may be seen as an extension of the reagent-cergsicim PEPA [5]. In
both cases we have the abstraction “processes as spe@ehl’sequential component
represents a species (and not a single molecule as in othexgw algebras) and it is
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parametric in terms of concentration levels. In partictit@r granularity of the system

is expressed by a step sikgequal for all the species. A main feature of Bio-PEPA
with respect to PEPA is the possibility to represent stottgitsy in an explicit way and

to consider kinetic laws tlierent from mass-action. These laws are expressed by using
functional rates. For details see [6, 7].

The syntax of Bio-PEPA is designed in order to collect thddgal information
we need:

Si:=(a,k)opS|S+S|C P::=PD§P|S(I)

whereop=||T|®|©]|06.

The componen§ is called asequential componergor species componénand
represents the species whereas the compdherailed anodel componentescribes
the system and the interactions among components. The ptadng N represents
the discrete level of concentration. The prefix tewmx) op S contains information
about the role of the species in the reaction associatedtheétlction typer: « is the
stoichiometry cogcient of the species and th@efix combinatof'op” represents the
role of the element in the reaction. Specificallyindicates areactant T a product
@ an activator, © aninhibitor and® a generianodifier The operator +” expresses
choice between possible actions and the constaistdefined by a equatio@ £s.
Finally, the proces® D§ Q denotes the cooperation between components: th€ set
determines those activities on which the operands areddocsynchronize.

In order to fully describe a biochemical network in Bio-PE®R& need to define
structures that collect information about the compartsietite maximum concentra-
tions, number of levels for all the species, the constardipaters and the functional
rates. We can define the Bio-PEPA system in the following way:

Definition 1. A Bio-PEPA syster® is a 6-nupleV, N, K, Fr, Comp P), where:V is

the set of compartments/ is the set of quantities describing each speciéss the set

of parameter definitionsfy is the set of functional rate definitions, Comp is the set of
definitions of sequential components, P is the model conmpaiescribing the system.

The behaviour of the system is defined in terms of an opert&emantics. The
rules are reported in [7]. We defined two relations over trecesses. The former,
called thecapability relation supports the derivation of quantitative information and i
is auxiliary to the latter which is called ttetochastic relationThe stochastic relation
gives us the rates associated with each action. The ratebti@ed by evaluating the
functional rates associated with the action, divided bydiep size. This rate repre-
sents the parameter of a negative exponential distribufitve dynamic behaviour of
processes is determined byace condition all enabled activities attempt to proceed
but only the fastest succeeds.

We have the following correspondences between a biochéngbaork and a Bio-
PEPA system: each speciem the network is described by a species compo@nt
each reactior is associated with an action typg and its dynamics is described by a
specific functionf,, € Fr.

A Stochastic Labelled Transition Systean be defined for a Bio-PEPA system. It
is worth noting that Bio-PEPA can be seen adrgermediate, formal, compositional
representation of biological systems, from whicfietient kinds of analysis can be per-
formed. We have defined some mappings from Bio-PEPA to ODEB|C Gillespie’s
model and PRISM [19].
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3 Bio-PEPA with events

3.1 Events and assumptions

In this work we limit our attention to events as defined in tB#& specification [15].
SBML events describe explicit discontinuous state chairgdse model. Specifically,
an SBML event has the following structure:

“eventid, if trigger theneventassignmentist with delay’

whereeventid is the event identifiettrigger is a mathematical expression that, when

it is evaluated to true, makes the event folelayis the length of time between when

the event fires and when the event assignments are exeeutgdassignmentist is a

list of assignments that are made when the event is execlitedrigger and the list of

assignments can involve parameters, species concentatiml compartment sizes.
We make the following assumptions for the events considiertfds work.

1. Triggers can involve time and species (together or onderh), while assign-
ments can involve constants, parameters, species, foattates';

2. The events are all immediate and the transitions arerdetistic;

3. The triggers are only unidirectioral

4. The events are sequential and compatible with each other.

These assumptions are not restrictive. Indeed these eadmisus to represent a
large number of discontinuous changes that we can find iodicdl models.
3.2 The definition of the language

Generally speaking we can add events to the Bio-PEPA modeltinducing asetof
elements that have the forna(trigger, eventassignmentelay), whereid is the name
of the eventtrigger is a mathematical expression involving the components of Bi
PEPA model and timesventassignmenis a list of assignmentslelayis a real positive
number or G3(i.e. immediate events ). Formally, we have the followin§jrdgons:

trigger := cond| condor cond| condand cond| not cond;
cond :=t eq valud exfC, k) eq valug expgC, k) eqexfC, k)
eqg:= =) | (|<|= delay := value

eventassignment = assignment ; evemssignment
assignment = k « value| level(C) < value| f, <« exfC, k)
event := (id, trigger, eventassignment, delay)

whereC stands for any sequential component &nir any parameter, the variable

t € R* represents the global time of the systeawC, k) is an arithmetic expression
involving a set of components (denot@§land a set of parameters (denokgdvaluee

R* andid is a string indicating the event name. The functiene(C) associates a
level with the componer®. When we need the original value for the concentration,
we writeC = Ic{valug:}, wherevalue: is the value of the concentration ahdis the
associated level. The set of events is then defined as:

1We do not consider events based on volume size, since in BRARompartment are assumed constant
and static.

2Bidirectional triggers can be decomposed into two unidioeal triggers.

3In the present work we consider only immediate actions, baegally we could have non-immediate
actions.
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Events: = [] | event:Events

Definition 2. A Bio-PEPA system with everfeg is a 8-nuple
(V,N,K,¥,CompP, Eventst), where Events is the set of events,kR" is the vari-
able expressing time and the other elements are as in theatamBio-PEPA.

A Bio-PEPA system is well-defined if all the elements are vaelfined. The defi-
nition of well-definedness for all the elements, with theepton of events, is reported
in [7]. Given a Bio-PEPA system with events, the set of ev&wsntds well-defined if
and only if: 1) triggers involve time or species, assignra@miolve species, parameters
and compartments, 2) all the elements used in the eventeéined in the Bio-PEPA
system, for each event assignment, 3) thféedént assignments are independent (i.e.
involve different elements). In the following we refer to Bio-PEPA witlkeets simply
as Bio-PEPA. Only well-defined Bio-PEPA systems are comsitle

3.3 Analysis

In this section we discuss some maps from Bio-PEPA to arslgsis.

Hybrid Automata Hybrid automata [12] combine discrete transition graphthwi
continuous dynamical systems. They are used to formallyaiogbrid systems, dy-
namical systems with both discrete and continuous comgeném hybrid automa-
ton consists of a finite set agal-values variable$Xy, Xo, ..., Xn} and a finite labelled
graph, whose vertices correspondctintrol modegqstates), described byfikrential
equations, and whose edges eoatrol switchescorresponding to discrete events. In
addition, we have some labels for the edges, specifyinfuthe conditiongactivation
conditions) and labels for the vertices, containing infation about initial and invari-
ant conditions. The variables evolve continuously in timgart from some changes
induced by events. When an event happens there is a change made. The dy-
namic behaviour of each mode is described by a setftdréntial equations, generally
different from mode to mode. We can use HA both for simulation fe@stancehe
SHIFT languagd9]) and model checking (sddyTech[13]). For a formal definition
and details about the formalism see [12].

Here we present briefly the map from Bio-PEPA to HA. Bgtbe the initial Bio-
PEPA system. We have the following correspondences:

1. Each species compondjitin Compis associated with a variab}. The set of
variables is then given byXi, Xz, ..., Xnc,n» th, Wheret is the variable expressing
the time (described by the trivial fiierential equationlt/dt = 1) andNcomp iS
the number of species components.

2. The initial conditions of the variables are derived fr@omp The variabld is
initially set to 0.

3. For each evente Eventswe can consider the triggér. We use these triggers
to define the jump conditions. In the case of sequential sy¢hé number of
possible jump conditions iBlgyents (the number of events in the system). Note
that if we consider non-sequential events, we have a nunfldgéggers greater
than Ngyents Indeed for each set of triggers that can happen simultahgou
we have to define jump conditions to represent one triggetiat@and all the
possible combinations.
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4. Each mode is described by a specific instance of the BicAR¥Stem. Indeed
modes are defined according to either the initial systemesyjistem modified
with the event assignments relative to a trigger. If jususedial components are
assumed, the number of modedNisents+ 1. We indicate the modes with and
the set of modeE. In each mode some invariant conditions are added in order
to force the change of mode when the trigger becomes true.awéethat:

e The initial moder is defined from the initial systetRy. It is described in
terms of an ODE system and this is derived from the Bio-PEPAehby
considering the mapope in [7]. Therefore we havey = mope(Po).

e Given a moder; = mope(Pi), lettri; be one possible jump condition that
can be satisfied from it. We define the Bio-PEPA sysfem= Pi[event
assignmeny] as the reset of the previous systétnaccording to the event
assignments associated with the trigger. The mogdes then defined as

o = nope(Pj).

Gillespie and ODE analysis These algorithms have to be modified in order to con-
sider events. These are tackled by adding some conditiahsane checks along the
simulation. We start at time= 0, with the Bio-PEPA system at the initial conditions.
We assume that initially all the triggers are evaluated kgefa\WWhen one of the con-
ditions is satisfied, the simulation stops and the systerasistraccording to the event
assignments associated with the trigger. After that, tineisition can start again until
another condition becomes true or the simulation time ishred. According to our
assumptions, triggers are compatible with each other andlbdiferent.

For both deterministic and stochastic simulations we pseghe following proce-
dure.

1. LetPq be the initial Bio-PEPA system artiine.S the maximum simulation time.
Let Neventsbe the number of events in the system.

2. Whilet(time_S andtrigger; = falsefori = 1,2, ..., Neyents Simulate.
3. If t > time_S then stop.

4. If t{time.S and there exists &igger; such that it is true, reset the Bio-PEPA
system according to the event assignments associatedhaittrigger:#’(t) =
P(t)[eventassignmen} Go to (2).

3.4 A simple example involving concentrations

A geneX activates the expression of gevigabove a certain threshold, geviénhibits
expression of gen¥. The reactions describing this situation are:

e activation ofY: X5X + Y, withr; = 0.01;
e degradation oX: X250 with r, =0.02;

e creation ofX: (Z)r—3>X with r3 = 0.01, possible when the concentrationYois less
than Q8.

This simple model is translated into Bio-PEPA%as

“Note that we usé& andY (capital letters) to indicate the names of the species amdéime of the
Bio-PEPA component, whereasandy indicate the associate species concentration.
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X Z (@.1)@ X+ (02, X+ (02, DIX; Y (an, 11V,
def

ResE (az,1)oRes; CF £ (a3,1)0CF;

((X(0) B1Y(0)) I CF(1)) B Ded0)

with the addition of the set of eventeifent, Y = 1{0.8},r3 « 0,0)] and whereRes
andCF are two auxiliary components to represent the degradatidritee synthesis,
respectively. The initial values are zero for both the genes

Analysis by means of ODEs is reported in Fig.1.

Example with event invelving concentration

1z

- =

e

time

Figure 1: Simulation results for the example with a simplergvnvolving concentra-
tion.

A description in terms of HA is reported in Fig.2. We have twodws, one de-
scribing the casg(0.8 (initial mode) and the other the cage> 0.8. The systems in
the two modes are the similar, but in the former case theiosaet is activated, in the
second case not. The guard to move from one mode to the othe£if.8".

[ y=0.8]
x=0; vy :OI_> S1 N S2

Figure 2: HA representation for the example involving cortcation.

In the Figure 2S1 andS2 represents the two ODE models representing the system
wheny(0.8 andy > 0.8, respectively. The syste8ll is:

% = -0.02xx+0.01;
d_i’ = 0.01xx

and the syster2 is:

D = 0.01xx

The initial conditions arx = 0, y = 0.

{d—x = -0.02xx

4 The acetylcholine receptor model

This example concerns the functional properties ofiieetin Acetylcholine Receptaors
These are transmembrane proteins that mediate inter-=ore between open and
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Figure 3: Schema of the acetylcholine receptor model.

closed channel states under the control of neurotransmifidne detailed description
of the model is reported in [10].

A schema of the model is shown in Figure B.(Basal state)A (Active state),D
(Desensitized state) andInactivable state) represent theéfdient states of the acetyl-
choline receptors. The numbers 0, 1, 2 associated with #te stpresent the number
of ligands (denotec) bound to a receptor. Each column corresponds to a series of
ligand binding actions at two identical sites per receptoereas each row corresponds
to a series of transactions between conformational statdisthe reactions are re-
versible and the dynamics are described by mass-action Fav®ach reaction with
i =1,2,...16, the rate of the forward directionkd _i and the rate of the reverse reaction
kr_i.

In addition, there is an eventto describe the recovery upamwal of free agonist at
a given time. This is expressed by constraining the reactitas of each second-order
ligand-receptor reaction to zero. These constraints pteigand binding reactions
from happening after that time, hence the states evolve twifree ligands were
completely removed from the system. The event is immedihéstriggeris t = t,”,
wheret, = 20 s, and the event assignments &fg = 0, kf; = 0, kfs = 0, kfy =
0, kf;=0,kfg=0,kf;2=0,kfi3=0.

The Bio-PEPA system associated with the Edelstein’s model

o Definition of the compartment list’. In the model we have a single three-
dimensional compartment, defined asthl: 1e-16, I;”, wherel is litre.

o Definition of the setV. Each species is associated with a species component.
For each species component we have to declare the stepisizapmber of
levels, the initial and maximum concentrations and the cammpent where the
species is. The ligand is not represented explicitly. Indhge ofBO we have:
BO:h, Ngo, Mo, Mgg, com, uM, where the step sizeis 1.66e-5, the number of
levels Ngg is 2, the initial concentratioiMy is 1.66e-5uM (M is molar, that is
molegl) and coincides with the maximum concentratidg.

¢ Definition of functional ratesfr) and parametersX). Each reversible reaction
in the model is decomposed in two irreversible reactionseBoh reactionwith
i =0,...,16 we have the kinetic law,_; = fMA(kf.i); andf,, = fMA(kr.i),
wheref MA stands for mass-action. All the parameters are defined isgt¥.
The values are the ones reported in the paper.
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¢ Definition of species components (Comp) and of the model @oemp (P).

In the following we report the definition fd80, B1 andB2; the other species are
dealt with similarly.

BO £ (a_fo,1)LBO+ (aro, 1)TBO+ (a-fs, 1)L BO+ (a_rs, 1)1 BO;

Bl £ (a_fo, 1)1BL+ (aro, 1)IBL+ (a_fs, 1)|BL + (a-_re, 1)1 BL+
(a-f1, 1)1BL + (a_ry, 1), B1;

B2 £ (a_f 1)IB2+ (arz 1)TB2 + +(_fy, 1)1B2+ (a-r1, 1)|B2;

The system is described as:

BO(1) = BL(0) I B2(0) B AO(0) I AL(0) =1 A2(0) B
10(0) B<111(0) B 12(0) > DO(0) I D1(0) <] D2(0)

whereL;, i = 1, ..., 10 are the cooperation sets.

¢ Definition of eventsWe have only one event:d¢ent,t = 20, kfy = 0; kf; =
0; kf3=Okf4=O; kf7=0; kfg=0; kf12=0; kf13=0,0)]

Some simulation results are reported in Fig. 4. The simatare made by using
Gillespie’s algorithm. The initial number of molecules 80 is givenMg x V x Na =
(1.66e-5 uM) x (1.e-16 1) x (6.022x e+23 (mole3™t) = 1000, whereNa s the Avo-
gadro numbeéx All the other species are initially null. The graph reprodsiresults in
agreement with the ones reported in the paper [10]. Follgwhe ligand removal, the
statel 2 loses agonist molecules and is transformed to the B@teery rapidly, while
D2 loses ligand molecules to for®0. Since the data occur on a wide range of times
we represent the time on a logarithmic scale.

Edelstein’s model

1000

Population

0 05 1 15

log time (sec)

Figure 4: Simulation results for Edelstein’s model (timéag scale).

Concerning the translation into HA, the result is similarth@ one reported in
Section 3.4 for the simple example. Also in this case we hawenodes, described by
two different sets of dierential equations. The trigger condition involves timd &ims
“t = 20 8". The details are not reported.

5t is the number of "entities” (atoms or molecules) in one enof substance.
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5 Conclusions

In this work we present an extension of Bio-PEPA to hamlents Events are con-
structs that represent changes in the system due to sorgertdgnditions. The events
considered here are simple, but nevertheless able to Hesngst of the discontinuous
changes in models and experiments. Events are added tormuage without any
modification to the rest of the syntax. The motivation of tth®ice is that we want to
keep the specification of the model as simple as possible.

A topic for the future concerns the study of more general &/far instance, non-
immediate or simultaneous events) and the possible ewrtetsiother kinds of hybrid
systems in biology. Furthermore we plan to exploit the gaeskinds of analysis
involving hybrid systems in the context of systems biologye implementation of
the mappings from Bio-PEPA to the analysis tools is undeebigment.
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Abstract

We present a formal analysis of ribosome kinetics using givdistic model
checking and the tool Prism. We computdfelient parameters of the model,
like probabilities of translation errors and average itisertimes per codon. The
model predicts strong correlation to the quotient of thecemitrations of the so-
called cognate and near-cognate tRNAs, in accord with é@xeatal findings and
other studies. Using piecewise analysis of the model, welleto give an ana-
lytical explanation of this observation.

1 Introduction

The translation mechanism that synthesizes proteins bas@RNA sequences is a
fundamental process of the living cell. Conceptually, anlNARan be seen as a string
of codons, each coding for a specific amino acid. The codoas aiRNA are sequen-
tially read by a ribosome, where each codon is translatedyusi amino acid specific
transfer-RNA (aa-tRNA), building one-by-one a chain of amacids, i.e. a protein. In
this setting, aa-tRNA can be interpreted as molecules guntpa so-called anticodon,
and carrying a particular amino acid. Dependent on thergaf the codon under
translation with the anticodon of the aa-tRNA, plus the B#stic influences such as
the changes in the conformation of the ribosome, an aa-tRixiAing by Brownian
motion, docks into the ribosome and may succeed in addimgritao acid to the chain
under construction. Alternatively, the aa-tRNA dissoesain an early or later stage of
the translation.

Since the seventies a vast amount of research has been dievotaveling the
MRNA translation mechanism and related issues. By now,tbeatl process of trans-
lation is reasonably well understood from a qualitativespective. The translation

1Supported by FP6 LTR ESIGNET.
2Funded by the BSIK project Virtual Laboratory for e-Scieidee.
3Corresponding author, e-mailink@win. tue.nl.

23



process consists of around twenty small steps, a numbeeof being reversible. For
the model organisnikscherichia coli the average frequencies of aa-tRNAs per cell
have been collected, but regarding kinetics relativeljeliis known exactly. Over
the past few years, Rodnina and collaborators have made gooéss in capturing
the time rates for various steps in the translation prooesa mall number of spe-
cific codons and anticodons [14, 17, 18, 9]. Using variousaaded techniques, they
were able to show that the binding of codon and anticodonusialat a number of
places for the time and probability for success of elongatBased on these results,
Viljoen and co-workers started from the assumption thatr#ites found by Rodnina
et al. can be used in general, for all codon-anticodon pairsstéimates for the reac-
tion dynamics. In [7], a complete detailed model is presgfide all 64 codons and
all 48 aa-tRNA classes fdE. coli, on which extensive Monte Carlo experiments are
conducted. In particular, using the model, codon insertiores and frequencies of
erroneous elongations are established. Given the appastming correlation of the
ratio of so-called near-cognates vs. cognate and pseugitates, and near-cognates
VS. cognates, respectively, it is argued that competitfcaetRNAS, rather than their
availability decides both speed and fidelity of codon tratish.

In the present paper, we propose to exploit abstraction aodehchecking of
continuous-time Markov chains (CTMCs) with Prism [13, 10he abstraction con-
veniently reduces the number of states and classes of aa-tRkonsider. The tool
provides built-in performance analysis algorithms andhgdtasing machinery, reliev-
ing its user from mathematical calculations. More impatitafrom a methodological
point of view, the incorporated CSL-logic [2] allows to dgfiah quantitative results for
parts of the system, e.qg. for first-passage time for a spetéfte. Such piecewise anal-
ysis proves useful when explaining the relationships ssiggeby the data collected
from the model. Additionally, in our case, the Prism toolmg rather favourably
response times compared to simulation.

Related workThe present investigation started from the Monte-Carlceerpents
of mMRNA translation reported in [7]. A similar stochastic ds&d, but based on ordinary
differential equations, was developed in [11]. It treats insertimes, but no trans-
lation errors. The model of MRNA translation in [8] assumesertion rates that are
directly proportional to the mRNA concentrations, but gasithe same probability of
translation error to all codons.

Currently, there exist various applications of formal noeth to biological sys-
tems. A selection of recent papers from model checking aodgss algebra includes
[16, 4, 5]. More specifically pertaining to the current pap&frapplies the Prism mod-
elchecker to analyze stochastic models of signaling patewa@heir methodology is
presented as a mordieient alternative to ordinary fierential equations models, in-
cluding properties that are not of probabilistic nature scA[10] employs Prism on
various types of biological pathways, showing how the adedrfeatures of the tool
can be exploited to tackle large models.

Organization of the pape®ection 2 provides the biological background, discussing
the mRNA translation mechanism. Its Prism model is intr@dlio Section 3. In Sec-
tion 4, itis explained how error probabilities are obtaiifreain the model and why they
correlate with the near-cognategnate fraction. This involves adequate estimates of
specific stochastic subbehaviour. Insertion times are ubgest of Section 5. There
too, it is illustrated how the quantitative information adrps of the systems is instru-
mental in deriving the relationship with the ratio of psetammnate and near-cognates
vs. cognate$.

AcknowledgmenttVe are grateful to Timo Breit, Christiaan Henkel, Erik Luit,

4An appendix presents supplementary figures and data.
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Jasen Markovski, and Hendrik Viljoen for fruitful discusss and constructive feed-
back.

2 A kinetic model of mMRNA translation

In nature, there is a fixed correspondence of a codon and amanid. This is the
well-known genetic code. Thus, an mRNA codes for a uniquéepro However, the
match of a codon and the anticodon of a tRNA iffetient from pair to pair. The
binding influences the speed of the actual translatibtere, we give a brief overview
of the translation mechanism. Our explanation is based 8n1[2]. Two main phases
can be distinguished: peptidyl transfer and translocation

The peptidyl transfer phase runs through the followingste-tRNA arrives at the
A-site of the ribosome-mRNA complex byftlision. The initial binding is relatively
weak. Codon recognition comprises (i) establishing cdriiatveen the anticodon of
the aa-tRNA and the current codon in the ribosome-mRNA cemymnd (ii) subse-
guent conformational changes of the riboson@&I Pase-activation of the elongation
factor EF-Tuis largely favoured in case of a strong complementary matcbi the
codon and anticodon. Afte® TP-hydrolysis, producing inorganic phospha@eand
GDRP, the dfinity of the ribosome for the aa-tRNA reduces. The subsecam@tmmo-
dation step also depends on the fit of the aa-tRNA.

Next, the translocation phase follows. Another GTP-hyghislinvolving elonga-
tion factorEF-G producesGDPandP; and results in unlocking and movement of the
aa-tRNA to the P-site of the ribosome. The latter step iseuted or followed byP; -
release. Reconformation of the ribosome and releagg~efc moves the tRNA, that
has transferred its amino acid to the polypeptide chaio,time E-site of the ribosome.
Further rotation eventually leads to dissociation of thedutRRNA.

At present, there is little quantitative information rediag the translation mech-
anism. ForE. coli, a number of specific rates have been collected [17, 9], waisere
some steps are known to be relatively rapid. The fundamessimption of [7], that
we also adopt here, is that experimental data found by Radatial. for theUUU and
CUC codons, extrapolate to other codons as well. However, dudlssumptions are
necessary to fill the overall picture. In particular, Viljo@roposes to estimate the
delay due to so-called non-cognate aa-tRNA, that are hhgcltie ribosomal A-site,
as 05ms. Also, accurate rates for the translocation phase ayelyamissing. Again
following [7], we have chosen to assign, if necessary, hagbs to steps for which data
is lacking. This way these steps will not be rate limiting.

3 The Prism model

The abstraction of the biological model as sketched in tieipus section is twofold:
() Instead of dealing with 48 classes of aa-tRNA, that asmntiied by the their anti-
codons, we use four types of aa-tRNA distinguished by theitcimng with the codon
under translation. (ii) We combine various detailed steps one transition. The first
reduction greatly simplifies the model, more clearly eligjtthe essentials of the un-
derlying process. The second abstraction is more a mattesrofenience, though it
helps in compactly presenting the model.

For a specific codon, we distinguish four types of aa-tRNAgrate, pseudo-
cognate, near-cognate, non-cognate. Cognate aa-tRN/Asamagnticodon that stro-
ngly couples with the codon. The amino acid carried by theRdA is always the right

5See Figure 2 and Figure 3 in the appendix.
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one, according to the genetic code. The binding of the atdic®f a pseudo-cognate
aa-tRNA or a near-cognate aa-tRNA is weaker, btiicently strong to occasionally
result in the addition of the amino acid to the nascent pnotki case the amino acid
of the aa-tRNA is, accidentally, the right one for the codem, call the aa-tRNA of
the pseudo-cognate type. If the amino acid does not coingitthethe amino acid the
codon codes for, we speak in such a case of a near-cogna®NaattThe match of
the codon and the anticodon can be very poor too. We refercto @a-tRNA as being
non-cognate for the codon. This type of aa-tRNA does natieita translation step at
the ribosome.

The Prism model can be interpreted as the superpositionuwfstmchastic au-
tomata, each encoding the interaction of one of the types-dR&IA. The automata
for the cognates, pseudo-cognates and near-cognatesammaiar; the cognate type
automaton only dfers in its value of the rates from those for pseudo-cognatkeear-
cognates, while the automata for pseudo-cognates and dorcognates only dlier in
their arrival process. The automaton for non-cognatesheraimple.

Below, we are considering average transition times andalitibes for reacha-
bility based on exponential distributions. Therefore)daing common practice in
performance analysis, there is no obstacle to merge twceegulest sequential transi-
tions with ratest andy, say, into a combined transition of ratg/(1 + w). This way,
an equivalent but smaller model can be obtained. Howevisrnivted, that in general,
such a simplification is not compositional and should berakith care.

For the modeling of continuous-time Markov chains, Prisrmotands have the
form [label] guard — rate : update ;. In short, from the commands whose guards
are fulfilled in the current state, one command is selectegqutional to its relative
rate. Subsequently, the update is performed on the statebies. So, a probabilis-
tic choice is made among commands. Executing the selectatheod results in a
progress of time according to the exponential distribufmmthe particular rate. We
refer to [13, 10] for a proper introduction to the Prism matheicker.

Initially, control resides in the common start statel of the Prism model with
four boolean variablesogn, pseu, near andnonc set to false. Next, an arrival pro-
cess selects one of the booleans that is to be set to true.isTihis initial binding of
the aa-tRNA. The continuation depends on the type of aa-tRd&fgnate, pseudo-
cognate, near-cognate or non-cognate. In fact, a race ihatrepends on the con-
centrationsc_cogn, c_pseu, c_near andc_nonc of the four types of aa-tRNA and
a kinetic constank1f. Following Markovian semantics, the probability in the eac
for cogn to be set to true (the others remaining false) is the relattwecentration
c_cogn/(c_cogn + c_pseu + c_near + c_nonc).

// initial binding

[ 1 (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;
[ 1 (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;
[ 1 (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;
[ 1 (s=1) -> k1f * c_nonc : (s’=2) & (nonc’=true) ;

As the aa-tRNA, that is just arrived, may dissociate too, réaeersed reaction is in
the model as well. However, control does not return to theainstate directly, but,
for modelchecking purposes, first to the stat® representing dissociation. At the
same time, the boolean that was true is reset. Here, cogmetesdo-cognates and
near-cognates are handled with the samelkabe Non-cognates always dissociate as
captured by the separate ra@bx.

// dissociation

6The notion of a pseudo-cognate comes natural in our modelttayvever, the distinction between a
pseudo-cognate and a near-cognate is non-standard. yJsuadlar-cognate refers to both type of tRNA.
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[ 1 (s=2) & ( cogn | pseu | near ) -> k2b :
(s’=0) & (cogn’=false) & (pseu’=false) & (near’=false) ;
[ 1 (s=2) & nonc -> k2bx : (s’=0) & (nonc’=false) ;

An aa-tRNA that is not a non-cognate can continue from gta?en the codon recog-
nition phase, leading to state-3. This is a reversible step in the translation mecha-
nism, so there are transitions from stats3 back to states=2. However, the rates for
cognates vs. pseudo- and near-cognateskstzc, k3bp andk3bn, differ significantly
(see Table 1). Note that the values of the booleans do nogehan

// codon recognition

[ 1 (s=2) & ( cogn | pseu | near ) -> k2f : (s’=3) ;
[ 1 (s=3) & cogn -> k3bc : (s’=2) ;

[ 1 (s=3) & pseu -> k3bp : (s’'=2) ;

[ ] (s=3) & near -> k3bn : (s’=2) ;

The next forward transition, from state-3 to states=4, is a combination of detailed
steps involving the processing of GTP. The transition is-dinectional, again with
a significant diference in the rat&3fc for a cognate aa-tRNA and the rate3fp
andk3fn for pseudo-cognate and near-cognate aa-tRNA, that aré.equa

// GTPase activation, GTP hydrolysis, EF-Tu conformation change
[ 1 (s=3) & cogn -> k3fc : (s’=4) ;
[ 1 (s=3) & pseu -> k3fp : (s'=4) ;
[ ] (s=3) & near -> k3fn : (s’=4) ;

In states=4, the aa-tRNA can either be rejected, after which control @soto the
states=5, or accommodates, i.e. the ribosome reconforms such taaaHRNA can
hand over the amino acid it carries, so-called peptidyktamn In the latter case, control
moves to stata=6. As before, rates for cognates and those for pseudo-cagyaate
near-cognates are offtkrent magnitudes.

// rejection

[ 1 (s=4) & cogn -> kdrc : (s’=5) & (cogn’=false) ;
[ 1 (s=4) & pseu -> kdrp : (s’=5) & (pseu’=false) ;
[ 1 (s=4) & near -> k4rn : (s’=5) & (near’=false) ;
// accommodation, peptidyl transfer

[ ] (s=4) & cogn -> kdfc : (s’=6) ;

[ 1 (s=4) & pseu -> kdfp : (s’=6) ;

[ 1 (s=4) & near -> kdfn : (s’=6) ;

After a number of movements back-and-forth between stateand states=7, the
binding of the EF-G complex becomes permanent. In the @eltaibnslation mecha-
nism a number of (mainly sequential) steps follows, thatsamamarized in the Prism
model by a single transition to a final states, that represents elongation of the pro-
tein in nascent with the amino acid carried by the aa-tRNAe 3ynthesis is successful

if the aa-tRNA was either a cognate or pseudo-cognate fardtlen under translation,
reflected by eithetogn or pseu being true. In case the aa-tRNA was a near-cognate
(non-cognates never pass beyond sta®), an amino acid that does not correspond to
the codon in the genetic code has been inserted. In the kder an insertion error has
occurred.

// EF-G binding

[ 1 (s=6) -> k6f : (s’=7) ;

[ 1 (s=7) -> k7b : (s’=6) ;

// GTP hydrolysis, unlocking, tRNA movement and Pi release,
// rearrangements of ribosome and EF-G, dissociation of GDP
[ 1 (s=7) -> k7f : (s’=8) ;
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A number of transitions, linking the dissociation stat® and the rejection state=5
back to the start state=1, where a race of aa-tRNAs of the four types commences a
new, and looping at the final stagée8, complete the Prism model.

// no entrance, re-entrance at state 1
[ 1 (s=0) -> FAST : (s’=1) ;

// rejection, re-entrance at state 1

[ 1 (s=5) -> FAST : (s’=1) ;

// elongation

[ 1 (s=8) -> FAST : (s’=8) ;

Table 1 collects the rates as gathered from the biologieabliure [17, 7] and used in
the Prism model above.

kif 140 | k3fc 260 kdrc 60 |k6f|150
k2f 190 | k3fp, k3fn 0.40 | k4rp, kdrn|FAST k7£]145.8
k2b 85 | k3bc 0.23 | kdfc 166.7 | k7b| 140
k2bx | 2000 | k3bp, k3bn| 80 k4fp, k4fn 46.1

Table 1: Rates of the Prism model.

In the next two sections, we will study the Prism model dématiabove for the
analysis of the probability for insertion errors, i.e. exd®n of the peptidyl chain with
a different amino acid than the codon codes for, and of the avenaggtion times, i.e.
the average time it takes to process a codon up to elongation.

4 |Insertion errors

In this section we show how the model checking features afnfPrian be used to
predict the misreading frequencies for individual codoibe translation of mRNA
into a polypeptide chain is performed by the ribosome maatyiwith high precision.
Experimental measurements show that on average, only ob@@®0 amino acids is
added wrongly.

For a codon under translation, a pseudo-cognate anticoaloies precisely the
amino acid that the codon codes for. Therefore, successdtthimg of a pseudo-
cognate does not lead to an insertion error. In our modelnthi@ diference of cog-
nates vs. pseudo-cognates and near-cognates is in theginfgtvarious stages of the
peptidyl transfer the rates for true cognateetifrom the others up to three orders of
magnitude.

Figure 1 depicts the relevant abstract automaton, derirad the Prism model
discussed above. In case a transition is labeled with twesydhe leftmost number
concerns the processing of a cognate aa-tRNA, the rightmusber that of a pseudo-
cognate or near-cognate. In three states a probabilisticehas to be made. The prob-
abilistic choice in state 2 is the same for cognates, pseodoates and near-cognates
alike, the ones in state 3 and in state ffats for cognates and pseudo-cognates or
near-cognates.

For example, after recognition in state 3, a cognate aa-tRMIAgo through the
hydrolysis phase leading to state 4 for a fractiof9® of the cases (computed as
260/(0.23 + 260)), a fraction being close to 1. In contrast, for a psecoignate or
near-cognate aa-tRNA this isQD5 only. Cognates will accommodate and continue
to state 6 with probability @36, while pseudo-cognates and near-cognates will do so

“Our findings, see Table 4, based on the kinetic rates avaitail slightly higher.
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o=l (e)
(@)%

Figure 1: Abstract automaton for error insertion

with the small probability @44, the constant FAST being set to 1000 in our experi-
ments. As the transition from state 4 to state 6 is irrevésthe rates of the remaining
transitions are not of importance here.

The probability for reaching state 8 in one attempt can bi#yeasmputed by Prism
via the CSL-formula

P=? [ (s!=0 & s!=5) U (s=8) {(s=2) & cogn} ].

The formula asks to establish the probability for all patieres is not set ta® nor 5,
until s have been set t, starting from the (unique) state satisfyigg2 & cogn. We
obtainpS = 0.508,pd = 0.484-10* andpf = 0.484- 10°4, with p the probability for a
cognate to end up in state 8 —and elongate the peptidyl chaiitheut going through
state 0 nor state 5 andpl the analogues for pseudo- and near-cognates, respectively
Note that these values are the same for every codorter®nt among codons are
the concentrations of cognates, pseudo-cognates ancogaates. Ultimately, the
frequencied., f, andf, of the types of aa-tRNA in the cell, i.e. the actual number of
molecules of the kind, determine the rates for an arrival

As reported in [7], the probability for an erroneous insmttiis strongly correlated
with the quotient of the number of near-cognate anticodansthe number of cog-
nate anticodon®.In the present setting, this correlation can be formallyveer. We
have that an insertion error occurs if a near-cognate sdedeeattach its amino acid.
Therefore,

P(error) = P(near & elongation elongation)
P - (fn/tod) A
pe- (foft0) + P2 - (Fof 10D + PL-(fafto)  pE-fo 1
with tot = f¢ + fp + fr, and where we have used that
P(elongation)= (fc/tof) - pS + (fp/tod) - p¥ + (fn/tol) - pi

and thatp?, p0 < pS. Note, the ability to calculate the latter probabilitidkjstrating
that the approach of piecewise analysis, is instrumentaibtaining the above result.

5 Competition and insertion times

We continue the analysis of the Prism model for translatimha@iscuss the correlation
of the average insertion time for the amino acid specified bgdon, on the one hand,
and the relative abundance of pseudo-cognate and neaatecaprtRNAS, on the other
hand. The insertion time of a codon is the average time itstakkelongate the protein
in nascent with an amino acid.

The average insertion time can be computed in Prism usingatheept ofewards
(also known agostsin Markov theory). Each state is assigned a value as its tewar

8See Table 3 in the appendix.
9See Figure 4 in the appendix.
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Further, the reward of each state is weighted per unit of.tifence, it is computed by
multiplication with the average time spent in the state. dimaulative reward of a path
in the chain is defined as a sum over all states in the path bfwaighted rewards per
state. Thus, by assigning to each state the value 1 as rewarmbtain the total aver-
age time for a given path. For example, in Prism the CSL foaRg? [ F (s=8) ]
which asks to compute the expected time to reach stage Recall, in states=8 the
amino acid is added to the polypeptide chain. So, a scripehebdcking the above for-
mula then yields the expected insertion time per cotfohlittle bit more ingenuity is
needed to establish average exit times, for example for aatego pass from state-2

to states=8. The point is that conditional probabilities are involvddowever, since
dealing exponential distributions, elimination of traisi in favour of adding their
rates to that of the remaining ones, does the trick. Variesslts, some of them used
below, are collected in Table 2. (The probabilities of feél@nd success for the non-
cognates are triviap = 1 andpd = 0, with a time per failed attemgt* = 0.5- 1073
seconds.)

¢ 05079 pf 04921 TS 003182] T¢ 9.342-10°
p?  4847-10* pf 09995 TP 3251 TP 03914
P 4.847-10° g 09995 " 3251 " 03914

Table 2: Exit probabilities and times (in seconds) for thisgees of aa-tRNA. Failure
for exit to states=0 or s=5; success for exit to state-8.

There is a visible correlation between the quotient of thebber of near-cognate
aa-tRNA and the number of cognate aa-tRNAn fact, the average insertion time for
a codon is approximately proportional to the near-cognatgmate ratio. This can be
seen as follows. The insertion of the amino acid is complétsthte s=8 is reached,
either for a cognate, pseudo-cognate or near-cognate. Aavweseen, the probability
for the latter two is negligible. Therefore, the number ofcate arrivals is decisive.
With pf andpg being the probability for a cognate to fail, i.e. exit at et&t0 or s=5, or
to succeed, i.e. reach of state8, the insertion timf ;,s can be regarded as a geometric
series. (Note the exponenibelow.) Important are the numbers of arrivals of the other
aa-tRNA types per single cognate arrival, expressed ind@fifrequencies. We have

Tins = Yilo (pr)ipSc - ((average delay far+ 1 cognate arrivals} T¢)
i . f fa f
= SLo(p)'ps (- (T + 2TF+ 2T+ 2T + T)
< TR TIRL () ~

c c

We have used that® and T are negI|g|bIeTp equalsTy", and™ 'I'f is relatively small.

Note that the estimate is not accurate for small valuégef,. Nevertheless closer in-
spection show that for these values the approximation resader-preserving. Again,
the results obtained for parts of the systems are pivotdlgrderivation.

6 Concluding remarks

In this paper, we presented a stochastic model of the titzmslarocess based presently
available data of ribosome kinetics. We used the CTMC fésliof the Prism tool.
Compared to simulation, our approach is computationallyenmeliable (independent

10see Table 5 in the appendix.
11See Figure 5 in the appendix.
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on the number of simulations) and has faster response tialgag seconds rather then
minutes or hours). More importantly, modelchecking alldws to perform piecewise
analysis of the system, yielding better insight in the madehpared to just observing
the end-to-end results with a monolithic model. Based o) thé improved on earlier
observations, regarding error probabilities and insertimes, by actually deriving

the correlation suggested by the data. In conclusion, we kaperienced aa-tRNA
competition as a very interesting biological case studyntrinsic stochastic nature,
falling in the category of the well known lambda-phage exknjp).

Our model opens a new avenue for future work on biologicalesys that pos-
sess intrinsically probabilistic properties. It would Ioéeresting to apply our method
to processes which, similarly to translation, require higécision, like DNA repair,
charging of the tRNAs with amino acids, etc. Also, using owdel one could check if
amino acids with similar biochemical properties substiertroneously for one another
with greater probabilities than dissimilar ones.
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Appendix: suplementary figures and data

Figure 3: Kinetic scheme of translocation taken from [7].
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e

// translation model
stochastic

// constants
const double ONE=1;
const double FAST=1000;

// tRNA rates

const double c_cogn
const double c_pseu
const double c_near
const double c_nonc

const double k1f = 140;
const double k2b = 85;
const double k2bx=2000;
const double k2f = 190;
const double k3bc= 0.23;
const double k3bp= 80;
const double k3bn= 80;
const double k3fc= 260;
const double k3fp=  0.40;
const double k3fn=  0.40;
const double k4rc= 60;
const double k4rp=FAST;
const double k4rn=FAST;
const double k4fc= 166.7;
const double k4fp= 46.1
const double k4fn= 46.1;
const double k6f = 150;
const double k7b = 140;
const double k7f = 145.8;

module ribosome

S :

cogn :

pseu
near
nonc

/
[
[
[
[
[

[y )

[1]

[0..8] 1
bool
: bool
: bool
: bool

(s=1) >
(s=1) >
(s=1) >

(s=1) ->

(s=2) &

nit 1 ;

init false
init false
init false
init false

/ initial binding

k1f * c_cogn :
k1f * c_pseu :
k1f * c_near :

k1f * c_nonc :

nonc -> k2bx :

// codon recognition

(s’=2) & (cogn’=true) ;
(s’=2) & (pseu’=true) ;
(s’=2) & (near’=true) ;
(s’=2) & (nonc’=true) ;
(s=2) & ( cogn | pseu | near ) -> k2b : (s’=0) &
(cogn’=false) & (pseu’=false) & (near’=false) ;
(s’=0) & (nonc’=false) ;

&

activation, GTP hydrolysis, reconformation

(cogn’=false) ;
(pseu’=false) ;

[ ] (s=2) & ( cogn | pseu | near ) -> k2f : (s’=3) ;
[ 1 (s=3) & cogn -> k3bc : (s’=2)
[ 1 (s=3) & pseu -> k3bp : (s’=2)
[ 1 (s=3) & near -> k3bn : (s’=2)
// GTPase

[ 1 (s=3) & cogn -> k3fc : (s’=4)
[ 1 (s=3) & pseu -> k3fp : (s’=4)
[ 1 (s=3) & near -> k3fn : (s’=4)
// rejection

[ 1 (s=4) & cogn -> kdrc : (s’=5)
[ 1 (s=4) & pseu -> k4rp : (s’=5)
[ 1 (s=4) & near -> k4rn : (s’=5)

&

(near’=false) ;

// accommodation, peptidyl transfer
[ ] (s=4) & cogn -> k4fc : (s’=6) ;
[ ] (s=4) & pseu -> kd4fp : (s’=6) ;
[ 1 (s=4) & near -> k4fn : (s’=6) ;

// EF-G binding
[ 1 (s=6) -> k6f : (s’=7) ;
[ ] (s=7) -> k7b : (s’=6) ;

// GTP hydrolysis, unlocking,

// tRNA movement and Pi release,

// rearrangements of ribosome and EF-G,
// dissociation of GDP

[1 (s=7) > k7f : (s'=8) ;

// no entrance, re-entrance at state 1
[ 1 (s=0) -> FAST*FAST : (s’=1)

// rejection, re-entrance at state 1

[ 1 (s=5) -> FAST*FAST : (s’=1)

// elongation

[ 1 (s=8) -> FAST*FAST : (s’=8)

endmodule
rewards

true : 1;
endrewards
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codon cognate pseudo- near- non- codon cognate pseudo- near- non-
cognate cognate cognate cognate cognate cognate
uuu 1037 0 2944 67493 | GUU 5105 0 0 66369
uuc 1037 0 9904 60533 | GUC 1265 3840 7372 58997
UuG 2944 0 2324 66206 | GUG 3840 1265 1068 65301
UUA 1031 1913 2552 65978 | GUA 3840 1265 9036 57333
ucu 2060 344 0 69070 | GCU 3250 617 0 67607
ucc 764 1640 4654 64416 | GCC 617 3250 8020 59587
UCG 1296 764 2856 66558 | GCG 3250 617 1068 66539
UCA 1296 1108 1250 67820 | GCA 3250 617 9626 57981
UGU 1587 0 1162 68725 | GGU 4359 2137 0 64978
uUGC 1587 0 4993 64894 | GGC 4359 2137 4278 60700
UGG 943 0 4063 66468 | GGG 2137 4359 0 64978
UGA 6219 0 4857 60398 | GGA 1069 5427 11807 53171
UAU 2030 0 0 69444 | GAU 2396 0 4717 64361
UAC 2030 0 3388 66056 | GAC 2396 0 10958 58120
UAG 1200 0 5230 65044 | GAG 4717 0 3464 63293
UAA 7200 0 4576 59698 | GAA 4717 0 10555 56202
Cuu 943 5136 4752 60643 | AUU 1737 1737 2632 65368
cuc 943 5136 1359 64036 | AUC 1737 1737 6432 61568
CUG 5136 943 2420 62975 | AUG 706 1926 4435 64407
CUA 666 5413 1345 64050 | AUA 1737 1737 6339 61661
CCu 1301 900 4752 64521 | ACU 2115 541 0 68818
CCcC 1913 943 2120 66498 | ACC 1199 1457 4338 64480
CCG 1481 720 5990 63283 | ACG 1457 1199 4789 64029
CCA 581 1620 1430 67843 | ACA 916 1740 2791 66027
CGU 4752 639 0 66083 | AGU 1408 0 1287 68779
CGC 4752 639 2302 63781 | AGC 1408 0 5416 64650
CGG 639 4752 6251 59832 | AGG 420 867 6318 63869
CGA 4752 639 2011 64072 | AGA 867 420 4248 65939
CAU 639 0 6397 64438 | AAU 1193 0 1924 68357
CAC 639 0 3308 67527 | AAC 1193 0 6268 64013
CAG 881 764 6648 63181 | AAG 1924 0 6523 63027
CAA 764 881 1886 67943 | AAA 1924 0 2976 66574

Table 3: Frequencies of cognate, pseudo-cognate, neaatsognd non-cognates fr coli as molecules per cell [6].




uuu
uucC
UuG
UUA
uCu
ucc
UCG
UCA
uGuU
UGC
UGG
UGA
UAU

UAC

UAG
UAA

0.002741862683943581
0.009117638314789647
7.588473846528858e-4
0.0023468531911491244

2.8056841829690867e-1D

0.005606123319450197
0.002032726835647694
9.090727755350428e-4
6.966884002285479e-4
0.003036236268306607 7
0.003978308597370318
7.498426342500918e-4

2.8061598550623636e-1D

0.001568960520388667
0.004132405628997547
6.039804446811093e-4

Cuu
cucC
CuG
CUA
CCuU
CCC
CCG
CCA
CGU
CGC
CGG
CGA
CAU
CAC
CAG
CAA

0.004663729080892617
0.001362340874967093p
4.487561228352708e-4

0.001888858041144201
0.003411647082038763
0.001041928314693276
0.003761852345052361
0.002277513774406238b
1.207693755014732e-10
4.587111916100053e-4
0.008874544692533565
3.9837866155798695e-4
0.009105588393934699
0.004745578685847523
0.006940080777590301
0.0022666704102712373

w YW

(o))

GUU
GUC
GUG
GUA
GCU
GCC
GCG
GCA
GGU
GGC
GGG
GGA
GAU
GAC
GAG
GAA

1.122602539973544e-10
0.005495266825145313
2.6820764780942726e-4
0.0022306329982350647
1.766661283697676e-10
0.01245896879253996
3.1789705950373547e-4
0.002818616263545499

1.3246548978903072e-10

9.396128218189778e-4

2.7206107910251926e-10

0.010230631644252862
0.0018570532571304608
0.004322322632194155
7.090294740031601e-4
0.002136227458736717

AUU
AUC
AUG
AUA
ACU
ACC
ACG
ACA
AGU
AGC
AGG
AGA
AAU
AAC
AAG
AAA

0.001444039578486842]
0.003504330818574527
0.005831774423967932
0.0034390541040541776
2.725325694334536e-1(
0.0034184472357413408
0.003167334470509804
0.0029111153328695892
8.70279113272123e-4
0.003719031341166648
0.01406993213919797
0.004811394879822719
0.0015239834703624298
0.00493586499554021
0.003209595977078994
0.0014587873027927622

oo

Table 4: Probabilities per codon for erroneous elongation
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uuu
uucC
UuG
UUA
ucCu
ucc
UCG
UCA
uGuU
UGC
UGG
UGA
UAU

UAC

UAG

UAA

0.3327
0.8404
0.1245
0.4436

0.0893
0.7409
0.3035
0.2313
0.1432
0.3296
0.4360
0.1098
0.0758
0.2008
0.4319
0.0963

Cuu
CucC
CuG
CUA
CCuU
CCC
CCG
CCA
CGU
CGC
CGG
CGA
CAU

CAC

CAG
CAA

0.8901
0.6286
0.1028
0.9217
0.4202
0.1992
0.4257
0.5535
0.0645
0.1010
1.3993
0.0962
0.8811
0.5341
0.7425
0.4058

GUU
GUC
GUG
GUA
GCU
GCC
GCG
GCA
GGU
GGC
GGG
GGA
GAU

GAC

GAG
GAA

0.0527
0.7670
0.1041
0.2604
0.0756
1.5622
0.1010
0.3002
0.0924
0.1673
0.2308
1.2989
0.2180
0.4144
0.1106
0.2243

AUU
AUC
AUG
AUA
ACU
ACC
ACG
ACA
AGU
AGC
AGG
AGA
AAU
AAC
AAG
AAA

0.2733
0.4373
0.8115
0.4321
0.0943
0.4658
0.4073
0.5025
0.1636
0.3905
1.4924
0.5517
0.2242
0.4959
0.3339
0.1945

Table 5: Estimated average insertion time per codon in gkcon

37




ratio near-cognate / cognate

ratio (pseudo—cognate + near—cognate) / cognate

probability for erroneous insertion

Figure 4: Correlation oif ratio and error probabilities

average insertion time

. . f, . . . .
Figure 5: Correlation of% ratio and average insertion times
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Abstract

We present in this paper a novel molecular model for the gegelatory net-
work responsible for the eukaryotic heat shock response.nt@dlel includes the
temperature-induced protein misfolding, the chaperonigigcof the heat shock
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proteins and the backregulation of their gene transcriptite then build a math-
ematical model for it, based on ordinanfférential equations. Finally, we discuss
the parameter fit and the implications of the sensitivitylgsia for our model.

1 Introduction

One of the most impressive algorithmic-like bioprocesadiving cells, crucial for the
very survival of cells is théeat shock responsthe reaction of the cell to elevated tem-
peratures. One of thefects of raised temperature in the environment is that pretei
get misfolded, with a rate that is exponentially dependenth@ temperature. As an
effect of their hydrophobic core being exposed, misfoldedginsttend to form bigger
and bigger aggregates, with disastrous consequencesfeeth see [1]. To survive,
the cell needs to increase quickly the level of chaperorstéprs that are assisting in
the folding or refolding of other proteins). Once the heaickhis removed, the cell
eventually re-establishes the original level of chaperses [10, 18, 22].

The heat shock response has been subject of intense resetrelast few years,
for at least three reasons. First, it is a well-conservedhaeism across all eukaryotes,
while bacteria exhibit only a slightly fierent response, see [5, 12, 23]. As such, it is
a good candidate for studying the engineering principleasfegregulatory networks,
see [4, 5, 12, 25]. Second, it is a tempting mechanism to moetiematically, since it
involves only very few reactants, at least in a simplifiedspreation, see [18, 19, 22].
Third, the heat shock proteins (the main chaperons invoindtie eukaryotic heat
shock response) play a central role in a large number of aégyl and of inflamma-
tory processes, as well as in signaling, see [9, 20]. Monedkey contribute to the
resilience of cancer cells, which makes them attractiva@gets for cancer treatment,
see [3, 15, 16, 27].

We focus in this paper on a new molecular model for the heatlstesponse, pro-
posed in [19]. We consider here a slight extension of the miad&9] where, among
others, the chaperons are also subject to misfolding. Adteoducing the molecular
model in Section 2, we build a mathematical model in Section@uding the fitting
of the model with respect to experimental data. We discuSeution 4 the results of
the sensitivity analysis of the model, including its bidlmg implications.

2 A new molecular model for the eukaryotic heat shock
response

The heat shock proteinggp) play the key role in the heat shock response. They act
as chaperons, helping misfolded proteimép) to refold. The response is controlled in
our model through the regulation of the transactivatiorhehisp-encoding genes. The
transcription of the gene is promoted by some proteinsadiéat shock factorhf)
that trimerize and then bind to a specific DNA sequence cdikest shock element
(hse), upstream of théasp-encoding gene. Once thesf trimer is bound to the heat
shock element, the gene is transactivated and the syntbiebip is thus switched
on (for the sake of simplicity, the role of RNA is ignored inranodel). Once the
level ofhsp is high enough, the cell has an ingenious mechanism to swif¢he hsp
synthesis. For thishsp bind to freehsf, as well as break the hsf trimers (including
those bound tdise, promoting the gene activation), thuffextively halting thehsp
synthesis.

Under elevated temperatures, some of the proteirg)(in the cell get misfolded.
The heat shock response is then quickly switched on simpdpulse the heat shock
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proteins become more and more active in the refolding psy¢bss leaving the heat
shock factors free and able to promote the synthesis of meaedhock proteins. Note
that several types of heat shock proteins exist in an eukargell. We treat them
all uniformly in our model, with hsp70 as common denominaidre same comment
applies also to the heat shock factors.

Our molecular model for the eukaryotic heat shock respoassists of the follow-
ing molecular reactions:

. 2hsf & hsf,

. hsf+ hsf, & hsfs

. hsfz + hse & hsfs: hse

. hsfz: hse — hsfz: hse + mhsp

. hsp + hsf & hsp: hsf

. hsp + hsf, — hsp: hsf + hsf

. hsp + hsfz — hsp: hsf+2 hsf

. hsp + hsf;: hse — hsp: hsf+2 hsf + hse

© 00 N oo o b~ w N P

.hsp—0

[N
o

. prot - mfp

[
[E=Y

. hsp +mfp < hsp: mfp

=
N

. hsp: mfp — hsp + prot

[N
w

. hsf - mhsf

H
I

. hsp — mhsp

[N
a1

. hsp + mhsf & hsp: mhsf

(=Y
»

. hsp: mhsf — hsp + hsf

=Y
~

. hsp + mhsp & hsp: mhsp
18. hsp: mhsp — 2 hsp

It is important to note that the main addition we consideeheith respect to the
model in [19] is to include the misfolding dkp andhsf. This is, in principle, no minor
extension since in the current model the repairing mecharssubject to failure, but
it is capable to fix itself.

Several criteria were followed when introducing this malec model:

(i) as few reactions and reactants as possible;
(ii) include the temperature-induced protein misfolding;
(i) include hsf in all its three forms: monomers, dimers, and trimers;
(iv) include thehsp-backregulation of the transactivation of th&p-encoding gene;
(v) include the chaperon activity obp;

(vi) include only well-documented, textbook-like reactioand reactants.
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For the sake of keeping the model as simple as possible, wgreoeng a number
of details. E.g., note that there is no notion of locality ir anodel: we make no
distinction between the place where gene transcriptioestakace (inside nucleus) and
the place where protein synthesis takes place (outsideusicINote also that protein
synthesis and gene transcription are greatly simplifiegattion 4: we only indicate
that once the gene is transactivated, protein synthesisaswaitched on. On the other
hand, reaction 4 is faithful to the biological reality, sd¢ in indicating that newly
synthesized proteins often need chaperons to form theuefald.

As far as protein degradation is concerned, we only congigethe model fohsp.

If we considered it also fansf andprot, then we should also consider the compensat-
ing mechanism of protein synthesis, including its contfedr the sake of simplicity
and also based on experimental evidence that the total anobinsf and ofprot is
somewhat constant, we ignore the details of synthesis agradation fohsf andprot.

3 The mathematical model

We build in this section a mathematical model associatelddartolecular model 1-18.
Our mathematical model is in terms of coupled ordinaffedéntial equations and its
formulation is based on the principle of mass-action.

3.1 The principle of mass-action

The mass-action law is widely used in formulating matheoatnodels in physics,
chemistry, and engineering. Introduced in [6, 7], it can hefly summarized as fol-
lows: the rate of each reaction is proportional to the concentratof reactants In
turn, the rate of each reaction gives the rate of consumiageactants and the rate of
producing the products. E.g., for a reaction

Ri:A+B—C,

the rate according to the principle of mass actioy{§) = kA(t)B(t), wherek > 0 is
a constant ané\(t), B(t) are functions of time giving the level of the reactaAtandB,
respectively. Consequently, the rate of consunfrandB, and the rate of producing
C is expressed by the followingfiiérential equations:

dA dB dc

Gt = gr = KAOBO, = KADBQ).

For a reversible reaction
R:A+BsC,

the rate isfo(t) = kp A(t) B(t) — ko C(t), for some constants, k, > 0. The diferential
equations are written in a similar way:

dA dB dc .
dat = at = —f(t), at = f2(1). *

For a set of coupled reactions, thdfdiential equations capture the combined rate
of consuming and producing each reactant as féaceof all reactions taking place
simultaneously. E.g., for reactions

R::A+Bs C, Ry:B+C s A, Rs: A+ C s B,
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the associated system offdirential equations is
dA/dt = —f3(t) + fa(t) — f5(t),
dBydt —f3(t) - fa(t) + f5(1),
dC/dt fa(t) — fa(t) — fs(t),
where fi(t) is the rate of reactioRr, for all 3 < i < 5, formulated according to the

principle of mass action.
We recall that for a system offiierential equations

dXg
W fl(X]J Y Xn),
d—)?ﬂl = fn(x].? LR} XI"I),

we say that Xy, X, ..., Xn) IS a steady stategalso calledequilibrium point3 if it is

a solution of the algebraic system of equatidi¥y,...,X,) = 0, forall 1 < i <

n, see [24, 28]. Steady states are particularly interest@xpbise they characterize

situations where although reactions may have non-zers,rtteir combinedféect is

zero. In other words, the concentration of all reactantscdiadl products are constant.
We refer to [11, 17, 29] for more details on the principle ofs®iaction and its

formulation based on ordinaryftirential equations.

3.2 Our mathematical model

LetR, be the set of all positive real numbers d@itthe set of allh-tuples of positive
real numbers, fon > 2. We denote each reactant and bond between them in the
molecular model 1-18 according to the convention in Tab?e 3Ve also denote by
x € R the vector with all reaction rate constants as its companesee Table 3.2:
= (G KK G K K oK K, Ko, Ky . oz K, K K Kl Ky Ka).
The mass action-based formulation of the associated matieahmodel in terms
of differential equations is straightforward, leading to thedfelhg system of equa-

tions:

dXy/dt = f1(Xg, X, ..., X14, &) Q)
dXo/dt = fo(Xq, X, ..., X14, &) (2)
dXg/dt = f3(Xq, X, ..., X14, &) 3)
dXg/dt = f4(Xq, X, ..., X14, &) (4)
dXs/dt = f5(Xq, X, ..., X14,&) (5)
dXg/dt = fg(Xg, X, ..., X14, &) (6)
dXz/dt = f2(Xq, X, ..., X14, &) (7
dXg/dt = fg(Xq, X, ..., X14,&) (8)
dXo/dt = fo(Xg, Xa, ..., X14,&) 9)
dXio/dt = f1o(X1, Xo, ..., X14,K) (20)
dXy/dt = f12(Xe, Xo, . .., X14,K) (12)
dXpp/dt = f1o(Xg, Xo, ..., X14,K) (12)
dXyz/dt = f13(Xg, Xo, ..., X14,K) (13)
dXia/dt = f1a(Xe, Xo, ..., X14,K) (24)
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Metabolite | Variable | Initial value | A steady state (¥42)
hsf X1 0.669 0.669
hsf, Xz 8.73-10* | 8.73-10*
hsfs X3 1.23-10* | 1.23-10*
hsfs: hse Xa 2.956 2.956
mhsf Xs 3.01-10°% | 2.69-10°
hse Xs 29.733 29.733
hsp X7 766.875 766.875
mhsp Xs 345-10° | 4.35-107
hsp: hsf X 1403.13 1403.13
hsp: mhsf X10 417-107 | 372-10°
hsp: mhsp X11 478-10* | 6.03-10°3
hsp: mfp X12 71.647 640.471
prot X13 1.14-1C° 1.14-10°
mfp X14 517.352 4624.72

Table 1: The list of variables in the mathematical modelirtimitial values, and their
values in one of the steady states of the systeni[ fer42. Note that the initial values

give one of the steady states of the systemilfer 37.

where

f1

fa
f3
fa
fs
fe
fz

= —k§X1X2+k£X3—k§X1X7+ng9+2k8X4X7+k5X2X7

—@(T) X1 + K1 X10+ 2k7 Xg X7 — 2ki X2 + 2k X,
= =k Xy Xo + K5 Xa — ke Xo X7 + kI X2 —k Xz
= —k§ Xa Xe + KXo Xo — kg Xa + K5 Xq — ks X3 X7
= I Xa X~ kg X — ko Xa X7
= @(T) X1 — ki3 X5 X7 + Ki3 X10
= —k3y X3 Xe + k3 X4 + kg X4 X7

= —k& Xy X7 + kg Xg — iy X7 X1a + Ki; X12 — kg Xa X7 — ke Xo X7

—Ki3 X5 X7 + (Ki3 + Ki4) X10 = ((T) + ko) X7 — K5 X7 Xg
—k7 X3 X7 + (Ki5 + 2kag) X11 + ki X2
= K X4+ @(T) X7 = Ki5 X7 Xg + K5 X11
= k& X X7 — kg Xg + Kg Xa X7 + kg Xo X7 + k7 X3 X7
= Ki3Xs X7 = (K3 + K1a) X10
= Kkis X7 X — (Kis + kig) X11
= ki3 X7 X1a — (K3 + Ki2) Xi2

k2 X12 = ¢(T) X13
—kKiq X7 X1 + Kig X2 + ¢(T) X13

The rate of protein misfolding(T) with respect to temperatufiehas been inves-
tigated experimentally in [13, 14], and a mathematical egpion for it has been pro-
posed in [18]. We have adapted the formula in [18] to obtanfthlowing misfolding
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Kinetic constant

Reaction

Numerical value

ki
Ky
k3
K,
K3

Ky
ks
ks
ks
ke

ks
ks
kg
Ky
ki1
k12
ki3
Kis
k14
Kis

Kis

kis

(1), forward
(1), backward
(2), forward
(2), backward
(3), forward
(3), backward
(4)

(5), forward
(5), backward
(6)

(1)

(8)

9)

(112), forward
(11), backward
(12)

(15), forward
(15), backward
(16)

(17), forward
(17), backward

(18)

3.49091
0.189539
1.06518
1-10°
0.169044
1.21209 1076
0.00830045
9.73665
3.56223
2.33366
430924 10°°
2.72689 1077
32-10°
0.00331898
4.43952
139392
0.00331898
4.43952
139392
0.00331898
4.43952
139392

Table 2: The numerical values for the fitted model.

rate per second:

0.4
¢(T) = (1- Z—=7) - 08401033733 10°%. 1473 g1,

whereT is the temperature of the environment in Celsius degredh, the formula

being valid for 37< T < 45.

The following result gives three mass-conservation refetifor our model.

Theorem 3.1. There exists K Ko, Kz > 0 such that:
(1) Xa(t) +2Xa(t) + 3 Xa(t) + 3 Xa(t) + Xs(t) + Xo(t) = Ky,

(il) Xa(t) + Xe(t) = Ko,

(iii) X13(t) + Xa4(t) + X12(t) = K,

forallt > 0.

Proof. We only prove here part (ii), as the others may be proved goalsly. For this,

note that from equations (4) and (6), it follows that

d(X4 + Xs)
dt

(f4 + fe)(xl, ..

i.e., X4 + Xg)(1) is a constant function.
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The steady states of the model (1)-(14) satisfy the follgnaigebraic relations,
wherey; is the numerical value of; in the steady state, foralld i < 14.

0 = —kjxixo+ky xg—kg X1 X7 + Kg Xg + 2Kg Xa X7 + Ks X2 X7

~(T) X1 + Kia X10 + 2k7 X3 X7 — 2Ki X2 + 2k X2 (15)
0 = —kjxixo+Kkjxs—Kexox7+Ki x5 —K % (16)
0 = -Kxaxe+kK X1 % -k X3+ kg xa — ky X3 X7 a7)
0 = k3yXsXe—KgXs—kegXa X (18)
0 = (,D(T) X1 — kIS X5 X7 + kI3 X10 (19)
0 = -Kjxaxe+ksXxa+ksxaxs (20)
0 = —kixixs+ksXo—Kj; X7 X1a+ Kj; X12 — kg Xa X7 — Kg X2 X7

—ki3 X5 X7 + (K3 + K14) X10 — (#(T) + ko) X7 — Ki5 X7 Xg — K7 X3 X7

+(Kis + 2kae) Xa1 + k12 Xa2 (21)
0 = kixa+@(T) X7 —KisX7 Xg + Kis Xa1 (22)
0 = kixixs—kgXg+KgXaXs+ ke Xo X7 + k7 X3 X7 (23)
0 = k1r3 X5 X7 — (kIS + K14) X10 (24)
0 = Kizx7 % — (Kis+ Kie) X1 (25)
0 = ki X7 x4~ (Kgg + Ki2) Xa2 (26)
0 = Kkioxi2—¢(T) X3 (27)
0 = —kIl X7 X14 + kIl X12 + ¢(T) X13 (28)

It follows from Theorem 3.1 that only eleven of the relati@isve are independent.
E.g., relations (15)-(17), (19), (21)-(27) are indeperid&he system consisting of the
corresponding dierential equations is called tiheduced systemf (1)-(14).

3.3 Fitting the model to experimental data

The experimental data available for the parameter fit is fitdhand reflects the level
of DNA binding, i.e., variableX, in our model, for various time points up to 4 hours,
with continuous heat shock at 42. Additionally, we require that the initial value
of the variables of the model is a steady state for temperateirto 37C. Thisis a
natural condition since the model is supposed to reflectéhetion to temperatures
raised above 37C.

Mathematically, the problem we need to solve is one of glamimization, as
formulated below. For each 17-tupieof positive numerical values for all kinetic
constants, and for each 14-tupteof positive initial values for all variables in the
model, the functioX,(t) is uniquely defined for a fixed temperature T. We denote the
value of this function at time point, with parameters anda by XI(K, a,7). Note that
this property holds for all the other variables in the modd & is valid in general
for any mathematical model based on ordinajedential equations (one calls such
modelsdeterministi¢. We denote the set of experimental data in [10] by

En = {(ti.r) | t.r)0, 1< i <N},

whereN > 1 is the number of observatiorigis the time point of each observation and
ri is the value of the reading.

With this setup, we can now formulate our optimization pesblas follows: find
k € RY ande € R such that:

() f(xa) =2 2N, (X%x, . t;) - 1;)? is minimal and
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(i) «is a steady state of the model for= 37 and parameter values giventy

The functionf (k, @) is a cost function (in this cadeast mean squargsindicating
numerically how the functionx}(x, a,1), t = 0, compares with the experimental data.

Note that in our optimization problem, not all 31 variabldse(components of
anda) are independent. On one hand, we have the three algeblaions given by
Theorem 3.1. On the other hand, we have eleven more indepesidebraic relations
given by the steady state equations (15)-(17), (19), (2T)-(Consequently, we have
17 independent variables in our optimization problem.

Given the high degree of the system (1)-(14), finding the dital form of the
minimum points off (x, @) is very challenging. This is a typical problem when the
system of equations is non-linear. Adding to thé&idulty of the problem is the fact
that the eleven independent steady state equations camsohed analytically, given
their high overall degree.

Since an analytical solution to the model fitting problem fieio intractable, the
practical approach to such problems is to give a numericalisition of a solution.
Several methods exist for this, see [2, 21]. The traffeaith all these methods is
that typically they d¢fer an estimate of bocal optimum, with no guarantee of it being
aglobal optimum.

Obtaining a numerical estimation of a local optimum for §)iot dificult. How-
ever, such a solution may not satisfy (ii). To solve this pealy for a given local
optimum o, ao) € R x R1* one may numerically estimate a steady state R1“ for
T = 37. Then the pairx, a1) satisfies (ii). Unfortunatelyxf, a1) may not be close to
a local optimum of the cost function in (i).

Another approach is to replace the algebraic relationsiaitigl given by (ii) with
an optimization problem similar to that in (i). Formally, weplace all algebraic rela-
tionsR =0, 1<i < 11, given by (ii) with the condition that

1 M
g.a) = = % Ré(k. a.59)

is minimal, where Q51(- - - (§m are some arbitrary (but fixed) time points. Our problem
thus becomes one of optimization with cost functidng), with respect to the order
relation @, b) < (c,d) if and only ifa < candb < d. The numerical values in Table
3.2 give one solution to this problem obtained based on G¢§®Rs he plot in Figure

1 shows the time evolution of functioXy(t) up tot = 4 hours, with the experimental
data of [10] indicated with crosses.

The solution in Table 3.2 has been compared with a numbethef @vailable ex-
perimental data (such as behavior af@land at 43C), as well as against qualitative,
non-numerical data. The results were satisfactory anebttan those of previous
models reported in the literature, such as [18, 22]. Forildeta the model validation
analysis we refer to [19].

Note that the steady state of the system difedential equations (1)-(14), for the
initial values in Table 3.2 and the parameter values in Taldésasymptotically stable
To prove it, it is enough to consider its associaladobian

0f1/0Xy  0f1/dXe ... 0f1/0X1a

0f2/0Xy  0f2/0Xy ... 0T/0X1a
IO = : : :

0f14/0X1 0f1a/0Xy ... OT14/0X14

As it is well-known, see [28, 24], a steady state is asymgadlyi stable if and
only if all eigenvalues of the Jacobian at the steady state hagative real parts. A
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Figure 1: The continuous line shows a numerical estimatidaration X,4(t), standing
for DNA binding, for the initial data in Table 3.2 and the paugter values in Table 3.2.
With crossed points we indicated the experimental data@jf [1

numerical estimation done witBopasi[8] shows that the steady state fbr= 42, see
Table 3.2, is indeed asymptotically stable.

4 Sensitivity analysis

Sensitivity analysis is a method to estimate the changesghitanto the system through
small changes in the parameters of the model. In this way ocme estimate both
the robustness of the model against small changes in thelyrasdevell as identify
possibilities for bringing a certain desired changed inghstem. E.g., one question
that is often asked of a biochemical model is what changesidibe done to the model
so that the new steady state satisfies certain propertiesiricase we are interested in
changing some of the parameters of the model so that thedérdp in the new steady
state of the system is smaller than in the standard moded, gresumably making it
easier for the cell to cope with the heat shock. We also aradyzcenario in which
we are interested in increasing the levehdp in the new steady state, thus increasing
the chances of the cell not being able to cope with the heatksh8uch a scenario
is especially meaningful in relation with cancer cells teghibit the properties of an
excited cell, with increased levels b$p, see [3, 15, 16, 27]. In this section we follow
in part a presentation of sensitivity analysis due to [26].

We consider the partial derivatives of the solution of thetegn with respect to
the parameters of the system. These are céitlsdorder local concentration sensi-
tivity cogficients Second- or higher-order sensitivity analysis considgtire simul-
taneous change of two or more parameters is also possiblee HenoteX(t,«) =
(X1(t, k), Xo(t, &), . . ., Xa4(t, k) the solution of the system (1)-(14) with respect to the
parameter vector, then the concentration sensitivity dbeients are the time func-
tions 0Xi/ok;(t), forall 1 < i < 14, 1< j < 17. Differentiating the system (1)-(14)
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with respect ta; yields the following set o$ensitivity equations

dox oxX  of(t) .
ak—j = J(t)a_/q + 6—/<, foralll<j<17, (29)
wheredX/ok; = (0X1/0kj, ..., 0X14/0k;) is the component-wise vector of partial deri-

vatives,f = (fy,..., fi4) is the model function in (1)-(14), ani{t) is the corresponding
Jacobian. The initial condition for the system (29) is thyo«;(0) = O, for all 1 <
j<17.

The solution of the system (29) can be numerically integhatieus obtaining a
numerical approximation of the time evolution of the sawisjt coefficients. Very often
however, the focus is on sensitivity analysis around stesdates. If the considered
steady state is asymptotically stable, then one may contsiddimit

fim (35) .

calledstationary sensitivity cggcients They reflect the dependency of the steady state
on the parameters of the model. Mathematically, they arergby a set of algebraic
equations obtained from (29) by settidgdt(0X/«;) = 0. We then obtain the following
algebraic equations:

(Z)=-07F;,  foralll< <17, (30)

whereJ is the value of the Jacobian at the steady statefgrislthe j-th column of the
matrix F = (91, /0ks)r.s computed at the steady state.

When used for comparing the relativBext of a parameter change in two or more
variables, the sensitivity cfiicients must have the same physical dimension or be di-
mensionless, see [26]. Most often, one simply considersidteix S’ of (dimension-
less)normalized(also calledscaled sensitivity codicients:

, Kj 0Xi(t, k) B oln Xi(t, x)

Sij = Xi(t, &) Ok oInk;

Numerical estimations of the normalized sensitivity ffie@nts for a steady state may
be obtained, e.g. with Copasi. F¥t4 (standing for the level afnfp in the model), the
most significant (with the largest module) sensitivity méents are the following:

o 9In(Xea)/IN(T) = 14.24, o 9In(X1a)/dIN(ks) = 0.16,
o dIn(X1)/dIn(k!) = ~0.16, o 8In(Xea)/dIN(kg) = 0.15,
o dIn(Xy4)/dIn(k;) = ~0.16, o dIn(Xy)/dIn(ks,) = —0.99,
o dIn(Xss)/dIN(k:) = 0.49, o dIn(Xya)/dIn(k;,) = 0.24,
o 6In(X14)/6In(kg) =-0.49, o 6In(X14)/6In(k12) =-0.24.

These cofficients being most significant is consistent with the biatagintuition
that the level ofnfp in the model is most dependant on the temperature (parampgter
on the rate ofnfp being sequestered Ihsp (parameters;; andk;;) and the rate of
protein refolding (parametds,). However, the sensitivity cdigcients also reveal less
intuitive, but significant dependencies such as the one @ngifiction rate dfisf being
sequestered blgsp (parameters? andk;), on the rate of dissipation dfsf dimers
(parameteks), or on the rate of dimer- and trimer-formation (paramekgrandk?).

Note that the sensitivity cdigcients reflect the changes in the steady staterfuall
changes in the parameter. E.g., increasing the temperfatume42 with Q1% yields

an increase in the level offp with 1.43%, roughly as predicted }n(X14)/0In(T) =

49



14.24. An increase of the temperature from 42 with 10% yieldsdw@van increase in
the level ofmfp of 31193%.

A similar sensitivity analysis may also be performed witlspect to the initial
conditions, see [26]. If we denote B = X(0, «), the initial values of the vector
X, for parameterg, then thenitial concentration sensitivity cggcientsare obtained
by differentiating system (1)-(14) with respect{:

d oX oX

qIXO ~ J(t)m(t), (31)

with the initial condition thadX/9X©(0) is the identity matrix. It follows then that the
initial concentration sensitivity matrix is given by thdlfaing matrix exponential:

oxX
X0

J(H)K

(
H=eV=> =

.
k=0

Similarly as for the parameter-based sensitivity fiogents, it is often useful to
consider the normalized, dimensionlessfio&nts

% X __aIn(X)
ax<0>,-()' Xi(t) — aIn(X©);)’

A numerical estimation of the initial concentration seingit coefficient of mfp
around the steady state given in Table 3.2 Tor= 42, shows that all are negligi-
ble except for the following two cdkcients: 6In(X14)/6In(X§O)) = —-0.497748 and

6In(X14)/6In(X§%)) = 0.99. While the biological significance of the dependencynég
on the initial level ofprot is obvious, its dependency on the initial leveltefp: hsf
is perhaps not. Moreover, it turns out that several otheialktgs have a significant
dependency on the initial level abp: hsf:

o dIN(X)/dIN(Xe(0)) = 0.49, o 8In(Xg)/dIN(Xe(0)) = —0.04,
o dIN(X2)/dIN(Xo(0)) = 0.49, o 8In(Xy)/8IN(Xe(0)) = 0.49,
o 8In(Xg)/dIN(Xs(0)) = 1.04, o dIn(Xe)/AIN(Xs(0)) = 0.99,
o aIn(Xs)/dIN(Xe(0)) = 0.49, o 8In(Xea)/AIN(Xe(0)) = —0.49,
o 8In(X10)/dIN(Xe(0)) = 0.49, aIn(X11)/9In(Xe(0)) = 0.49,

o

E.g., increasing(go) by 1% increases the steady state valueX-oby 0.49% and

decreases the level &4 by 0.49%. Increasing(g)) by 10% increases the steady state
values ofX; by 4.85% and decreases the leveDaf, by 4.63%.

The biological interpretation of this significant depencienf the model on the
initial level of hsp: hsf is based on two arguments. On one hand, the most significant
part (about two thirds) of the initial available moleculé$iep in our model are present
in bonds withhsf. On the other hand, the vast majoritytoff molecules are initially
bound tohsp. Thus, changes in the initial level b§p: hsf have an immediate influence
on the two main drivers of the heat shock resportsgs andhsf. Interestingly, the
dependency of the model on the initial levels of eithgp or hsf is negligible.
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Abstract

A differential equation-based mathematical model of the heakstesponse
has been introduced in [7] and discussed further in [8]. VEeuwdis in this paper
a Petri-net-based model and compute its P- and T-invaridiMes also give sev-
eral results concerning the boundedness and the deadldbk &fetri-net model.
Finally, we briefly compare the Petri-net model with the @andus model of [8].

1 The heat shock response

The heat shock response is the reaction of cells to elevaetapdratures. Under raised
temperature (or other stress stimuli such as heavy metatsdaation), proteins tend

to misfold and then form big aggregates that may eventuatyler the cell unable to

survive, see [2]. Itis well understood that the main rolehia tell’s reaction to heat

shock is played by the heat shock proteins (HSP), see [9, I3y &ct as chaperons,
helping misfolded proteins (MFP) to refold into their natiform (PROT). The heat

shock proteins have a major contribution also in the reskeof cancer cells, see [1]
and they have been suggested as targets in potential cesanénts, see [5, 13].

In eukaryotes, the heat shock response is controlled thrtheyregulation of the
transactivation of the HSP-encoding genes, see [3, 10]k@eterial mechanisms is
slightly different, see [11]). The kinetic details of the control havenbeisputed in
the past few years, with several models proposed in [6, 10//é]follow in this paper
a new kinetic model for the heat shock response, recentlpgsed in [7]. In this
model, the transcription of the gene is promoted by someepretcalled heat shock
factors (HSF) that trimerize and then bind to a specific DN4ussnce called heat
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shock element (HSE), upstream of the HSP-encoding genee @ecHSF trimer is
bound to the heat shock element, the gene is transactivatetha synthesis of HSP
is thus switched on. Once the level of HSP is high enough, ¢liehas an ingenious
mechanism to switchfbits own synthesis. For this, HSP bind to free HSF, as well as
break the HSF trimers (including those bound to HSE, prongadtie gene activation),
thus dfectively halting the HSP synthesis. In this model we tre#oumly under HSP
all types of heat shock proteins. We have a similar convaritiotreating uniformly all
three types of heat shock factors under the name HSF. PROVIBRdyroup together
all proteins and misfolded proteins, respectively, otlemtHSP and HSF. Table 1
summarizes the list of reactions in the kinetic model of [Tih there we list each
reversible reaction as two irreversible ones, accounting@$ two directions.

MetabolitegPlaces  Reactiofibransitions

p:: HSE : 2HSF->HSHK

p.:  HSF b: HSK —-2HSF

ps: HSPHSF & HSFHSKR ->HSK

ps: HSHK t2; HSFKR - HSFK +HSF

Ps: HS K ts5: HSF + HSE— HSF:HSE

ps: HSRKRHSE & HSKRHSE->HSRKR+HSE

p: HSP t: HSKRHSE— HSFK:HSE+HSP

ps: HSPMFP t3; HSP+HSRKRHSE—- HSPHSF+2HSF+HSE
Po: MFP gy HSP+HSF— HSPHSF

pio: PROT too. HSPHSF— HSP+HSF

ti; HSP+HSFK - HSPHSF+HSF
tiz2 HSP+HSKR —> HSPHSF+2HSF
tizz PROT— MFP

tiss HSP+ MFP - HSPMFP

tiss. HSPMFP— HSP+MFP

tie:. HSPMFP— HS P+PROT

tizz HSP-O0

Table 1: The metabolites and reactions in the molecular mfde heat shock re-
sponse of [7]. They are modeled as places and transitiosigecévely in our Petri-net
approach.

2 Petri-nets
Consider a Petri-net with the set of plades= {ps1,---, pn} and set of transitions
T ={t1,-- -, tm}, forsomem,n > 0. Itsincidence matrix Gs an 1 x m)- matrix (where

n denotes the number of places andhe number of transitions). Every matrix entry
cj gives the token change on the plggey the firing of the transitiom;. Thus, firing
transitiont; changes the state of the system fr8me INJ to stateC; + S, whereC; is
the j-th column ofC. The transition may fire if and only if all entries & + S are
nonnegative integers. If several transitions may fire at@wgn time, one is chosen
nondeterministically.

A T-invariant is defined as a non-zero vectoe INJ', which holds the equation
C - x = 0. A T-invariant represents a multiset of transitions, whiavé altogether a
zero dfect on the marking.

Analogously, a P-invariant is defined as a non-zero vegterINj) such thaty' -
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C = 0, wherey! is the row-vector transpose gf A P-invariant characterizes a token
conservation rule for a set of places, over which the weijbtan of tokens is constant
independently from any firing.

A net is covered by T-invariants (P-invariants), if evergrsition (place) partici-
pates in a T-invariant (P-invariant).

3 Modeling method

Each metabolite in the molecular model is represented aace jph the Petri-net, la-
beled byps, p2, ..., pio as indicated in Table 1. The reactions in the model are repre-
sented as transitions injectively labeledthbyt,, . . ., t17, see Table 1.

The 17 molecular reactions can be classified in 8 basic typesotions:
() A+ A— B; (i) A+ B— C; (ii) A+B—>C+D;(iv) A—> B+C;
(V) A— A+ B; (vi) A— B; (vii) A — 0; (vii) A— B+ B.

We illustrate in Figure 1 each type (i)—(viii) with react®from our model. When
composing the Petri-net components corresponding to atitiens (by merging the
places with identical labels), we obtain the Petri-net madEigure 2.

The tokens in a place represents the number of copies of thespmnding metabo-
lite existing in the model at the time.

IHSF-=HEF2 ©—7—>I—>O M—)@
HSF HSF2 HEF 3 HSE->HEF 3 HSE+HEP
™

HSF3HSE

HEF3

HSF3 HSE-=HSF3HSE
F'ROT =MFP
™ HSF3:HSE

PROT

HSP HSF2->HSP HSF +HSF ;I: H%; HSF Q—Ts’l
HEF

HEF2

T=
HSFP HSF
HSF

HEFZ

Figure 1: Petri-net components for HSR model.

The Petri-net modeP of the heat shock response, obtained by composing the

blocks corresponding to each reaction in Table 1, is showiigare 2. The net consists

of 10 places and 17 transitions, which are listed by theiriiD biological reactions in
Table 1. The net structure consists of two parts connectedth other by the place
HS P. The first part is devoted to the back-regulation if th® Ptransactivation and it

is the dominant part of the model under physiological caodg (at temperature 37C).
The second part is devoted to the misfolding of proteins &edchaperone activity

of HSP, whose activity is greatly increased under raiseotgature. The incidence
matrix of the Petri-net modé? is in Table 2.
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Figure 2: A Petri-net of the HSR.

tt tiy Lt t7 5 tw L t 3 tu tz tg tiz tiy tis Tl
P2 0 0 0 0O 0 -1 0 0 1 0 O 0 1 0 0 0 0
P2 -2 0 2 -1 0 O 1 1 0o -1 1 2 2 0 0 0 0
Ps 0 0 0 1 0 0 -1 O 0 0 1 1 1 0 0 0 0
Pa 1 0O -1 0 0 O 0 1 0 -1 -1 O 0 0 0 O 0
Ps 0 0 0 O 0-1 0 -1 1 1 0 -1 O 0 0O O 0
Ps 0 0 0 0O 0 1 0 0 -1 O 0 0 -1 O 0 0 0
p7 0O -1 0 -1 1 O 1 0 0 o -1 -1 -1 0 -1 1 1
Ps 0 0 0 0O 0 O 0 0 0 0 0 0 0 0 1-1 -1
Po 0 0 0 0O O O 0 0 0 0 0 0 0 1-1 1 0
P10 0 0 0 0 0 O 0 0 0 0 0 0 0-1 O 0 1

Table 2: The incidence matrix of the Petri-net depicted guké 2.

4 Analysis of the Petri-Net and its biological interpre-
tations

In this section, we calculate the P-invariants and the &iiants of the Petri-net (Figure
2). Based on the invariants, certain analysis for the hestistesponse model behavior
will then be given.

To calculate the P-invariants of our model, we solve theesyst- C = 0 over
nonnegative integers, whetis the incidence matrix of the model amds ]Néo. We
obtain the following three independent solutions:

Pr P2 P3 Psa Ps Ps P7 Ps Po Pio
XxX= @ 0 0 0 0 1 0 0 0 0

= 0 1 1 2 3 3 0 0 0 0
X”= (0 0 0 0 0 0 0 1 1 1)

Based on the above vectors, three P-invariant equatiomedfd¢at shock response
model are written:

S(HS B + S(HS FsHS B = Ky, 1)

S(HS F) + 2S(HS ) + 3S(HS Fs) + S(HS PHS F) + 3S(HS FxHS B (2)
= Ko,

S(HS PMFP) + S(MFP) + S(PROT) = K, 3)
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for some constants;, Ko, K3 > 0 and for any stat8& of the Petri-net. Here we denote
by S(X) the number of tokens in plac€in the stateS.

The first invariant says that the total number of heat shoekehts in the model,
either free or bound to HSF3, is constant. The second inviat@ls that the total
amount of heat shock factors, in their various forms, is etststant. The third invariant
shows that the total amount of proteins other t#® P and HS F, either correctly
folded, or misfolded, is also constant. All these invargamive an intuitive biological
interpretation. The first one is evident: since the heat lsledements are specific
regions of DNA, their total number is clearly constant. Asda the second one goes,
it is clear from the list of reactions in Table 1 thd& Fs are neither synthesized, nor
degraded. Rather, they participate in various reactiaorsnihg bonds with various
metabolites. The third invariant is evident for the samesoea: neithePROT, nor
MFP is either synthesized, or degraded.

We can calculate T-invariants by considering the system = 0 over nonnegative
integers. We obtain the following solution, written by indiing the reactions for each
T-invariant:

(2HSF—- HSFR) + (HSFEHSP— HSF+ HSP+ 4)
(HSP+HSFK, - HSFEHSP+HSH
(2HSF—- HSFK)+ (HSFHSP— HSF+ HSP (5)

+(HSP+HSFK —- HSFEHS P+ 2HSF)
+(HSF+HSF, - HSK)

(2HSF-> HSR)+(HSFR+HSE—- HSRK:HSE (6)
+(HSFEHSP— HSP+HSPFH + (HSF+ HSF, - HSF3)
+(HSP+ HSR:HSE— HSFHS P+ 2HSF+ HSE)

(HSP—- 0)+ (HSKRHSE— HSKRHSE+HSP @)
(PROT— MFP) + (HSP+ MFP - HSPMFP) (8)
+(HSPMFP — HS P+ PROT)
(HSP+ MFP - HSPMFP) + (HSPMFP —» HS P+ MFP) 9)
(2HSF—> HSR) + (HSFK — 2HSPH (10)
(HSP+HSF—- HSFEHSP + (HSFEHSP— HSP+ HSF (11)
(HSF+HSFR, > HSR)+ (HSR > HSRK + HSH (12)
(HSRR+HSE—- HSKRHSE + (HSR:HSE— HSKR + HSE (13)

The T-invariants (9) - (13) are trivial, indicating the twarettions of reversible

reactions. Invariant (4) is thedS P— HS F, capture cycle; invariant (5) is thdS P—

HS R capture cycle. Invariant (6) is the main cycle, wits F; binding toHS Eand

HS PfreeingHS F. Invariant (7) says that the only way to compensate for déggta
HS Pis by translating it from genes. Invariant (8) is the chaperactivity cycle:
proteins get misfolded{ S Pbinds to them and then releases them as correctly folded
proteins.

Consider now the reachability problem for our Petri-net. alsexample, let the
initial marking beSy = (1,3,0,0,0,0,0,0,0, 1). In this case, all transitions are even-
tually enabled, while the network is not bounded. It can EngbatS, is a minimal
initial marking with this property. In this case the reacitisbgraph is infinite, while
the coverability graph consists of 48 nodes. As another gi@tet the initial marking
beS{ = (1,1,0,0,0,0,1,0,1,1). In this case the net is bounded. There are only 10
markingsx that are reachable frof,, see Table 3 and Figure 3.
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HSE HSF HSHSF HSH, HSP HSPMFP MFP PROT  #M

HSH,

HSEHSE
Sg HSE HSF - - HSP - MFP PROT 5
S1 HSE HSF - - - HSPMFP - PROT 4
S, HSE HSF - - HSP - 2MFP - 5
S3 HSE - HSPHSF - - - MFP PROT 4
Ss HSE HSF - - - - MFP PROT 4
Ss HSE HSF - - HSP - - 2PROT 5
Se HSE HSF - - - HSPMFP  MFP - 4
S; HSE - HSPHSF - - - MFP - 4
S¢ HSE HSF HSHSF - - - MFP - 5
Sg HSE - HSPHSF - - - PROT 4
Sio HSE HSF - - - - PROT 4

Table 3: Reachable markings within the initial markBg= (1,1,0,0,0,0,1,0,1,1).

The following two results give some results about the rebitinaproblem of our
Petri-net and about its possible deadlocks. The first reshdtvs that a deadlock is
characterized by the P-invariant given at (2).

Theorem 4.1. The Petri-nef” modeling the heat shock response may reach a deadlock
starting from the initial marking S if and only if 1S F) + 2S(HS F,) + 3S(HS ) +
S(HSFHSP+3S(HS Rs:HS E) < 1. Equivalently, §HS ) = S(HS F3) = S(HS K3
‘HSE =0and SHSF + S(HSFHSP < 1.

Proof. Assume first an initial markin® = (a, n;,n2,0,0,0,b, c,d, €), witha, b, c, d, e,
ny, Nz € IN, n; + n; = 1. The following sequence of transitions leads to deadlock:

S —'t% (any,n,,0,0,0,b,c,d+e0)
—ls (a,n1,n2,0,0,0,b+¢c,0,c+d+¢e0)
—%% (a,1,0,0,0,0,b+c+ny,0,c+d +e0)

bt+c+ng

—4% " (a,1,0,0,0,0,0,0,c+d + & 0).

Assume now an initial marking from where® may reach a deadlock. Note that
P =SHSF +2S(HSF,) + 3S(HSF) + S(HSFHSP + 3S(HSFK:HSE) is a P-
invariant of the Petri-net and so, constant throughoutrtiesitions of the Petri-net. To
conclude the theorem, it is enough to proof thagh it 2 then at least one transition is
applicable toS. Assume then thgp > 2. If S(HSF,) > 1, orS(HSF:HSE) > 1,
then transitions,, t4, t10 andts are applicable t&, respectively. On the other hand, if
S(HSR) + S(HSF3) + S(HSFHSP + S(HSF:HSE) = 0, thenS(HSF) > 2 and
so,t; is applicable td&. m]

Intuitively, Theorem 4.1 shows that, given enoug8 Fs, the network runs indefi-
nitely, albeit it may run through only a finite number of swt&he case where the net
runs through an infinite number of states is described in fdmaadl.2.

Our second result relates the reachability problem to thev@iants (1) and (2).

Theorem 4.2. The following conditions are equivalent:

(i) the reachability graph of the Petri-né& modeling the heat shock response is infi-
nite when starting from the initial marking S;

(ii) the place HSP is not bounded when starting from theahitiarking S ;
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S9(1,1,0,0,0,0,0,0,0,2) $3(1,0,1,0,0,0,0,0,1,1) $7(1.0,1,0,0,0,0,0.2,0)

$5(1,1,0,0,0,0,1,0,0,2)

47

S6(1,1,0,0,0,0,0,1,1,0)

17

® 13 ® 13 @

$10(1,1,0,0,0,0,0,0,0,2) $4(1,1,0,0,0,0,0,0,1,1) Sg(1,1,1,0,0,0,0,0,0,2)

Figure 3: Reachability graph from the markiSg.

(iii) transition t7 is eventually enabled when starting from the initial magk;

(iv) S(HS B) + S(HS F:HS B) > 1and SHS F) + 2S(HS Fy) + 3S(HS Fs) + S(HS F
:HSP + 3S(HSR:HSE) > 3.

Proof. (i) & (ii). If the reachability graph of is infinite, there must exist at least
a place which is unbounded. Based on the P-invariant (1)a{3)laces except
HS Pare bounded. The reverse implication is obvious.

(i) e (iii). If HS Pis unbounded, then there must exists at least a transitiéchwh
is involved to provide infinitely many tokens intéS P. In our case, transitioty
plays in this role. Conversely, the plaEks Preceives infinitely many tokens as
long asty fires infinitely.

(i) © (iv). If t7 is enabled in stat&’, thenS’'(HS Fs:HS E) > 1. Then (v) follows
based on the P-invariant (1) and (2).

For reverse direction, iS(HS R:HSE) > 1, thent; is enabled inS. If not,
thenS(HSE) > 1 andS(HS F) + 2S(HS ;) + 3S(HS F3) + S(HSFHS P > 3.
If S(HSF) > 1, thent; will be enabled after firings first. Otherwise, we
obtain thatS(HS F) + 2S(HSFR,) + S(HSFHSP > 3. If S(HSF,) > 2, then
t; gets enabled after firint, t3 andts (which are all enabled when fired). If
S(HSFK,) = 1, thenS(HSF) + S(HSFHSP > 1. Thus,t; is either enabled
in S, or gets enabled after firingg in S. Firing t3 and thents yields a state
wheret; is enabled. IfS(HSF) = 0, thenS(HSF) + S(HSFHSP > 3.
With a discussion similar as above, we notice that we mayhr@astate with
S(HS R) > 1 after which, firingts yields a state wherg is enabled.

m]

Intuitively, Theorem 4.2 shows that in order to have the ekwun as expected
(potentially run through an infinite number of states), thsib requirement is to have
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at least one heat shock element in either of its two forms alehat three heat shock
factors, in either of their possible forms.

Corollary 4.3. The reachability graph of the n@ is bounded if and only if
S(HSRHSB =0
and either HSE) = 0or S(HSF) + 2S(HSF)) + 3S(HSR) + S(HSFHSP < 2.

Proof. The reachability graph of is bounded if placeHS P is bounded. HS P is
boundedff S(HS R::HS E) = 0, in other wordgy is disabled, and alst is disabled.
Conversely, it7 is disabledHS Pis bounded, thus, reachability graph is bounded.

5 Conclusion

The invariants of the Petri-net model correspond to prégedf the continuous model
of [8]: the P-invariants correspond to the mass-consemattlations and the T-inva-
riants correspond to the elementary modes. This relatibowie from the fact that

the incidence matrix of the Petri-net model coincides wht $toichiometric matrix of
the continuous model and has been reported many times bs&gee.g., [12]. The
types of analysis one can perform with the two approachesi@amever completely
different. While the continuous model gives interesting stetalg analysis, including
sensitivity analysis, the Petri-net allows reasoning atiloel network itself, albeit in

qualitative, rather than quantitative terms. E.g., we gav&heorem 4.1 a simple
condition for the network to run indefinitely, regardlesstloé transitions to be fired
along any path. Similarly, we showed in Theorem 4.2 that tbd@hmay run through
an infinite number of states only by firing transitigrinfinitely many times, should it
ever become enabled.
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What is semiotics?

It is the study of sign processes. A sign can be understoodriows ways. There is
a binary representation of a semiotic system as a coupleeibimg a signifier and a
signified (a sign and its meaning). There is also a triadicasgntation of a semiotic
system, in its modern form being conceived as a sign, itscblajed its interpretant.
For the first view, we can mention Ferdinand de Saussure ribiemj of the XX-th
century); the author of the second view is Charles SanddrseR@ne of the most
important American mathematicians of the second half ofXhéth century. He is
also considered as the founder of modern semiotics, bubtts of the study of sign
processes can be observed already in the Greek antiqatyiritthe Middle Age, then
in the period of the XVII-th and XVIII-th centuries (John L&, W. G. Leibniz etc).
In respect to the binary view, the word 'horse’ and its megn@a sign system. In
the ternary view, the corresponding semiotic system isrgik@ughly speaking, by the
word 'horse’, its object, represented by the animals cdileses, and its interpretant,
the meaning of the word 'horse’.

Concomitantly with the researchers having deliberatelyhas object of study the
sign processes, there are also the so-called “semiotieidaslourdain”, i.e., those
authors who are doing semiotics without to be aware of thas fehis situation occurs
frequently and we can conjecture that the number of suchérhpémioticians is larger
than the number of those who deliberately are involved inisécrstudies.

The emergence of biosemiotics

Sign processes occur everywhere in the living universeasurding to some authors,
they occur also in the inert universe. Implicitly, i.e., ‘@ Jourdain”, many authors,
in various periods of the history, have done semiotic reseaoncerning living non-
human beings. The first author who deliberately made a prégethe investigation
of sign processes in animals was Thomas A. Sebeok, the foohttmosemiotics’. In
a further step, he extended his project to all living beings eoined in ths respect the
term 'biosemiotics’. All these events occurred in the setbalf of the past century.
But it is important to identify those scientists who, desgpiiteir ignorance in semiotics,
obtained results having a semiotic significance. Sebeod ltitlof work in this respect.
For example, he pointed out the huge semiotic significantiesofvork done in the first
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half of the past century by the German biologist Jakob vonkulxby his concept of
Umwelt, a new way to understand the subjective surrounding.

The Darwinian tree-model in language evolution and in DNA ewlu-
tion

During a long period, historical linguistics adopted the\@iaian model, proposed by
August Schleicher(1863) as a guiding metaphor, accordirthe biological founda-
tions of human language. The 'tree-model’ became an exptanaf the language
evolution. Then it was the wave model, proposed by J.Schfd@f2): a change
spreads through a language in the same way as a stone seplds Apross a pool.
Recently, P.Forster(1997) succeeded to bridge these ewpwaints, by means of a ge-
ometric network model, previously used for reconstructiid/A evolution; the same
model was applied to vocabulary lists of closely relatedjleage. Forster starts with
the remark that it would be desirable to visualize both tsgeeats and wave aspects of
language evolution is a single diagram and observes thatythe of problem is per-
fectly tailored to network methods originally developedreconstructing phylogenetic
relationships from DNA sequences. During evolution, a gi&A sequence acquires
mutations at random positions, causing the progeny segseancbecome more and
more dissimilar from one another and from their ancestrglisace as time passes,
yielding the tree-like aspect of DNA evolution.

From the biological perspective about language to the lingstic per-
spective in molecular biology

Already in the preceding section, the solidarity betweergleage and DNA clearly
appeared. Towards the middle of the past century, the medevaf the linguistic per-
spective in molecular biology became stronger and strongarguistics became a
guide for biology, mainly in respect to the new discoveriethie field of heredity. Un-
der the leadership of Roman Jakobson, a lot of linguistiaptatrs used in molecular
biology (letters, words, alphabet, grammar, dictionaogles meaning etc) became ob-
ject of investigation, in order to test their legitimacy bey their metaphorical status.
| did a synthesis and a continuation of the achievementsigndihection in the first
part of my “Linguistic structures and generative devicemmiecular biology” (1974)
and | proposed the following representation: there is a ietenguage; DNA and
RNA define the two strata of its chemical part, that could bestered the syntactic
level, whose phonemes are the four types of nucleotide lzasksvhose morphemes
are the 64 types of codons. There is a semantic level, defipdidebbiological part,
having in its turn two strata: the amino acids and the prsteiDNAs are words over
the alphabet of the four types of nucleotides, while pra@ire words over the alpha-
bet of the 20 types of amino acids. The so-caled genetic codelictionary putting in
correspondence theftirent types of codons with theftirent types of amino acids.
This correspondence is not devoid of synonymy and homonymppmena, although
they are here far poorer than in natural languages. The phiorstatus of nucleotide
bases is in details legitimated, as well as the morphentigsstd codons. There is also
a DNA equivalent to the so-called duality of patterning pijate (“la double articula-
tion” introduced by Andre Martinet): DNAs are organized wotlevels: the level of
some minimally meaningful units, the codons, which, in thein, are decomposable
in some meaningless units, the nucleotide bases. Hereningdfal’ and 'meaningless’
mean 'endowed with’, respectively 'devoid of’ biologicabaning. The number of the
meaningless units is much inferior to the number of the megtal units (here, 4 to
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64). The analogy between natural language and geneticdaegyoes deeper, but we
cannot develop more here.

The formal grammar approach to DNA

The first steps in approaching DNA-proteins interaction Bams of formal grammars
were made by Z. Pawlak, B. Vauquois and myself (Marcus 1974djvlak used some
dependency grammars, only sketched; starting from themggdgsed to Vauquois to
transform Pawlak’s device into a Chomskian grammar. Heiobtha context-free
grammar including 50 rules. This happened at the Intengliseiry Seminar | or-
ganized during the Linguistic Institute of America, fBalo, New York, July-August
1971). However, protein formation is not obtained by medrhis grammar; we need
to direct attention towards the language of derivationsha respective grammar. It
was already known that the language of derivations in a gbffitee grammar is a
context sensitive grammar which may not be context frees Thjust the case with
protein formation. So, we could say that the grammar of jmetés like the natural
languages: somewhere between context free and conteitiwseniset us observe that
this was the second event related to the relevance of forraatmars in the biology
of the human body. Chronologically, the first example in tieispect was obtained by
W.S. McCulloch and E. Pitts (1943), with a logical calcuthsf could be equivalent to
a grammatical device) of ideas involved in the activity ofumelis systems; the second
example related to the nervous system was given by S.C. E(#8B66)and it was con-
cerned with the representation of events in nerve nets aitel intomata (proved to be
equivalent to regular grammars).

This methodological similarity between the nervous sysdechthe molecular level
of the human existence deserves attention.

Linguistics, a common denominator of interest for computersci-
ence, molecular biology and semiotics

Formal grammars have their starting point in the generaproach to natural lan-
guages, as it was initiated by Noam Chomsky (1956, 1957)himway, linguistics
belongs to the foundations of computer science, becaussytitax and the seman-
tics of programming languages are studied by means of fognaehmars. As it was
pointed out in the previous sections, molecular biologyesagrofit from linguistics
and from formal grammars, because at all levels (of DNA, ofARMd of proteins) it
displays some sequential structures over some finite agghashowing strong archi-
tectural similarities with natural languages. Linguistis historically and structurally
related to semiotics. One of the roads to semiotics, therpioae, has as one of its
main representatives the prominent linguist FerdinandalesS8ure. Language is the
most important sign system in the human life and in the huroaresy). Moreover, it
was a period, during the first steps of organization of therhstional Association of
Semiotic Studies (IASS), of its main journal 'Semioticadaof the First Congress of
IASS (late sixties, early seventies of the past centurymiinguistics was the main
source of ideas and of methods for semiotics; the latter wieisd of extension of
the former. Then, this "pilot role” of linguistics was no lger recognized, but in the
last two decades formal grammars have a very important nol2NA computing, in
membrane computing and in computer science in general.ngakso into account
the importance of concepts such as text, context, inteetagthypertext, we could
say that, if not linguistics, then formal linguistics keafssuniversality (see also the
re-consideration of formal grammars in computationaltiistics). Ultimately, let us
recall the biological reality of the functional diversift@@n of the brain hemispheres,
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the left one being mainly oriented towards sequential #iines, i.e., towards language
and logic.

The semiotic claim: life is a semiotic phenomenon

This claim was expressed by authors such as Jesp@mieger(1997, 1998) and Mar-
cello Barbieri (2007). To the question: Is the cell a seriptienomenon? Barbieri
gives an #lirmative answer, claiming that “signs, meanings and codiss eat only in
the mental world, but also at the molecular level”, so “th# isea genuine semiotic
system”. For H&meyer, life, at its most basic, depends on the survival ofsagss
written in the code of DNA molecules and on the tiny cell - theifized egg - that must
interpret the message and from it construct an organismHBfimeyer, the problem
is to explain how nature could come to mean something to sonmebhe problem of
meaning is crucial. However, going now back to Barbieri, fillowing statement is
interesting: “...the genetic code would be real only if itsrgssociated with the produc-
tion of meaning, but modern science does not deal with megaguirx in “Introduction
to Biosemiotics”) Then, similarly: “That is the challengebiosemiotics: the codes are
a fundamental reality and we simply have to learn how to thice signs and mean-
ings in science” (idem, p. xi). It seems that whatffioeyer and Barbieri have in view
when they refer to 'meaning’ is 'information’. Shannon’gtry is dealing with what
is called sometimes ’'selective information’; it fails tgotare the semantic information.
This is the price Shannon has to pay in order to obtain thalgtigsto introduce a unit
of information, the bit, and to measure, by means of it, thengjity of information. An-
other important fact is Hdmeyer’s idea that life is a surface phenomenon; he has in
view the membrane and quotes Von Foerster, who has proposédidebius strip as a
topological representation of the kind of logic pertaintogself-referential cybernetic
systems. In this framework one can speak of an outside antarid of an inside exte-
rior. These categories are realized through semiotic loApsopiesis (U.Maturana,F.
Varela)and semiosis are supplementary categories. L8yistgms may be seen as con-
sisting essentially of surfaces inside other surfaces.

Towards computational biosemiotics

This is a slogan deserving attention of both biosemiotemd people doing research
in biocomputing. My published work in this respect concetimguistic structures and
generative devices in molecular genetics; an attempt tlgbP systems and genomics;
the logical and semiotic status of Jacok von Uexkull's cahod Umwelt; an attempt
to bridge Uexkull's Umwelt (conceived as an eco-system)@adway’s game of life;
an emergent triangle: semiotics, genomics, computati@sémiotics of the infinitely
small: molecular computing and quantum computing; symym@tenomena in infinite
words, with biological, philosophical and aesthetic ralese; quasi-periodic infinite
words (whose finite version was inspired by DNA). The work eldoy Tom Head,
Gheorghe Paun, Grzegorz Rozenberg, Arto Salomaa et ak fietd of Watson-Crick
finite automata, DNA computing, membrane computing andrdiblels related to non-
classical computation has a semiotic potential deserargtpointed out.

Emmeche’s computational notion of life

Claus Emmeche (The computational notion of life Theorid (2994, 1- 30)proposed
a computational notion of life, just a moment before Lenadiiednan realized, in 1994
his crucial experiment concerning DNA computation. Fos tigiason, it is important to
examine Emmche’s ideas in order to better understand tta¢ goselty of Adleman’s
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result. Emmeche examines the relation between metaphodtans of living organ-
isms as information processing systems and “the idea fledtdelf is a computatonal
phenomenon”. Emmeche believes that “the cell has probalitg gpecific kinds of
'informational’ processes for which we might have no eqglémnanotions within nei-
ther computer science nor the field of bioinformatics” andaodes that “the general
guestion of the biosemiotics of the cell should not be coedlugith a metaphorical use
of informational terms”. Let us observe that in both DNA cartipg (Adleman 1994;
Paun, Rozenberg, Salomaa 1998) and computing with menmb(Baan 2000) the use
of informational and computational terms is no longer metajal; the problem of
biological computation isféective. Emmeche accepts to speak about biological infor-
mation at the intracellular level, but he claims that thi®imation is of a dfferent
nature than information in the computational sense. Todlaisn one could reply that
as soon as hiological computation enters the scene in betindtical and experimen-
tal sense, one can no longer oppose the computational ngeahinformation to its
biological meaning. Here is an interesting quotation fromnieche(1994:9):

Sometimes one sees an explicit and intended use of intethttionognitive
terminology within cell biology, suggesting for instanbatthe cytoplasm
of the cell is an intelligent machine [...] because the sefiéen as having
many of the data-processing capacities of the computer.

In this respect, the novelty brought by biological compiotats that the cell not only
has the capacities of a computer, but it is a (potential) agemp

Let us observe that all factors explaining the success oémdh’s experiment
have an important semiotic weight. The first factor, Wat&ritk complementarity,
is genuine to heredity, already recognized by some leaditfypas in the field of the
philosophy of biology as a sign process; it was transfemezbimputer science under
the status of Watson-Crick automata (Salomaa 1998). Andéuntor, the use of a
right codification, is obviously of a semiotic nature. A thiiactor, the use of massive
parallelism, concerns the strong transgression of theesgigh nature of DNA and
RNA structures, giving to molecular computation a powet ttoauld not be conceived
in terms of classical computation. All these factors leatht® surprising superiority
of molecular computation in respect to memory and speedreliseone more aspect
explaining the success of Adleman’s experiment: the exigteof a huge number of
DNA molecules in a very small space. It points out the contbasween the spatial
and the semiotic size, in favor of the latter. This factor i®®trongly involved in
the dficiency of molecular computation, which is linear in the n&@mh of vertices,
contrasting with classical computation, which is exporaim n.

Taking into account that similar facts occur in the field ohgtum computation,
we may conclude with the following semiotic message: We aa@ihg the Leibniz
symbolically computational metaphor of mind and we enteg\a ane, much stronger.

Bridging semiotics, genomics and computation

At the crossroad of molecular biology, computer scienagguistics and mathemat-
ics, under the stimulus of the recent Human Genome Projecbhthe emergence of
genomics, important semiotic problemms appear, in a pergpéar away from the
framework of classical semiotics. The gene-protein irtgoa points out a syntactic-
semantic interplay, where similarity is a basic tool of istigation. But, as Richard
Karp (Mathematical challenges from genomics and moledtitdogy, Notices of A.M.
S. 49, 2002, 5, 544-553) shows, this line of research leagséstions of high compu-
tational complexity. Algorithmic and computational biosetics seems to be a field
that no longer can be ignored.
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The Gregor Mendel’s conjecture

This conjecture (1865) asserts the existence of some thsanés of information (later
called genes) which are responsible for the individual etspef an organism. It was
the sign of departure of a very non-conventional semiotigagion. Let us examine

it. Usually, the visible world accounts for the invisibleiverse, i.e., we are looking
for visible signs accounting for the objects or situatiorigcli are beyond our percep-
tion. The macroscopic world is, in most situations, th sewtsigns accounting for
the quantum world as well as for the cosmic processes. Wevatarhypotheses con-
cerning the similarity gand the contiguity between some models built by means of
the macroscopic world and some hypothetical phenomenaiwadinld of the infinitely
small or in that of the infinitely large.

A non-conventional semiotic scenario

In contrast with this traditional situation, the scenanopgmosed by the semiotic prob-
lem of genetics and of molecular biology, as it was formudig Mendel and by his
followers, is just the opposite. We are no longer lookingf@croscopic signs of some
non-macroscopic phenomena, but for signs in the infinitedpalsworld, accounting
for macroscopic phenomena. Instead to have a presencerdicapior an absence, we
look, in some respect, for an absence explaining a presence.

From invisible entities to visible aspects of inheritance

How inheritance is the result of a representation procegmgats source in the life
of the cell? This question is a challenge for about 150 yeditse functioning of
the cell is described in terms of interactions among thrassels of macromolecules:
DNA, RNA, and proteins. Predicting the 3-dimensional stue of a protein from the
knowledge of its linear representation as a sequence ofaatids (which, in its turn,
is the result of some RNA, transcription of some DNA) is an artgnt open problem;
itis investigated by genomics, whose object is the studyeofbgne, defined as the total
of DNA molecules in a living organism. The cell has a systeoriganization, with
genes and proteins as interacting subsystems. It is fortlorgknown that genes are
encoded within DNA molecules, the latter being packagediomosomes, included
in the cell. In 1953, we learned that DNA has a double-hefixtire consisting of two
strands connected by a very rigorous rule and carrying thee ggenetic information.
Two codification processes occur: the first one is a simplestndption from DNA to
RNA, while the second codification is realized by means of &emdar machine called
ribosome and moving from RNA to proteins.

The emergence of linguistic metaphors

The analogy between genetics and linguistics involvesrtirester in genetics of many
linguistic terms. Nucleotide bases are phonemes, codemsarmphemes, they are, like
in linguistics, grammatical or lexical; The chemical strat(DNA, RNA, nucleotide
bases, codons) defines the syntax, while the biologicdlstréamino acids, proteins)
defines the semantics of the genetic language. The dictideading from codons
to amino acids involves synonymy and homonymy phenomersa,like in natural
languages.
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Does heredity have really a language structure?

The basic question is: to what extent are these metaphonmsjptssn of some deeper
phenomena, motivating to consider heredity having a laggs&ucture not only meta-
phorically, but in a deeper sense? A tremendous quantitgeérs concerned with this
problem was published so far. One of the initiators of thésitt of research was Ro-
man Jakobson and we took from him this problem, in our artidleguistic structures
and generative devices in molecular genetics” (Cahiersidguistique Theorique et
Appliquee 11, 1974, 1, 77-104) continued by “Language atctiossroad of compu-
tation and biology” (in G. Paun, ed. “Computing with Bio-molules. Theory and
Experiment” Singapore et al.: Springer, 1998, 1-35).

From utterances to cistrons

So, we learn that the linguistic level of utterances has sagénetic correspondent
the level of cistrons. According to Z. S. Harris (Structuradguistics, Chicago Univ.
Press, 1961), an utterance is any stretch of talk, by on@pgbgefore and after which
there is silence on the part of the person. Taking into accthat the genetic cor-
respondent of the silence could be the starting codon AUGHmdtop codons UAA,
UAG, and UGA, we define the cistron as a segment of RNA whiclirtsagith the start-
ing codon and ends with one of the stop codons. So, the cigtrastring of codons.
Utterances are subjected to the whole syntactic ambig@igynatural language, while
the genetic meaning of a cistron is uniquely determinedabse, according to some
classical results, there is a one-to-one corresponderiaede cistrons and polypep-
tide chains (which replaces the old corresondence betwesssgand proteins). Other
units, such as operons, were also discussed in the literatur

Computational biosemiotics enters the scene

The first aim of genomics is to sequence and compare the gesafrdifferent species.
To sequence a genome means to make explicit the bases cogpposiccording to the
analogy between bases and phonemes, the considered opésaiimilar to what was
done in American descriptive linguistics under the name lafrmic segmentation
(Harris 1961). From the genome of the individuals one map Eads to the genome
of human species. Each individual has its specific genomettdads true for both
human and non-human beings. However, insight a definitaesptee situation is very
misleading. For instance, on the one hand, any two humaeg agrabout 999 bases
out of 1,000 (Karp 2002:545), but, on the other hand, the gesoof any two humans
differ considerably.

Syntax and semantics

The sequencing operation, a purely syntactic one, is aframdost accomplished. The
next part of the Human Genome Project (HGP) is directed tdsvre semantics of the
genome. Let us recall that syntax involves only concateeaspects, such as sequenc-
ing DNA or proteins as strings over some finite alphabet. @gidfior the semantics of
the HGP is the task to determine the functions of the proteisishey are encoded by
various genes, and to find out, for each gene, what proteiroduged and activated.
This task is very bold, because the human genome containg #iree billions base
pairs and about 35,000 genes. It seems, however, that,pece® the aim fixed in
1990, HGP can be appreciated as a great success.
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Bridging P systems and genomics

Bridging genomics and P systems could give to the former dissipility to take profit

of the computational capacities of the latter. Moreoveggastions coming from ge-
nomics could enrich the study of P systems with new bioldgacal computational
ideas. The following lines aim to be a preliminary step irstfaspect.

Life is DNA software + membrane software

“Life is a surface activity” [...] “Life is fundamentally afut insides and outsides”
(Jesper HEmeyer, “Surfaces inside surfaces”, Cybernetics and Hunraowkhg 5(1),
1998, 33-42; “The biology of signification”. PerspectivasBiology and Medicine
43(2), 2000, 252- 268). Relevant parts of the environmemirernalised as an in-
side exteriofinner outside (the so-called Uexkull's Umwelt (J. Uexkdlthe theory

of meaning”. Semiotica 42(1), 1982, [1940], 25-82). Therespntation of certain
environmental features inside an organism by various méaeskull, 1982), while
the interior becomes externalised as a outside infeooter inside, in the form of
the “semiotic niche” (H&meyer 1998), as informed and changed by the inside needs
of the organism pertaining to that niche (C. Emmeche, K. KEhBtjernfelt, “Read-
ing Hoffmeyer, rethinking biology” Tartu Semiotic Library 3, Tartiniversity Press,
2002). This insidgutside interplay is made possible by the membrane striuily
erning the tréfic between them. P systems (Gheorghe Paun, Membrane Cogiputin
An Introduction. Berlin et al.: Springer, 2002) find theiaing point in this biologi-

cal reality, to which a computational dimension is addedadreement with the ideas
of DNA computing and membrane computing, S. Wolfram (A Newdof Science.
Wolfram Media, Inc., October 2001) proposed to see life asigeusal Turing ma-
chine, to which G. Chaitin (Bulletin of the EATCS 2002) adts tondition of a high
program-size complexity. The project of bridging genonaing P systems could have
the slogan: Life is DNA software membrane software.

P systems and the Human Genome Project

The HGP is a good starting point for the problem raised in theva title. of ths A P
system with replicatd rewriting is a constructR V, T, m, M(1), ..., M(m), R(1), ...,
R(m)¢,, where V is an alphabet, its elements are called ahj€ds contained in V and
it is called the output alphabet; m is a membrane structunsistng of m membranes
(or regions of a membrane) labeled 1, 2, 3, ..., m, such tledt eembrane, except the
first is completely contained within another; M(1), ..., M(are finite languages over
V; R(1), ..., R(m) are finite sets of developmental rules. Trguages M(i) and the
rules R(i) are associated with the regions of m, for any i leetwl and m. This variant
of P systems, whose general theory belongs to Gheorghe Pasas, proposed by J.
Aguado, T. Balanescu, T. Cowling, M. Gheorghe, M. HolcomBelpate in Funda-
menta Informaticae 49(1-3), 2002, 17-33. Its advantageléating with genomics is
the distinction between an input and an output alphabetughal , starting interpreta-
tion of the objects forming the alphabet of a P system is tokthi them as molecules.
The general theory of P systems does not depend on the wayeawvpriet these objects;
however, the intuitive representation of them decides tr@el extent the type of prob-
lems which are investigated. Now the question is: which laeeRt systems accounting
for the tasks of genomics: a)the syntactic task: to sequandeompair the genomes
of different species and b)the semantic task: to identify the gemésletermine the
functions of the proteins they encode.

Referring to P systems of the type considered above, a featiglto work with an
alphabet V including both the types of nucleotide bases hadyipes of amino acids,
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while the output alphabet T contained in V will be the set afimas types of amino
acids. The P system we are looking for should describe theegedeading from DNA
to its segmentation in nucleotide bases, from this segrtients the identification of
genes, which are privileged substrings of DNA, carryingdkeetic information, and
finally from genes to protein functions (the latter being btyyetically related to the
protein sequencing, i.e., to their decomposition in amicds). So, the membrane
structure should consist of several regions , such as: amagfinucleotide bases, a
region of genes, a region of amino acids, a region of DNAsg#reof proteins, all of
them being contained in the initial region represented byc#il. We are already faced
with a necessary extension of the relation 'contained isgdiin the definition of a P
system.

Besides its usual meaning, when we refer, for instance, édabt that DNA is
included in the cell, we consider also the substring-strélgtion, as a variant of 'con-
tained in’, accepting so that the region of the nucleotidselas contained in the region
of DNAs (meaning that any element of the former region is astuiy of an element
of the latter); similarly, the region of genes is containiedthis view, in the region of
DNAs; the region of amino acids is contained in the regionrotgns, while the re-
gion of codons is contained in the region of RNAs and all arga&@ioed in the cell. In
a similar way we have to cope with cistrons, reads, cloneso#imel objects involved
in the cell-processes.

Another aspect deserving a special discussion is the antegkterior distinction,
involved in the structure of a P system. In the light of theaglexposed above, it should
be replaced by a four-steps organization: interior, eatariterior, interior exterior,
and exterior, according to Hianeyer’'s approach. Further examination deserves the
developmental rules, the phylogenetic trees, and the ekansns and codons.
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