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Abstract. While UML gives an intuitive image of the system, formal methods 
provide the proof of its correctness. We can benefit from both aspects by combining 
UML and formal methods. Even for the combined method we need consistent and 
compact description of the changes made during the system development. In the 
development process certain design patterns can be applied. In this paper we introduce 
progress diagrams to document the design decisions and detailing of the system in 
successive refinement steps. A case study illustrates the use of the progress diagrams.  
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1. Introduction 

For complex systems the stepwise development approach of formal methods is beneficial, 
especially considering issues of ensuring the correctness of the system. However, formal 
methods are often difficult for industrial practitioners to use. Therefore, they need to be 
supported by a more approachable platform. The Unified Modelling Language (UML) is 
commonly used within the computer industry but, currently, mature formal proof tools are 
not available. Hence, we use formal methods in combination with the semi-formal UML. 

For a formal top-down approach we use the Event B formalism [10] and associated proof 
tool to develop the system and prove its correctness. Event-B is based on Action Systems 
[4] as well as the B Method [1], and is related to B Action Systems [17]. With the Event-B 
formalism we have tool support for proving the correctness of the development. In order to 
translate UML models into Event B, the UML-B tool [14] is used. UML-B is a 
specialisation of UML that defines a formal modelling notation combining UML and B.  

The first phase of the design approach is to state the functional requirements of the 
system using natural language illustrated by various UML diagrams, such as statechart 
diagrams and sequence diagrams that depict the behaviour of the system. The system is 
built up gradually in small steps using superposition refinement [3, 9]. We rely on patterns 
in the refinement process, since these are the cornerstones for creating reusable and robust 
software [2, 7]. UML diagrams and corresponding Event B code are developed for each 
step simultaneously. To get a better overview of the design process, we introduce the 
progress diagram, which illustrates only the refinement-affected parts of the system and is 
based on statechart diagrams. Progress diagrams support the construction of large software 
systems in an incremental and layered fashion. Moreover, they help to master the 
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complexity of the project and to reason about the properties of the system. We illustrate the 
use of the diagrams with a case study. 

Design patterns in UML and B have been studied previously. Chan et al. [6] work on 
identifying patterns at the specification level, while we are interested in refinement patterns. 
The refinement approach on design patterns was presented by Ilič et al. [8]. They focused 
on using design patterns for integrating requirements into the system models via model 
transformation. This was done with strong support of the Model Driven Architecture 
methodology, which we do not consider in this paper. Instead we provide an overview of 
the development from the patterns. 

The rest of the paper is organised as follows. In Section 2 we give an overview of our 
case study, Memento, from a general and functional perspective. An abstract specification 
is presented as a graphical, as well as a formal representation in Section 3. Section 4 
describes stepwise refinement of the system and introduces the idea of progress diagrams. 
The system development is analysed and illustrated with the progress diagrams relying on 
the case study. We conclude with some general remarks in Section 5. 

2. Case study – Memento application 

The Memento application [13] that is used as a case study in this paper is a commercial 
application developed by Unforgiven.pl. It is an organiser and reminder system that has 
lately evolved into an internet-based application. Memento is designed to be a framework 
for running different modules that interact with each other.  

In the distributed version of Memento every user of the application must have its own, 
unique identifier, and all communication is done via a central application server. In addition 
to its basic reminder and address book functions, Memento can be configured with other 
function modules, such as a simple chat module. Centralisation via the use of a server 
allows the application to store its data independently of the physical user location, which 
means that the user is able to use his own Memento data on any computer that has access to 
the network. 

The design combines the web-based approach of internet communicators and an open 
architecture without the need for installation at client machines. During its start-up the 
client application attempts to connect to a central server. When the connection is 
established, the preparation phase begins. In this phase the user provides his/her unique 
identifier and password for authorisation. On successful login the server responds by 
sending the data for the account including a list of contacts, news, personal files etc. 
Subsequently the application searches for modules in a working folder and attempts to 
initialise them, so that the user is free to run any of them at any time. During execution of 
the application, commands from the server and the user are processed at once. Memento 
translates the requested actions of the user to internal commands and then handles them 
either locally or via the server. Upon a termination command Memento finalises all the 

modules, saves the needed data on the server, logs out the user and closes the connection. 
To minimise the risk of losing data, in case of fatal error, this termination procedure is also 
part of the fatal exception handling routine. 



3. Abstract specification  

3.1. UML-models 

We use the Unified Modelling Language™ (UML) [5], as a way of modelling not only the 
application structure, behaviour, and architecture of a system, but also its data structure. 
UML can be used to overcome the barrier between the informal industry world and the 
formal one of the researchers. It provides a graphical interface and documentation for every 
stage of the (formal) development process. Although UML offers miscellaneous diagrams 
for different purposes, we focus on two types of these in our paper: sequence diagrams and 
statechart diagrams.  

The sequence diagram can be used within the development of the system to show the 
interactions between objects and in which order these interactions occur. The diagram can 
be derived directly from the requirements. Furthermore, it can give information on the 
transitions of the statemachines. The interaction between entities in the sequence diagram 
can be mapped to self-transitions on the statechart diagram to model communication 
between the modelled entity and its external entities. 

In our case study the external entities are the server and the users interacting with the 
modelled entity Memento. An example of a sequence diagram for the application is given 
in Fig. 1, where part of the requirements (the emphasized text in Section 2) concerning the 
server connection and the program preparation phase is shown. In the diagram we describe 
the initialisation phase of the system, which consists of establishing a connection (in the 
connection phase) and then preparing the program (in the preparation phase). The first of 
these actions requires the interaction with the server via an internet connection. The second 
action requires user interaction as well. The described interaction (in Fig. 1) is transferred 
to a statechart diagram as transition tryInit (to later be refined to the transitions tryConn and 
tryPrep as in section 4.1). 

 
Fig. 1. Sequence diagram presenting the object interaction in the initialisation phase 

 



In statechart diagrams objects consist of states and behaviours (transitions). The state of 
an object depends on the previous transition and its condition (guard). A statechart diagram 
provides graphical description of the transitions of an object from one state to another in 
response to events [12, 11]. The diagram can be used to illustrate the behaviour of instances 
of a model element. In other words, a statechart diagram shows the possible states of the 
object and the transitions between them.  

The statemachine depicting the abstract behaviour of Memento is shown in Fig. 2. The 
first phase is to initialise the system by communicating with the server, which is modelled 
with the event tryInit. When initialisation has been successfully completed, the transition 
goReady brings the system to the state ready, where it awaits and processes the user and 
server commands. Upon the command close, the system enters the finalisation phase, which 
leads to the system cleanup and proper termination. 

The detection of errors in each phase is taken into consideration. In the model, the errors 
are captured by transitions targeting the suspended state (susp), where error handling 
(rollback) takes place. The system may return to the state where the error was detected, if 
the error happens to be recoverable.  If the error is non-recoverable, the fatal termination 
action is taken and the system operation finishes. Any error detected during or after 
finalisation phase is always non-recoverable. 

Fig. 2. The abstract statemachine of Memento 

3.2. Formal specification 

In order to be able to reason formally about the abstract specification, we translate it to the 
formal language Event B [10]. An Event-B specification consists of a model and its context 
that depict the dynamic and the static part of the specification, respectively. They are both 
identified by unique names. The context contains the sets and constants of the model with 
their properties and is accessed by the model through the SEES relationship [1]. The 
dynamic model, on the other hand, defines the state variables, as well as the operations on 
these. Types and properties of the variables are given in the invariant. All the variables are 
assigned an initial value according to the invariant. The operations on the variables are 
given as events of the form WHEN guard THEN substitution END in the Event-B specification. 
When the guard evaluates to true the event is said to be enabled. The events are considered 



to be atomic, and hence, only their pre and post states are of interest. In order to be able to 
ensure the correctness of the system, the abstract model should be consistent and feasible 
[10]. 

Each transition of a statechart diagram is translated to an event in Event-B. Below we 
show the Event B-translation of the statemachine concerning the initialisation (state init) of 
the cooperation with the server in Fig. 2:  

MODEL   Memento 
SEES Data 
VARIABLES is_fatal, is_ok, cmd, state 

INVARIANT is_fatal ∈ BOOL ∧ is_ok ∈ BOOL ∧ cmd ∈ CMD ∧ state ∈ STATE ∧  

 (state=init ⇒ cmd=no_cmd) ∧ ... 
INITIALISATION is_fatal:=FALSE || cmd:=no_cmd || is_ok:=FALSE || state:=init 
EVENTS 

 tryInit =  WHEN state=init ∧ is_ok=FALSE  THEN is_ok :∈ BOOL END; 

 failInit =  WHEN state=init ∧ is_ok=FALSE  THEN state:=susp || is_fatal :∈ BOOL END; 

 recoverInit= WHEN state=susp ∧ is_ok=FALSE ∧ is_fatal=FALSE THEN state:=init || cmd:=no_cmd END; 

 goReady =  WHEN state=init ∧ is_ok=TRUE  THEN state:=ready END;  
 … 
END 

The variables model a proper initialisation (is_ok), occurrence of a fatal error (is_fatal), as 
well as the command (cmd) and the state of the system (state). Initially no command is 
given and the initialisation phase is marked as not completed (is_ok := FALSE). The guards 
of the transitions in the statechart diagram in Fig. 2 are transformed to the guards of the 
events in the Event B model above, whereas the substitutions in the transitions are given as 
the substitutions of the events. The feasibility and the consistency of the specification is 
then proved using the Event-B prover tool. 

4. Modelling refinement steps 

It is convenient not to handle all the implementation issues at the same time, but to 
introduce details of the system to the specification in a stepwise manner. Stepwise 
refinement of a specification is supported by the Event-B formalism. In the refinement 
process an abstract specification A is transformed into a more concrete and deterministic 
system C that preserves the functionality of A. We use the superposition refinement 
technique [3, 9, 17], where we add new functionality, i.e., new variables and substitutions 
on these, to a specification in a way that preserves the old behaviour. The variables are 
added gradually to the specification with their conditions and properties. The computation 
concerning the new variables is introduced in the existing events by strengthening their 
guards and adding new substitutions on these variables. New events, assigning the new 
variables, may also be introduced.  

System C is said to be a correct refinement of A if the following proof obligations are 
satisfied [10, 15, 17]: 

1. The initialisation in C should be a refinement of the initialisation in A, and it should 
establish the invariant in C. 

2. Each old event in C should refine an event in A, and preserve the invariant of C.  
3. Each new event in C (that does not refine an event in A) should only concern the new 

variables, and preserve the invariant.  
4. The new events in C should eventually all be disabled, if they are executed in 

isolation, so that one of the old events is executed (non-divergence). 



5. Whenever an event in A is enabled, either the corresponding event in C or one of the 
new events in C should be enabled (strong relative deadlock freeness). 

6. Whenever an error detection event (event leading to the state susp) in A is enabled, an 
error detection event in C should be enabled (partitioning an abstract representation of an 
error type into distinct concrete errors during the refinement process [16]). 

The tool support provided by Event-B allows us to prove that the concrete specification 
C is a refinement of the abstract specification A according to the proof obligations (1) - (6) 
given above. 

In order to guide the refinement process and make it more controllable, refinement 
patterns [11] can be used. The size of the system grows during the development making it 
difficult to get an overview of the refinement process. In this paper we introduce progress 
diagrams to give an abstraction and graphical-descriptive view documenting the applied 
patterns in each step. 

4.1. Progress diagrams 

We introduce the idea of progress diagram in the form of a table that is divided into a 
description part and a diagram part. With this type of table we can point out the design 
patterns derived from the most important features and changes done in the refinement step. 
It provides compact information about each refinement step, thereby indicating and 
documenting the progress of the development. The tabular part briefly describes the 
relevant features or design patterns of the system in the development step. Moreover, it 
depicts how states and transitions (initiated, refined or anticipated) are refined, as well as 
new variables that are added with respect to these features. The diagram part gives a 
supplementary view of the current refinement step and is in fact a fragment of the statechart 
diagram.  

During the development we benefit from the progress diagram, as we concentrate only 
on the refined part of the system. The combination of descriptive and visual approaches to 
show the development of the system gives a compact overview of the part that is the current 
scope of development. This enables us to focus on the details we are most interested in, and 
provides a legible picture of the (possibly complex) systems development. The visualisation 
helps us to better understand the refinement steps and proofs that need to be performed. 
Progress diagrams do not involve any mathematical notation and are, therefore, useful for 
communicating the development steps to non-formal methods colleagues. We will illustrate 
the use of progress diagrams with our case study Memento. 

Fig. 3 depicts the progress diagram of the first refinement step, where states are 
partitioned into substates and transitions are added with respect to these. Partitioning the 
state init indicates that the initialisation phase is divided into a connection (state conn) and 
a preparation (state prep) phase, that both need the cooperation with the server. The state 
susp is treated in a similar way. Namely, the hierarchical substates sc, sp, sr and sf are 
created, implying that there are in fact various ways of handling the errors, corresponding 
to the states conn, prep, ready and finalised. Thereby, more elaborate information about 
conditions of error occurrence is added. Note that introducing hierarchical substates 
corresponds not only to a more detailed model in the structural sense, but also in the 
functional sense. The transitions (events) tryInit, failInit and recoverInit are refined to more 
detailed ones taking into account the partitioning of the initialisation phase. The self-
transition tryInit is refined by two events, tryConn and tryPrep, which remain self-



transitions for the states conn and prep, respectively. The error handling is refined by 
events: failConn and recoverConn for the substate conn, and failPrep and recoverPrep for 
the substate prep. The anticipating transition cont is added between the new substates conn 
and prep. The new variables are introduced to control the system execution flow. Note that 
for the substates sr and sf there are separate diagram parts. 

 
Description States Ref. States Transitions Ref. Transitions New Var. 

tryInit tryConn, tryPrep 
init 

conn 
prep 

- Cont 

failInit failConn, failPrep 

1
st
 refinement step: 

• creating hierarchi-
cal substates (in 
states int and susp) 

• adding new transi-
tions concerning 
the substates 

susp 
sc, sp, 
sr, sf 

recoverInit recoverConn, recoverPrep 

is_conn 
is_prep 
wwaited 

 

Fig. 3. Progress diagram of the first refinement step of Memento 

As the refined specification is translated to Event B for proving its correctness, the 
progress diagram can provide an overview of the proof obligations needed for the 
refinement step concerning the refined and the anticipating events. In the progress diagram 
the refined events are the ones given in the column “Refined Transitions” that have a 
corresponding event in the column “Transitions” (Proof Obligation (2)). For example in 
Fig. 3 events tryConn and tryPrep refine tryInit. Also the anticipating events are given in 
the column “Refined Transitions” (event cont in Fig. 3). However, they do not have a 
corresponding event in the column “Transitions”. They may only assign the variables in 
column “New Variables” according to the invariant (Proof Obligation (3)). Furthermore, 
the non-divergence of the anticipating transitions (Proof Obligation (4)) is indicated in the 
diagram part by the fact that these transitions do not form a loop [15]. From the columns 
“Transitions” and “Refined Transitions” also partitioning of the error detection events is 
indicated (Proof Obligation (6)). In Fig. 3 the error detection event failinit is partitioned 
into failConn and failPrep. 

The result of the first refinement step is shown in the statechart diagram in Fig. 4. When 
comparing this diagram to the one in Fig. 3, it is worth mentioning that even if the former 
shows the complete system, the diagram is more difficult to read with all its details. As we 
focus on the development of a certain part of the system, we particularly want to 
concentrate on visualising that part. This is of high importance especially when the system 
develops into a significant sized one. Hence, the progress diagram shows the relevant 
changes in a more legible way. 



Fig. 4. Statechart diagram of the first refinement step of Memento 

In the second refinement step (not shown) new hierarchical substates are added in the 
state prep along with new transitions that make use of them. These hierarchical substates 
indicate that the preparation phase is actually composed of two phases (program as well as 
module preparation). This step is similar to the one above and is not further described here.  

The third refinement step (Fig. 5) strengthens the guards of the transitions (events) 
(using the choice symbol - salmiakki [15]) and shows a more detailed failure management. 
In fact we split transitions into alternative paths using the choice points. Each path 
represents a separate transition whose guard is the conjunction of all the segment guards of 
that path [15]. Hence, new variables, concerning communication with the server, are 
introduced to express the details of the program preparation phase. These variables 
represent sending the identification data (idDataSent), reading the response (respRead), and 
checking whether the values for response and user are valid (respValid and userValid). 
Furthermore, new failure transitions nIdDS, nRR, nRV and nUV corresponding to these 
variables refine the old general failure transition.  

 
Description States Ref. States Transitions Ref. Trans. New Var. 

3
rd

 step – adding alternative 
paths to transitions  - - 

FailPrepPr 
 

nIdDS, nRR, 
nRV, nUV 

idDataSent, respRead, 
respValid, userValid 

 

 Fig. 5. Third refinement step 



Here, the progress diagram also gives an intuitive representation of the proof obligations, 
now concerning strengthening the guards of the old events (Proof Obligation (2)). This is 
indicated by the transitions between the salmiakki symbols [15] in the diagram part of the 
progress diagram. Moreover, the outgoing transitions of these symbols illustrate intuitively 
that the relative deadlock freeness (Proof Obligation (5)) is preserved. Again the 
partitioning of the error detection event failPrepPr in the columns “Transitions” and 
“Refined Transitions” visualises Proof Obligation (6). 

5. Conclusion  

This paper presents a new approach to documentation of the stepwise refinement of a 
system. Since the specification for each step becomes more and more complex and a clear 
overview of the development is lacking, we focus our approach on illustrating the 
development steps. This kind of documentation is not only helpful for the developers, but 
also for those that later will try to reuse the exploited features. The documentation is also 
useful for communicating the development to stakeholders outside of the development 
team. Thus, a clear and compact form of progress diagrams is appropriate both for industry 
developers and researchers. 

Formal methods and verification techniques are used in the general design of the 
Memento application to ensure that the development is correct. Our approach uses the B 
Method as a formal framework and allows us to address modelling at different levels of 
abstraction. The progress diagrams give an overview of the refinement steps and the needed 
proofs. Furthermore, the use of progress diagrams during the incremental construction of 
large software systems helps to manage their complexity and provides legible and 
accessible documentation. 

In future work we will further explore the link between the progress diagrams and 
patterns. We will investigate how suitable the progress diagrams are for identifying and 
differentiating patterns used in the refinement steps. Although progress diagrams already 
appear to be a viable graphical view of the system development, further experimentation on 
other case studies is envisaged leading to possible enhancements of the progress diagrams. 
Tool support will be developed for drawing progress diagrams and linking their analysis 
with the refined models. 
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