
Documenting the Progress of the System Development*

Marta Pląska1, Marina Waldén1 and Colin Snook2

1 Åbo Akademi University/TUCS, Joukahaisenkatu 3-5A, 20520 Turku, Finland
2 University of Southampton, Southampton, SO17 1BJ, UK

Abstract. While UML gives an intuitive image of the system, formal methods
provide the proof of its correctness. We can benefit from both aspects by combining
UML and formal methods. Even for the combined method we need consistent and
compact description of the changes made during the system development. In the
development process certain design patterns can be applied. In this paper we introduce
progress diagrams to document the design decisions and detailing of the system in
successive refinement steps. A case study illustrates the use of the progress diagrams.

Keywords: Progress diagram, Statemachines, Stepwise development, Refinement,
UML, Event-B, Action Systems, Graphical representation.

1. Introduction

For complex systems the stepwise development approach of formal methods is beneficial,
especially considering issues of ensuring the correctness of the system. However, formal
methods are often difficult for industrial practitioners to use. Therefore, they need to be
supported by a more approachable platform. The Unified Modelling Language (UML) is
commonly used within the computer industry but, currently, mature formal proof tools are
not available. Hence, we use formal methods in combination with the semi-formal UML.

For a formal top-down approach we use the Event B formalism [10] and associated proof
tool to develop the system and prove its correctness. Event-B is based on Action Systems
[4] as well as the B Method [1], and is related to B Action Systems [17]. With the Event-B
formalism we have tool support for proving the correctness of the development. In order to
translate UML models into Event B, the UML-B tool [14] is used. UML-B is a
specialisation of UML that defines a formal modelling notation combining UML and B.

The first phase of the design approach is to state the functional requirements of the
system using natural language illustrated by various UML diagrams, such as statechart
diagrams and sequence diagrams that depict the behaviour of the system. The system is
built up gradually in small steps using superposition refinement [3, 9]. We rely on patterns
in the refinement process, since these are the cornerstones for creating reusable and robust
software [2, 7]. UML diagrams and corresponding Event B code are developed for each
step simultaneously. To get a better overview of the design process, we introduce the
progress diagram, which illustrates only the refinement-affected parts of the system and is
based on statechart diagrams. Progress diagrams support the construction of large software
systems in an incremental and layered fashion. Moreover, they help to master the

* Work done within the RODIN-project, IST-511599

complexity of the project and to reason about the properties of the system. We illustrate the
use of the diagrams with a case study.

Design patterns in UML and B have been studied previously. Chan et al. [6] work on
identifying patterns at the specification level, while we are interested in refinement patterns.
The refinement approach on design patterns was presented by Ilič et al. [8]. They focused
on using design patterns for integrating requirements into the system models via model
transformation. This was done with strong support of the Model Driven Architecture
methodology, which we do not consider in this paper. Instead we provide an overview of
the development from the patterns.

The rest of the paper is organised as follows. In Section 2 we give an overview of our
case study, Memento, from a general and functional perspective. An abstract specification
is presented as a graphical, as well as a formal representation in Section 3. Section 4
describes stepwise refinement of the system and introduces the idea of progress diagrams.
The system development is analysed and illustrated with the progress diagrams relying on
the case study. We conclude with some general remarks in Section 5.

2. Case study – Memento application

The Memento application [13] that is used as a case study in this paper is a commercial
application developed by Unforgiven.pl. It is an organiser and reminder system that has
lately evolved into an internet-based application. Memento is designed to be a framework
for running different modules that interact with each other.

In the distributed version of Memento every user of the application must have its own,
unique identifier, and all communication is done via a central application server. In addition
to its basic reminder and address book functions, Memento can be configured with other
function modules, such as a simple chat module. Centralisation via the use of a server
allows the application to store its data independently of the physical user location, which
means that the user is able to use his own Memento data on any computer that has access to
the network.

The design combines the web-based approach of internet communicators and an open
architecture without the need for installation at client machines. During its start-up the
client application attempts to connect to a central server. When the connection is
established, the preparation phase begins. In this phase the user provides his/her unique
identifier and password for authorisation. On successful login the server responds by
sending the data for the account including a list of contacts, news, personal files etc.
Subsequently the application searches for modules in a working folder and attempts to
initialise them, so that the user is free to run any of them at any time. During execution of
the application, commands from the server and the user are processed at once. Memento
translates the requested actions of the user to internal commands and then handles them
either locally or via the server. Upon a termination command Memento finalises all the

modules, saves the needed data on the server, logs out the user and closes the connection.
To minimise the risk of losing data, in case of fatal error, this termination procedure is also
part of the fatal exception handling routine.

3. Abstract specification

3.1. UML-models

We use the Unified Modelling Language™ (UML) [5], as a way of modelling not only the
application structure, behaviour, and architecture of a system, but also its data structure.
UML can be used to overcome the barrier between the informal industry world and the
formal one of the researchers. It provides a graphical interface and documentation for every
stage of the (formal) development process. Although UML offers miscellaneous diagrams
for different purposes, we focus on two types of these in our paper: sequence diagrams and
statechart diagrams.

The sequence diagram can be used within the development of the system to show the
interactions between objects and in which order these interactions occur. The diagram can
be derived directly from the requirements. Furthermore, it can give information on the
transitions of the statemachines. The interaction between entities in the sequence diagram
can be mapped to self-transitions on the statechart diagram to model communication
between the modelled entity and its external entities.

In our case study the external entities are the server and the users interacting with the
modelled entity Memento. An example of a sequence diagram for the application is given
in Fig. 1, where part of the requirements (the emphasized text in Section 2) concerning the
server connection and the program preparation phase is shown. In the diagram we describe
the initialisation phase of the system, which consists of establishing a connection (in the
connection phase) and then preparing the program (in the preparation phase). The first of
these actions requires the interaction with the server via an internet connection. The second
action requires user interaction as well. The described interaction (in Fig. 1) is transferred
to a statechart diagram as transition tryInit (to later be refined to the transitions tryConn and
tryPrep as in section 4.1).

Fig. 1. Sequence diagram presenting the object interaction in the initialisation phase

In statechart diagrams objects consist of states and behaviours (transitions). The state of
an object depends on the previous transition and its condition (guard). A statechart diagram
provides graphical description of the transitions of an object from one state to another in
response to events [12, 11]. The diagram can be used to illustrate the behaviour of instances
of a model element. In other words, a statechart diagram shows the possible states of the
object and the transitions between them.

The statemachine depicting the abstract behaviour of Memento is shown in Fig. 2. The
first phase is to initialise the system by communicating with the server, which is modelled
with the event tryInit. When initialisation has been successfully completed, the transition
goReady brings the system to the state ready, where it awaits and processes the user and
server commands. Upon the command close, the system enters the finalisation phase, which
leads to the system cleanup and proper termination.

The detection of errors in each phase is taken into consideration. In the model, the errors
are captured by transitions targeting the suspended state (susp), where error handling
(rollback) takes place. The system may return to the state where the error was detected, if
the error happens to be recoverable. If the error is non-recoverable, the fatal termination
action is taken and the system operation finishes. Any error detected during or after
finalisation phase is always non-recoverable.

Fig. 2. The abstract statemachine of Memento

3.2. Formal specification

In order to be able to reason formally about the abstract specification, we translate it to the
formal language Event B [10]. An Event-B specification consists of a model and its context
that depict the dynamic and the static part of the specification, respectively. They are both
identified by unique names. The context contains the sets and constants of the model with
their properties and is accessed by the model through the SEES relationship [1]. The
dynamic model, on the other hand, defines the state variables, as well as the operations on
these. Types and properties of the variables are given in the invariant. All the variables are
assigned an initial value according to the invariant. The operations on the variables are
given as events of the form WHEN guard THEN substitution END in the Event-B specification.
When the guard evaluates to true the event is said to be enabled. The events are considered

to be atomic, and hence, only their pre and post states are of interest. In order to be able to
ensure the correctness of the system, the abstract model should be consistent and feasible
[10].

Each transition of a statechart diagram is translated to an event in Event-B. Below we
show the Event B-translation of the statemachine concerning the initialisation (state init) of
the cooperation with the server in Fig. 2:

MODEL Memento
SEES Data
VARIABLES is_fatal, is_ok, cmd, state

INVARIANT is_fatal ∈ BOOL ∧ is_ok ∈ BOOL ∧ cmd ∈ CMD ∧ state ∈ STATE ∧

 (state=init ⇒ cmd=no_cmd) ∧ ...
INITIALISATION is_fatal:=FALSE || cmd:=no_cmd || is_ok:=FALSE || state:=init
EVENTS

 tryInit = WHEN state=init ∧ is_ok=FALSE THEN is_ok :∈ BOOL END;

 failInit = WHEN state=init ∧ is_ok=FALSE THEN state:=susp || is_fatal :∈ BOOL END;

 recoverInit= WHEN state=susp ∧ is_ok=FALSE ∧ is_fatal=FALSE THEN state:=init || cmd:=no_cmd END;

 goReady = WHEN state=init ∧ is_ok=TRUE THEN state:=ready END;
 …
END

The variables model a proper initialisation (is_ok), occurrence of a fatal error (is_fatal), as
well as the command (cmd) and the state of the system (state). Initially no command is
given and the initialisation phase is marked as not completed (is_ok := FALSE). The guards
of the transitions in the statechart diagram in Fig. 2 are transformed to the guards of the
events in the Event B model above, whereas the substitutions in the transitions are given as
the substitutions of the events. The feasibility and the consistency of the specification is
then proved using the Event-B prover tool.

4. Modelling refinement steps

It is convenient not to handle all the implementation issues at the same time, but to
introduce details of the system to the specification in a stepwise manner. Stepwise
refinement of a specification is supported by the Event-B formalism. In the refinement
process an abstract specification A is transformed into a more concrete and deterministic
system C that preserves the functionality of A. We use the superposition refinement
technique [3, 9, 17], where we add new functionality, i.e., new variables and substitutions
on these, to a specification in a way that preserves the old behaviour. The variables are
added gradually to the specification with their conditions and properties. The computation
concerning the new variables is introduced in the existing events by strengthening their
guards and adding new substitutions on these variables. New events, assigning the new
variables, may also be introduced.

System C is said to be a correct refinement of A if the following proof obligations are
satisfied [10, 15, 17]:

1. The initialisation in C should be a refinement of the initialisation in A, and it should
establish the invariant in C.

2. Each old event in C should refine an event in A, and preserve the invariant of C.
3. Each new event in C (that does not refine an event in A) should only concern the new

variables, and preserve the invariant.
4. The new events in C should eventually all be disabled, if they are executed in

isolation, so that one of the old events is executed (non-divergence).

5. Whenever an event in A is enabled, either the corresponding event in C or one of the
new events in C should be enabled (strong relative deadlock freeness).

6. Whenever an error detection event (event leading to the state susp) in A is enabled, an
error detection event in C should be enabled (partitioning an abstract representation of an
error type into distinct concrete errors during the refinement process [16]).

The tool support provided by Event-B allows us to prove that the concrete specification
C is a refinement of the abstract specification A according to the proof obligations (1) - (6)
given above.

In order to guide the refinement process and make it more controllable, refinement
patterns [11] can be used. The size of the system grows during the development making it
difficult to get an overview of the refinement process. In this paper we introduce progress
diagrams to give an abstraction and graphical-descriptive view documenting the applied
patterns in each step.

4.1. Progress diagrams

We introduce the idea of progress diagram in the form of a table that is divided into a
description part and a diagram part. With this type of table we can point out the design
patterns derived from the most important features and changes done in the refinement step.
It provides compact information about each refinement step, thereby indicating and
documenting the progress of the development. The tabular part briefly describes the
relevant features or design patterns of the system in the development step. Moreover, it
depicts how states and transitions (initiated, refined or anticipated) are refined, as well as
new variables that are added with respect to these features. The diagram part gives a
supplementary view of the current refinement step and is in fact a fragment of the statechart
diagram.

During the development we benefit from the progress diagram, as we concentrate only
on the refined part of the system. The combination of descriptive and visual approaches to
show the development of the system gives a compact overview of the part that is the current
scope of development. This enables us to focus on the details we are most interested in, and
provides a legible picture of the (possibly complex) systems development. The visualisation
helps us to better understand the refinement steps and proofs that need to be performed.
Progress diagrams do not involve any mathematical notation and are, therefore, useful for
communicating the development steps to non-formal methods colleagues. We will illustrate
the use of progress diagrams with our case study Memento.

Fig. 3 depicts the progress diagram of the first refinement step, where states are
partitioned into substates and transitions are added with respect to these. Partitioning the
state init indicates that the initialisation phase is divided into a connection (state conn) and
a preparation (state prep) phase, that both need the cooperation with the server. The state
susp is treated in a similar way. Namely, the hierarchical substates sc, sp, sr and sf are
created, implying that there are in fact various ways of handling the errors, corresponding
to the states conn, prep, ready and finalised. Thereby, more elaborate information about
conditions of error occurrence is added. Note that introducing hierarchical substates
corresponds not only to a more detailed model in the structural sense, but also in the
functional sense. The transitions (events) tryInit, failInit and recoverInit are refined to more
detailed ones taking into account the partitioning of the initialisation phase. The self-
transition tryInit is refined by two events, tryConn and tryPrep, which remain self-

transitions for the states conn and prep, respectively. The error handling is refined by
events: failConn and recoverConn for the substate conn, and failPrep and recoverPrep for
the substate prep. The anticipating transition cont is added between the new substates conn
and prep. The new variables are introduced to control the system execution flow. Note that
for the substates sr and sf there are separate diagram parts.

Description States Ref. States Transitions Ref. Transitions New Var.

tryInit tryConn, tryPrep
init

conn
prep

- Cont

failInit failConn, failPrep

1
st
 refinement step:

• creating hierarchi-
cal substates (in
states int and susp)

• adding new transi-
tions concerning
the substates

susp
sc, sp,
sr, sf

recoverInit recoverConn, recoverPrep

is_conn
is_prep
wwaited

Fig. 3. Progress diagram of the first refinement step of Memento

As the refined specification is translated to Event B for proving its correctness, the
progress diagram can provide an overview of the proof obligations needed for the
refinement step concerning the refined and the anticipating events. In the progress diagram
the refined events are the ones given in the column “Refined Transitions” that have a
corresponding event in the column “Transitions” (Proof Obligation (2)). For example in
Fig. 3 events tryConn and tryPrep refine tryInit. Also the anticipating events are given in
the column “Refined Transitions” (event cont in Fig. 3). However, they do not have a
corresponding event in the column “Transitions”. They may only assign the variables in
column “New Variables” according to the invariant (Proof Obligation (3)). Furthermore,
the non-divergence of the anticipating transitions (Proof Obligation (4)) is indicated in the
diagram part by the fact that these transitions do not form a loop [15]. From the columns
“Transitions” and “Refined Transitions” also partitioning of the error detection events is
indicated (Proof Obligation (6)). In Fig. 3 the error detection event failinit is partitioned
into failConn and failPrep.

The result of the first refinement step is shown in the statechart diagram in Fig. 4. When
comparing this diagram to the one in Fig. 3, it is worth mentioning that even if the former
shows the complete system, the diagram is more difficult to read with all its details. As we
focus on the development of a certain part of the system, we particularly want to
concentrate on visualising that part. This is of high importance especially when the system
develops into a significant sized one. Hence, the progress diagram shows the relevant
changes in a more legible way.

Fig. 4. Statechart diagram of the first refinement step of Memento

In the second refinement step (not shown) new hierarchical substates are added in the
state prep along with new transitions that make use of them. These hierarchical substates
indicate that the preparation phase is actually composed of two phases (program as well as
module preparation). This step is similar to the one above and is not further described here.

The third refinement step (Fig. 5) strengthens the guards of the transitions (events)
(using the choice symbol - salmiakki [15]) and shows a more detailed failure management.
In fact we split transitions into alternative paths using the choice points. Each path
represents a separate transition whose guard is the conjunction of all the segment guards of
that path [15]. Hence, new variables, concerning communication with the server, are
introduced to express the details of the program preparation phase. These variables
represent sending the identification data (idDataSent), reading the response (respRead), and
checking whether the values for response and user are valid (respValid and userValid).
Furthermore, new failure transitions nIdDS, nRR, nRV and nUV corresponding to these
variables refine the old general failure transition.

Description States Ref. States Transitions Ref. Trans. New Var.

3
rd

 step – adding alternative
paths to transitions - -

FailPrepPr

nIdDS, nRR,
nRV, nUV

idDataSent, respRead,
respValid, userValid

 Fig. 5. Third refinement step

Here, the progress diagram also gives an intuitive representation of the proof obligations,
now concerning strengthening the guards of the old events (Proof Obligation (2)). This is
indicated by the transitions between the salmiakki symbols [15] in the diagram part of the
progress diagram. Moreover, the outgoing transitions of these symbols illustrate intuitively
that the relative deadlock freeness (Proof Obligation (5)) is preserved. Again the
partitioning of the error detection event failPrepPr in the columns “Transitions” and
“Refined Transitions” visualises Proof Obligation (6).

5. Conclusion

This paper presents a new approach to documentation of the stepwise refinement of a
system. Since the specification for each step becomes more and more complex and a clear
overview of the development is lacking, we focus our approach on illustrating the
development steps. This kind of documentation is not only helpful for the developers, but
also for those that later will try to reuse the exploited features. The documentation is also
useful for communicating the development to stakeholders outside of the development
team. Thus, a clear and compact form of progress diagrams is appropriate both for industry
developers and researchers.

Formal methods and verification techniques are used in the general design of the
Memento application to ensure that the development is correct. Our approach uses the B
Method as a formal framework and allows us to address modelling at different levels of
abstraction. The progress diagrams give an overview of the refinement steps and the needed
proofs. Furthermore, the use of progress diagrams during the incremental construction of
large software systems helps to manage their complexity and provides legible and
accessible documentation.

In future work we will further explore the link between the progress diagrams and
patterns. We will investigate how suitable the progress diagrams are for identifying and
differentiating patterns used in the refinement steps. Although progress diagrams already
appear to be a viable graphical view of the system development, further experimentation on
other case studies is envisaged leading to possible enhancements of the progress diagrams.
Tool support will be developed for drawing progress diagrams and linking their analysis
with the refined models.

Acknowledgements
We would like to thank Dr Linas Laibinis and Dubravka Ilič for the fruitful discussions on
the use of the tools supporting the research.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
[2] J. Arlow and I. Neustadt. Enterprise Patterns and MDA: Building Better Software with

Archetype Patterns and UML. Addison-Wesley, 2004.
[3] R.J.R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control. In:

Proc. of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp.
131-142, 1983.

[4] R.J.R. Back and K. Sere. From modular systems to action systems. Software - Concepts and

Tools 17, pp. 26-39, 1996.
[5] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language - a Reference

Manual. Addison-Wesley, 1998.
[6] E. Chan, K. Robinson and B. Welch. Patterns for B: Bridging Formal and Informal

Development. In Proc. of 7th International Conference of B Users (B2007): Formal

Specification and Development in B, LNCS 4355, pp. 125-139, 2007. Springer.
[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional Computing Series, 1995.
[8] D. Ilič and E. Troubitsyna. A Formal Model Driven Approach to Requirements Engineering.

TUCS Technical Report No 667, Åbo Akademi University, Finland, February 2005.
[9] S.M. Katz. A superimposition control construct for distributed systems. ACM Transactions on

Programming Languages and Systems, 15(2):337-356, April 1993.
[10] C. Metayer, J.R. Abrial and L. Voisin. Event-B Language, RODIN Deliverable 3.2 (D7),

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf (May 2005)
[11] Object Management Group. Unified Modelling Language Specification - Complete UML 1.4

specification, September 2001. http://www.omg.org/docs/formal/01-09-67.pdf
[12] Object Management Group Systems Engineering Domain Special Interest Group (SE DSIG). S.

A. Friedenthal and R. Burkhart. Extending UML™ from Software to Systems. (accessed
04.05.2007) http://www.syseng.omg.org/

[13] M. Olszewski and M. Pląska. Memento system. http://memento.unforgiven.pl, 2006.
[14] C. Snook and M. Butler. U2B - a tool for translating UML-B models into B. In UML-B

Specification for Proven Embedded Systems Design, chapter 5. Springer, 2004.
[15] C. Snook and M. Waldén. Refinement of Statemachines using Event B semantics. In Proc. of

7th International Conference of B Users (B2007): Formal Specification and Development in B,
Besançon, France, LNCS 4355, January 2007, pp. 171-185. Springer.

[16] E. Troubitsyna. Stepwise Development of Dependable Systems. Turku Centre for Computer
Science, TUCS, Ph.D. thesis No. 29. June 2000.

[17] M. Waldén and K. Sere. Reasoning About Action Systems Using the B-Method. Formal

Methods in Systems Design 13(5-35), 1998. Kluwer Academic Publishers.

