Visualising program transformations in a stepwise manner

Marta quskal, Marina Waldén' and Colin Snook”

! Abo Akademi University/TUCS, Joukahaisenkatu 3-5A, 20520 Turku, Finland
% University of Southampton, Southampton, SO17 1BJ, UK

1. Introduction

For designing and developing complex, correct and reliable systems formal methods are the most
beneficial approach. However, a formal methodology could be difficult for industry practitioners due to
its mathematical notation. Hence it needs to be supported by more approachable platform, which would
give guidance both for industry and research world representatives. The Unified Modelling Language
(UML) with its semi-formal notation gives the intuitive image of the system and is commonly used within
the industry. In the stepwise development of our system we combine UML with the formal methods
approach and refinement patterns.

For a formal top-down approach we use the Event B formalism [11] and associated proof tool to
develop the system and prove its correctness. Event-B is based on Action Systems [5] as well as the B
Method [1]. It is related to B Action Systems [15] for developing distributed systems in B. With the
Event-B formalism we have tool support for proving the correctness of the development. In order to
translate UML models into Event B, the UML-B tool [13] is used. UML-B is a specialisation of UML
that defines a formal modelling notation combining UML and B.

The first phase of the design approach is to state the goals that the system needs to satisfy. Afterwards
the functional requirements of the system are specified using natural language and illustrated by various
UML diagrams, such as statechart diagrams that depict the behaviour of the system. The system is built
up gradually in small steps using superposition refinement [4, 10]. We strongly rely on patterns in the
refinement process, since these are the cornerstones for creating reusable and robust software [3, 8].
UML diagrams and corresponding Event B code are developed for each step simultaneously. To get a
better overview of the design process, we benefit from the progress diagrams [12] that illustrate only the
refinement-affected parts of the system. These diagrams are based on well-known and widely-used UML
statechart diagrams. In our previous research we introduced progress diagrams, which were illustrated by
a case study. Here we focus on exploring refinement patterns in view of progress diagrams, as their
combination supports constructing large software systems in an incremental and layered fashion.
Moreover, this combination facilitates to master the complexity of the project and to reason about the
properties of the system.

2. UML, Event-B and refinement patterns.

We use the Unified Modelling Language™ (UML) [6], as a way of modelling not only the architecture of
a system, but also its behaviour and data structure. UML provides a graphical interface and
documentation for every stage of the (formal) development process. We focus on the statechart diagram,
as it shows the possible states of the object and the transitions between them.

In order to be able to reason formally about the abstract specification, we translate it to the formal
language Event-B [11]. An Event-B specification consists of a model and its context that depict the
dynamic and the static part of the specification, respectively. They are both identified by unique names.
The context contains the sets and constants of the model with their properties and is accessed by the
model through the SEES relationship [1]. The dynamic model, on the other hand, defines the state
variables, as well as the operations on these. In order to be able to ensure the correctness of the system,
the abstract model should be consistent and feasible [11]. Each transition of a statechart diagram is
translated to an event in Event-B. The feasibility and the consistency of the specification are then proved
using the Event-B prover tool [2].

It is convenient not to handle all the implementation issues at the same time, but to introduce details of
the system to the specification in a stepwise manner. Stepwise refinement of a specification is supported
by the Event-B formalism. In the refinement process an abstract specification A is transformed into a

more concrete and deterministic system C that preserves the functionality of A. We use the superposition
refinement technique [4, 10, 15], where we add new functionality, i.e., new variables and substitutions on
these, to a specification in a way that preserves the old behaviour.

In order to guide the refinement process and make it more controllable, refinement patterns [15] are
used. In this paper we are focusing on data refinement and event refinement. The example of the former is
shown in the statechart diagram in Fig 1b (splitting states into substates), while examples of the latter are
given in Fig 1c (adding new transitions to use refined states) and Fig 1d (separating existing transitions),
when the abstract specification is as in Fig. 1a. Furthermore, we can also consider a pattern for adding the
same behaviour to several states (orthogonal regions [14]) as a type of data and event refinement. The
pattern types are illustrated in more detail with progress diagrams [12] to give an abstraction and
graphically-descriptive view documenting the applied patterns in each step.

la) 1b)
tri tr1

1c)
tr1

st

[stla jﬁ[stih)trZ st2 }9@

Fig. 1. Refinement patterns

3. Modelling refinement steps — progress diagrams

In most cases it is difficult to get an overview of the refinement process, since the size of the system
grows during the development. Although refinement patterns help the designers and developers to refine
the system, we combine them with the idea of progress diagrams [12]. The progress diagram is a table
that is divided into a description part and a diagram part. The tabular part briefly describes the features
and design patterns in the system of the current development step. It also depicts how states and
transitions (initiated, refined or anticipated) are refined, as well as new variables that are added with
respect to these features. The diagram part gives a supplementary view of the current refinement step and
is in fact a fragment of the statechart diagram. Hence, with the progress diagrams we give a more detailed
documentation of the refinement patterns and visualise the refinement step, showing the most important
features and changes. Our approach results in a clear and legible graphical view of the system.

In order to illustrate the idea of progress diagrams in combination with refinement patterns, we use the
abstract system (shown in Fig.1a) consisting of two states (s¢/ and st2) and two transitions (tr/ and tr2).
We refine it in one step to the concrete system shown in Fig.1c, where the state (sz]) is partitioned into
substates (st/a and st/b) and the anticipating transition trNew is added between the new substates. The
progress diagram of this sample refinement step is depicted in Fig.2. Here we also assume that a new
variable yy is added to the refined system, as illustrated in the rightmost column of the progress diagram.

Description States Ref. States | Transitions | Ref. Transitions | New Var.

1% refinement step:
o creating hierarchical substates (in state st7) — data ref. sti stla
e adding new transition concerning the substates (trNew) — st1b

event ref.

trNew yy

tr1

Ei§l

triNew

Fig. 2. Example of a progress diagram

4. Conclusion

This paper presents a compact approach to documentation of the stepwise system development focusing
on the design patterns. Formal methods and verification techniques are used to ensure that a development
is correct. Our approach uses the B Method as a formal framework and allows us to address modelling at
different levels of abstraction. The use of progress diagrams during the incremental construction of large
software systems provides legible and accessible documentation, whereas the refinement patterns
facilitate the (complex) development process. We benefit from the progress diagrams, as we concentrate
only on the refined part of the system. The combination of descriptive and visual approaches enables us to
focus on the details we are most interested in. Furthermore, it helps to better understand the refinement
steps and patterns used in the development, giving a clear overview of the development.

Design patterns in UML and B have been studied previously. Chan et al. [7] work on identifying
patterns at the specification level, while we are interested in refinement patterns. The refinement approach
on design patterns was presented by Ili¢ et al. [9]. They focused on using design patterns for integrating
requirements into the system models via model transformation. This was done with strong support of the
Model Driven Architecture methodology, which we do not consider in this paper. Instead we provide an
overview of the development from the patterns.

Our approach is not only helpful for the developers, but also for those that later will try to reuse the
exploited features of the system. A clear and compact form of progress diagrams in combination with
refinement patterns is appropriate both for industry developers and researchers. Since progress diagrams
do not involve any mathematical notation, they are useful for presenting the development steps to non-
formal methods colleagues.

As future work tool support will be designed to generate a full refinement chain automatically from the
initial specification and a series of progress diagrams in a stepwise manner. Although progress diagrams
already appear to be a viable graphical view of the system development, further experimentation on
complex case studies is envisaged leading to possible enhancements of the progress diagrams.

References

[1] J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[2] J.R. Abrial, S. Hallerstede, F. Metha, C. Metayer and L. Voisin. Specification of Basic Tools and Platform,
RODIN Deliverable 3.3 (D10), http://rodin.cs.ncl.ac.uk/deliverables/rodinD10.pdf, 2005

[3] J. Arlow and I. Neustadt. Enterprise Patterns and MDA: Building Better Software with Archetype Patterns and
UML. Addison-Wesley, 2004.

[4] R.J.R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control. In: Proc. of the 2nd
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 131-142, 1983.

[5] R.J.R. Back and K. Sere. From modular systems to action systems. Software - Concepts and Tools, 13, pp. 26-
39, 1996.

[6] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language - a Reference Manual. Addison-
Wesley, 1998.

[7]1 E. Chan, K. Robinson and B. Welch. Patterns for B: Bridging Formal and Informal Development. In Proc. of 7th
International Conference of B Users (B2007): Formal Specification and Development in B, LNCS 4355, pp.
125-139, 2007. Springer.

[8] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Series, 1995.

[9] D. Ili¢ and E. Troubitsyna. A Formal Model Driven Approach to Requirements Engineering. TUCS Technical
Report No 667, Abo Akademi University, Finland, February 2005.

[10] S.M. Katz. A superimposition control construct for distributed systems. ACM Transactions on Programming
Languages and Systems, 15(2):337-356, April 1993.

[11] C. Metayer, J.R. Abrial and L. Voisin. Event-B Language, RODIN Deliverable 3.2 (D7),
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf (May 2005)

[12] M. Plaska, M. Waldén, C. Snook. Documenting the Progress of the System Development, In Proc. of Workshop
on Methods, Models and Tools for Fault Tolerance, Oxford, UK, July 2007.

[13] C. Snook and M. Butler. U2B - a tool for translating UML-B models into B. In UML-B Specification for Proven
Embedded Systems Design, chapter 5. Springer, 2004.

[14] C. Snook and M. Waldén. Refinement of Statemachines using Event B semantics. In Proc. of 7th International
Conference of B Users (B2007): Formal Specification and Development in B, Besangon, France, LNCS 4355,
January 2007, pp. 171-185. Springer.

[15] M. Waldén and K. Sere. Reasoning About Action Systems Using the B-Method. Formal Methods in Systems
Design 13(5-35), 1998. Kluwer Academic Publishers.

