
Preprint typeset in JINST style - HYPER VERSION

Architectural modeling of pixel readout chips
Velopix and Timepix3

Tuomas Poikelaab∗, Juha Plosilaa, Tomi Westerlunda, Jan Buytaertb, Michael
Campbellb, Xavi Llopartb, Richard Plackettb, Ken Wyllieb, Martin van Beuzekomc,
Vladimir Gromovc, Ruud Kluitc, Francesco Zapponc, Vladimir Zivkovicc, Christoph
Brezinad , Klaus Deschd , Xiaochao Fangd and Andre Kruthd

aUniversity of Turku, Department of Information Technology
FI-20014 Turun yliopisto, Finland

b CERN,
1211 Geneve, Switzerland

cNikhef,
Science Park 105, 1098 XG Amsterdam, the Netherlands

dUniversity of Bonn,
Nussallee 12, D-53115 Bonn, Germany
E-mail: tuomas.sakari.poikela@cern.ch

ABSTRACT: We examine two digital architectures for front end pixel readout chips, Velopix and
Timepix3. These readout chips are developed for tracking detectors in future high energy physics
experiments. They must incorporate local intelligence in pixels for time-over-threshold measure-
ment and sparse readout. In addition, Velopix must be immune to single-event upsets in its digital
logic. The most important requirements for both chips are pixel size, timing resolution, low power
and high-speed sparse readout. We describe the transaction level architectural models of the chips
using SystemVerilog. The correctness of the models is ensured using Open Verification Methodol-
ogy. We will also discuss the advantages gained from transaction level modeling.

KEYWORDS: VLSI Circuits; Digital electronic circuits; Simulation methods and programs.

∗Corresponding author.

mailto:tuomas.sakari.poikela@cern.ch

Contents

1. Introduction 1

2. Principles of Transaction Level Modeling and Verification 2
2.1 Initiator and Target 2
2.2 Put-, Get- and Transport-Interfaces 2
2.3 Open Verification Methodology 2

3. Transaction Level Modeling of Pixel Chip 3
3.1 Transaction and Packet 3
3.2 Pixels 3
3.3 FIFOs 5
3.4 Buses and Arbitration 5

4. Conclusions and Results 6
4.1 RTL and TLM Simulation Time 6
4.2 Conclusions and Discussion 6

1. Introduction

As CMOS scaling continues, more digital electronics are integrated on the pixel chip. This indi-
cates that requirements can also be scaled to provide better performance (accuracy, speed, lower
power) and more complex functionality. By adopting transaction level modeling (TLM)[1, 2] at
an early stage in the development it is possible to explore and verify different complex architec-
tures in order to meet the specifications. Therefore, we utilised TLM for the development of two
different digital readout architectures for pixel readout chips Velopix and Timepix3. In this paper,
we introduce the architectures and used modelling principles. We conclude the paper by analysing
simulation results from TLM and register-transfer level (RTL) simulations.

Velopix is under development for the LHCb experiment [3], and consists of an array of 256
x 256 pixels (55um x 55um) which detect and tag hits in time with 25ns resolution. Pulse height
information is required to improve the tracking resolution and is measured using the time-over-
threshold (ToT) technique with a range of 4 bits. To minimize digital logic an array of 4x4 pixels,
a super pixel, will share digital resources such as control logic and data storage. To maximise the
use of existing on-chip bandwidth, zero suppression and clustering are done within the super pixel,
which then transmits data packets of varying length depending on the hit occupancy of the 4x4
pixel area. Resources are also shared within a group of 4 super pixels, with one readout unit per
group connected to an 8-bit column bus clocked at 40 MHz. The full chip consists of 64 super
columns, each of 16 groups of 4 super pixels. Correspondingly, the periphery of the chip has 64

– 1 –

End-of-Column (EoC) blocks connected to a hierarchy of buses and intermediate FIFOs driving
the outputs of the chip.

Timepix3 (see Timepix [4]) has the pixel array and detects and tags hits in time with coarse
(25ns) and fine (1.67ns) resolutions, and a ToT range of 10 bits on a pixel level. Each pixel inde-
pendently detects a hit, but the readout functionality is shared between an area of 2x4 pixels. A data
packet consists of data from one pixel only. This shared readout block is connected to a column
bus of 160 Mbps. The full chip consists of 128 super columns of 64 super pixels, each containing
8 pixels. The digital periphery of the chip has 128 EoC-blocks each connected to a token arbitrated
bus of 1.76 Gbps.

Both chips need complex digital architecture requiring, for example, optimal FIFO depths and
bus widths. Historically, it has been difficult to simulate such architectures for a full chip with
an RTL approach. However, TLM offers this possibility. TLM has many features that allow for
efficient modeling of such circuits. The reader is referred to [1, 2], but the main principles that
were used in modeling the digital readout architectures of the two chips are described below.

2. Principles of Transaction Level Modeling and Verification

2.1 Initiator and Target

In TLM data is transported via function calls. An initiator is always a component invoking a func-
tion, and a target is the component containing the implementation and behaviour of this function.
The components are decoupled from each other by using TLM-interfaces. In essence this means
that either of the components can be replaced by a new component containing the same type of
TLM-port regardless of the actual TLM-function implementation in the component.

2.2 Put-, Get- and Transport-Interfaces

The type of the TLM port indicates the direction of data flow. The initiator always starts the
transportation of data as mentioned above, but the data flow can be in either or both directions.

In a Put-interface, an initiator puts (or writes) transactions into the port and a target receives
them. In a Get-interface, the data flow is inverted, and is from the target to the initiator. An
initiator gets (or reads) transactions from a target. Transport-interface is a combination of both the
previously mentioned interfaces. In a single function call an initiator puts data into the port and
receives a response transaction once the function returns.

Each of the interfaces can be either blocking or nonblocking. Blocking TLM-implementations
are implemented using tasks which can include wait()-statements and timing delays, and non-
blocking implementations are functions which return either 0 indicating a failure or 1 indicating a
success.

2.3 Open Verification Methodology

Open Verification Methodology (OVM)[5] is a library of verification components. It offers a full
set of TLM 1.0 interfaces, a class factory for dynamic selection of instantiated object type, super
classes for verification components such as drivers, monitors and scoreboards, and a mechanism to
construct complex stimuli for a design-under-test (DUT) using sequencers and layered sequences.

– 2 –

There are also special TLM-interfaces in OVM which were used extensively in this study.
These interfaces are intended mainly for testbench purposes and to be used with components found
from the OVM library. The library has also its own implementation of a FIFO, namely tlm_fifo,
which can be connected directly to the TLM-ports. However, it also has a simulation overhead
compared to a built-in SystemVerilog (SV) class mailbox (see Sec. 3.3).

All components in modeling of both chips were implemented using classes, mainly using
the ovm_component, from the OVM class library. The testbenches were also developed using
the library and verification functions and components. These testbenches were partly reused in
RTL verification, which was done using constrained-random verification coupled with functional
coverage collection (see [6, 5] for functional coverage). State of the art verification library, a direct
derivative of OVM, is called Universal Verification Methodology (UVM) and also supports TLM
2.0 [7] interfaces.

3. Transaction Level Modeling of Pixel Chip

3.1 Transaction and Packet

For architectural modeling, a transaction representing a packet must be defined. Data members of a
transaction can be derived from the initial specifications. Additional members can be introduced to
facilitate easier debugging and monitoring. For example, additional time stamps were introduced
into the transactions to monitor latency between various internal components of the chip. These
time stamps are not part of the final implementation of the chip. An example of a packet is shown
below:

class PixelPacket extends ovm_transaction;
int tot_value; // Time-over-threshold.
int pixel_address; // Pixel address
int time_stamp; // Global time stamp.
int debug_time_stamp; // Time stamp for debugging.

endclass

For many pixel chip applications, the first three data members shown above are sufficient.
Another time stamp, for coarse time for example, can be added easily. By making the transaction
as general as possible, without data members needed for particular applications, it was usable for
the several different architectures that were studied. This also means that components should not
use any additional data in a transaction unless it is needed for the functionality. For example, a
high level arbiter that was implemented uses only the address information in the transaction, and
the ToT-value and the time stamp are completely transparent to it.

Even if a more detailed transaction is required, all TLM-ports in components should be param-
etrized with the base transaction class to make transportation of any kind of derived transaction
possible. All other transactions should be derived from the base class to utilize the object-oriented
(OO) paradigms such as inheritance and polymorphism (see [8, 9] for OO principles).

3.2 Pixels

A pixel is the basic building block of a pixel chip. To increase the simulation speed, pixels were
modeled at the highest level possible without a loss of information regarding the performance of the

– 3 –

Figure 1. Block diagrams of two different pixel columns: a) Pixels as objects. b) Pixels as mailboxes

Table 1. Build times of different pixel columns.
128 columns 128 columns 128 columns 128 columns
with Pixels with Mailbox Pixel and Pixel and
(figure1a) (figure1b) 1 ovm_object 2 ovm_objects

Runtime 216s 6.6s 544s 616s
Memory 316MB 13MB 332MB 348MB

architecture. For example, modeling of the analog section was reduced to a discriminator output. In
an RTL-simulation, the signal is evaluated on every active edge of the clock which causes overhead
in a simulation. The overhead was reduced by modeling activity only on rising- and falling edges
of the discriminator.

Because a large number of pixels was needed, it was not feasible to implement each pixel
as a separate component. For example, implementing a pixel as an ovm_component has more
overhead than modeling a pixel using a built-in SV-class mailbox (see [6]). This distinction is
shown in figure 1. It can be seen from the figure that the number of objects (pixels and ports) is
greater in a) than in b). Also the number of connections that need to be established is increased.
For Timepix3, an SV-class for a full pixel column was created and pixels were implemented using
the class mailbox. This decreased the duration of build- and connect-phases (see [5] for phase
definitions) during the simulation.

The overhead of modeling pixels as an ovm_component -class was evaluated using Mod-
elsim 6.5d memory profiler and time{} -command. The results are shown in Table 1. Using
an ovm_component has a significant memory- and runtime overhead when instantiating 65,536
(256 x 256) components. Instantiating one or two objects with each pixel also increases the overall
memory footprint and runtime.

Instead of allocating all mailboxes at the beginning of a simulation, a mailbox can also be
dynamically allocated when a pixel is hit. This reduces the amount of CPU memory required at the
beginning of simulation, but makes the overall memory print dependent on the number of pixels hit.
One option is to deallocate the mailbox when a pixel is empty but reallocating a mailbox several

– 4 –

times during the simulation may increase the simulation runtime.

3.3 FIFOs

FIFOs were used in this study as derandomizers and data buffers, and have been used widely else-
where (see [10, 11]). Due to the specific requirements of FIFOs (asynchronous, multiple clock
domains, error correction) in different applications, an RTL-FIFO design can be error-prone. A
high-level FIFO can be implemented using mailbox-class. This implements blocking- and non-
blocking put- and get-functions. No error-prone read- and write-pointer management is required
when using mailbox. For more complex FIFOs, a specialized class was created which internally
used mailbox for data management, in addition to user-defined functionality. The mailbox-
class was also extensively used in the modeling and testbenches of both the chips.

In Velopix, where packets do not have a fixed size, a built-in class semaphore was used to
model empty bits or slots in a FIFO while an unbounded mailbox was used to store the actual
transactions. A semaphore is initialized with a certain number of keys, which can be used to
represent bits or even complete packets. It has nonblocking functionality for put- and get-functions
and also implements a blocking get-task.

3.4 Buses and Arbitration

Buses were used extensively in both architectures and elsewhere in pixel chips (see [12, 10, 13]
for example). Sparse readout schemes investigated for Velopix in particular were sensitive to the
width and speed of these buses and hence these parameters had to be simulated carefully. Buses
were modeled using an unbounded mailbox. This functions as a bus with an embedded first-
come first-served arbitration. Each component connected to this bus can use the put-interface to
put its transaction onto the bus, and the bus takes care of the arbitration using the mailbox.

class TokenArbiter extends ovm_component;
ovm_blocking_imp#(PixelPacket, TokenArbiter) get_port;
ovm_blocking_get#(PixelPacket) data_ports[];
...
task get(ref PixelPacket p);

while(! data_found) begin // Arbitration algorithm
data_found = packet_exists_in_pixel(N++);
#(delay); // A realistic arbitration delay
if(N > max_num_of_pixels) N = 0;

end
data_ports[N - 1].get(p);

endtask: get
endclass: TokenArbiter

Consider the code above describing a token arbiter (see [14, 15] for arbiter schemes). A
token arbitration scheme can be implemented at a high-level using one-to-many get-port mapping.
A component can request data from the arbiter using a get-port and the arbiter can forward this
request to a component holding data using its arbitration algorithm. The algorithm can be replaced
by any custom algorithm required for the modeling of a chip. The arbiter does not use any clock
but the delay of the arbiter can be realistically modeled using a #-Verilog operator.

– 5 –

Table 2. Simulation times of Velopix TL- and RTL-models.
TLM(full chip) RTL(1 cols) RTL(4 cols) RTL(64 cols)

360s 185s 1251s 140800s1

Table 3. Simulation times of Timepix3 TL- and RTL-models.
TLM(full chip) RTL(2 cols) RTL(4 cols) RTL(8 cols) RTL(128 cols)

1560s 1117s 2883s 7440s 329648s2

4. Conclusions and Results

4.1 RTL and TLM Simulation Time

It has been reported that transaction level (TL) models run 10 to 1,000 times faster than RTL-
models [2]. Benchmarks in this paper have been been obtained by comparing RTL simulations to
TLM simulations. The simulator used was NCSim.

A comparison between Velopix RTL- and TL-simulation times is shown in Table 2, and the
comparison of Timepix3 simulation times is shown in Table 3. For RTL-simulations, only modules
relevant to the readout architecture were used to reduce the simulation time. For example, config-
uration logic was modeled at the behavioral level. Simulation times of Timepix3 and Velopix are
not comparable because of the differences in hit occupancies and modeling granularity of the pixel
functionality.

Velopix has 64 columns (1024 pixels per column) while Timepix3 has 128 columns (512
pixels per column). The durations presented in Table 2 and Table 3 for both the RTL simulations
are estimates because no full chip RTL-simulation could be run. The RTL code was implemented
using a synthesizable subset of SystemVerilog, and was not optimized for simulation (see [16]
for improved simulation efficiency). The performance profiler was also used to ensure that no
simulation bottleneck was caused by any of the testbench components. Also no memory benchmark
was established for these simulations.

4.2 Conclusions and Discussion

It has been shown that TLM can reduce the simulation time for an architectural optimization of
a pixel chip. The experience in these projects has shown TL-models to be faster to develop and
debug than corresponding RTL-models. It can also be concluded that TLM at the early stage
of the projects has facilitated testbench development before RTL design has started. It can also
be said from the experience that debugging TL-components is an order of magnitude faster than
debugging RTL-modules. Due to high-level synchronization mechanisms such as events, FIFOs
and semaphores, the behaviour of TL-components is easier to estimate than the behaviour of RTL-
modules based on custom protocols and synchronization.

The biggest disadvantage in using TLM has been the lack of connection between physical
implementation and TL-models. Because of this the physical implementation had to be kept in

1An estimate from a simulation of 1 and 4 columns.
2An estimate from a simulation of 2, 4 and 8 columns.

– 6 –

mind while designing the TL-model of the chip architecture. Even so, the RTL models still had
to be written from scratch after the architecture was determined using TLM. The need for a very
low-level optimization in a pixel chip, especially in the pixel area, makes a pixel chip unsuitable
for automatic refinement from TL-model into RTL-model. However, the same disadvantage exists
for non-synthesizable bus functional models written without TLM-interfaces.

Even with this drawback, using TLM for architectural simulations is a viable option, especially
if several different architectures need to be developed and simulated. While RTL-models can be
scaled down by reducing the number of columns for example, a full chip architectural TL-model
offers more accurate estimates in the case of highly non-uniform hit occupancies. The impact of
these distributions to data transport in pixel columns and periphery blocks can be modeled without
losing cycle accuracy while keeping the simulation performance higher than in RTL-simulations.
The work in this paper was carried out using SystemVerilog hardware description language.

References

[1] L. Cai and D. Gajski. Transaction Level Modeling: An Overview. First IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis, 1, 2003.

[2] F. Ghenassia et al. Transaction level modeling with SystemC. Springer, Dordrecht, 2005.

[3] The LHCb Collaboration. Letter of intent for the LHCb upgrade, 2011. CERN-LHCC-2011-001.

[4] X. Llopart et. al. Timepix a 65k programmable pixel readout chip for arrival time, energy and/or
photon counting measurements. NIM A, 581:485–494, 2007.

[5] Mentor Graphics. Open Verification Methodology (OVM) user’s guide. Verification Academy.

[6] SystemVerilog Language Reference Manual. SystemVerilog homepage.

[7] The Open SystemC Initiative. SystemC webpage.

[8] Iain D. Craig. Object-Oriented Programming Languages: Interpretation. Springer, 2007.

[9] Avinash C. Kak. Programming with Objects: A Comparative Presentation of Object-Oriented
Programming with C++ and Java. John Wiley and Sons, 2003.

[10] D. Arutinov et al. Digital Architecture and Interface of the New ATLAS Pixel Front-End IC for
Upgraded LHC Luminosity. IEEE Transactions on Nuclear Science, 56(2):388–393, April 2009.

[11] G. Dellacasa et al. A silicon pixel readout ASIC with 100 ps time resolution for the NA62
experiment. J. Inst., 6, January 2011. C01087.

[12] Ch. Hu-Guo et al. CMOS pixel sensor development: a fast read-out architecture with integrated zero
suppression. J. Inst., 4(4):1–10, April 2009. P04012.

[13] M. Gélin et al. Intermediate Digital Monolithic Pixel Sensor for the EUDET High Resolution Beam
Telescope. IEEE Transactions on Nuclear Science, 56(3):1677–1684, June 2009.

[14] H. Kariniemi and J. Nurmi. Arbitration and routing schemes for on-chip packet networks. In
Interconnect-Centric Design for Advanced SOC and NOC, pages 253–282. Kluwer Academic
Publishers, 2004.

[15] H. Foster and A. Krolnik. Creating Assertion-Based IP. Springer, New York, 2008.

[16] C. Cummings. Verilog coding styles for improved simulation efficiency. International Cadence User
Group Conference, October 1997.

– 7 –

http://www.verificationacademy.com
http://www.systemverilog.org
http://www.systemc.org

