
REFINE 2009

Data Refinement of Invariant Based Programs

Viorel Preoteasa1 and Ralph-Johan Back2

Department of Information Technologies
Åbo Akademi University

Turku, Finland

Abstract

Invariant based programming is an approach where we start to construct a program by first identifying the
basic situations (pre- and postconditions as well as invariants) that could arise during the execution of the
algorithm. These situations are identified before any code is written. After that, we identify the transitions
between the situations, which will give us the flow of control in the program. Data refinement is a technique
of building correct programs working on concrete data structures as refinements of more abstract programs
working on abstract data types. We study in this paper data refinement for invariant based programs and
we apply it the the construction of the classical Deutsch-Schorr-Waite graph marking algorithm. Our results
are formalized and mechanically proved in the Isabelle/HOL theorem prover.

Keywords: Invariant based programming, Data refinement, Mechanical verification

1 Introduction

Invariant based programming [3,4,5,8] is an approach to constructing correct pro-
grams where we start by identifying all basic situations (pre- and post-conditions,
loop invariants, etc.) that could arise during the execution of the algorithm. These
situations are determined and described before any code is written. After that, we
identify the transitions between the situations, which together determine the flow
of control in the program. The transitions are verified at the same time as they
are constructed. The correctness of the program is thus established as part of the
construction process.

We use a diagrammatic approach to describe invariant based programs, (nested)
invariant diagrams, where situations are shown as (possibly nested) boxes and tran-
sitions are arrows between these boxes. We associate a collection of constraints with
each situation box, and a sequence of simple statements with each transition arrow.
Nesting expresses the information content of the situations: if situation B is nested
within situation A, then B inherits the constraints of A. The control structure is
secondary to the situation structure, and will usually not be well-structured in the

1 Email: viorel.preoteasa@abo.fi
2 Email: backrj@abo.fi

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:viorel.preoteasa@abo.fi
mailto:backrj@abo.fi

Preoteasa and Back

classical sense, i.e., control is not necessarily expressible in terms of single- entry
single-exit constructs. The invariant diagram shows explicitly all the information
needed in order to verify that the program is correct: pre- and post-conditions,
invariants, transitions, and termination functions.

We have been experimenting with teaching formal methods using invariant based
programming for a number of years now, mainly in the form of introductory CS
courses at university levels. The experiences have been good, the students learn
quite easily how to construct programs that are correct by construction with this
approach, and appreciate the added understanding that the approach brings to how
a program works. The problems encountered have less to do with the invariants first
approach than with the general problem of how to describe formally (in predicate
calculus) situations that are intuitively well understood [5].

The following shows a simple example of an invariant based program, the factorial
function, expressed as an invariant diagram.

There are three situations here, Initial, Invariant, and Final. The initial situa-
tion declares the program variables n and x and restricts them to range over integers.
In addition, we require that n ≥ 0. The two other situations are nested inside In-
variant, which means that they inherit the program variables and constraints from
the outer situation. Situation Final states that upon termination x = n! must hold.
The intermediate situation Invariant declares an additional program variable i and
restricts it to range over integers in the range 1 to n + 1. In addition, it requires
that x = (i− 1)! holds in this situation. There are three transitions in the diagram,
one leading from Initial to Invariant providing initial values for x and i, one leading
from Invariant back to itself that updates the variables x and i when i ≤ n holds,
and one leading from Invariant to Final that is taken when i > n holds but which
does not change any program variables.

The Invariant situation also gives a termination function, in the form termination
function ∈W , where W is some well founded set. In this case, the well founded set
is the set of natural numbers nat and the termination function is n + 1 − i. The
property n+1− i ∈ nat must be provable from the constraints that hold in situation
Invariant (in this case, this amounts to proving that 0 ≤ n+ 1− i holds).

Execution of an invariant based program may start in any situation (not neces-
sarily an initial situation), in a state that satisfies the constraints of the situation.
One of the transitions that are enabled in this situation will be chosen. The tran-
sition is then executed, leading to new state in (possibly) another situation. There

2

Preoteasa and Back

again one of the enabled transitions is chosen, and executed, and so on. In this
way, execution proceeds from situation to situation. Execution terminates when
a situation (not necessarily a final situation) is reached in a state for which there
are no enabled transitions. Because the execution could start and terminate in any
situation, invariant-based programs can be thought of as multiple entry, multiple
exit programs. We may choose to identify some situations in an invariant based
program as initial situations and some other situations as final situation, with the
idea that execution should start in some initial situation and it should end in some
final situation.

An invariant based program is consistent, if each transition preserves the situ-
ation constraints. This means that if we start execution in a situation A and in a
state where the constraints of A are satisfied, and choose a transition that is enabled
in A, then executing the transition will lead to some situation B (which could be A
again) such that the resulting state satisfies the constraints associated with B. An
invariant based program is terminating, if each execution of the program eventually
terminates. For a given collection of final situations, an invariant based program is
said to be live if termination only occurs in some final situation. The semantics and
proof theory for invariant based programs are studied in detail in [8].

The purpose of this paper is to study the use of data refinement when building
invariant based programs. Data refinement [12,2,10,11] is a technique of building
correct programs working on concrete data structures as refinements of more abstract
programs working on abstract data structures. The correctness of the final program
follows from the correctness of the abstract program and from the correctness of
the data refinement. The overall complexity of the correctness proof is usually lower
when using data refinement than when the final program is developed directly on the
concrete data structure. We will show how to adapt the basic idea of data refinement
to the construction of invariant based programs. At the same time, we will extend
the notion of nested invariant diagrams in a way that makes it easy to describe data
refinement. On the theoretical side, this paper extend the work described in [8] by
including methods for carrying out data refinement. The data refinement theorems
that we present here have all been proved mechanically in Isabelle/HOL [15].

We apply our technique to a larger case study, constructing the classical Deutsch-
Schorr-Waite (DSW) [16,13] marking algorithm for arbitrary graphs. The DSW
algorithm marks all nodes in a graph that are reachable from a root node. The
marking is achieved using only one extra bit of memory for every node. The graph
is given by two pointer functions, left and right, which for any given node return its
left and right successors, respectively. While marking, the left and right functions are
altered to represent a stack that describes the path from the root to the current node
in the graph. On completion the original graph structure is restored. We construct
the DSW algorithm by a sequence of three successive data refinement steps. The
proof obligations that arouse during our development were all formalized an proved
mechanically in Isabelle/HOL. The main difference in our case study, as compared
to the previous studies [14,1], is that the whole refinement process is carried out
using invariant diagrams. We also believe that the way we develop the algorithm by
first proving a generalization of the algorithm significantly reduces the overall proof
effort.

3

Preoteasa and Back

The paper is structured as follows. Section 2 presents the proof theory for invari-
ant based programs. Section 3 shows how to carry out data refinement of invariant
diagrams. The DSW algorithm is constructed in Section 4. Section 5 presents some
concluding remarks.

2 Proof theory for invariant diagrams

We describe here more precisely how to prove the correctness of invariant diagrams.
We start by defining the notion of monotonic predicate transformers, on which the
semantics of invariant based programs are based, and then continue with defining
the different aspects of the correctness for invariant diagrams.

2.1 Monotonic predicate transformers

We assume a given state space Σ. A state σ ∈ Σ is a tuple with one component
for every program variable and it represents the values of the program variables at
some moment of the computation. We assume that the value of a program variable
x is given by a projection function x : Σ→ T where T is the type of x.

Predicates (or sets), denoted pred, are functions from Σ → bool. We denote by
∪, ∩, ⊆ the union, intersection, and inclusion of predicates respectively.

We write mtran for the type of all monotonic predicate transformers, i.e., mono-
tonic functions from pred → pred. Programs are modeled as elements of mtran. If
S ∈ mtran and p ∈ pred, then S.p ∈ pred are all states from which the execution of
S terminates in a state satisfying the post-condition p. Sequential composition of
programs, denoted S ; T , is defined as the functional composition of monotonic pred-
icate transformers, i.e. (S ; T).p = S.(T.p). We denote by v, t, and u the point-wise
extension of ⊆, ∪, and ∩, respectively. The type mtran, together with the point-wise
extension of the operations on predicates, forms a complete lattice. The partial order
v on mtran is the refinement relation [9,2]. The predicate transformer S uT models
demonic choice - the choice between executing S or T is arbitrary and cannot be
influenced from outside.

Program expressions of some type T are seen as functions from Σ → T . If
e : Σ → T and σ ∈ Σ, then e.σ is the value of expression e in state σ, where the
values of the free variables in e are given by σ. For example the value of expression
x + y in a state σ where x.σ = 3 and y.σ = 4 is 7. In Isabelle/HOL we implement
a program expression (predicate) e which contains the free variables xi : Ti as a
function e : T1 → . . . → Tn → T . Then e.a1. . . . an is the value of the expression e
in the state σ where xi.σ = ai. If e, f are program expressions and x is a program
variable, then we denote by e[x := f] the substitution of x with f in e.

We introduce a number of basic monotonic predicate transformers that we use in
constructing invariant based programs. These are the assignment statement x := e,
the assume statement [p], the demonic assignment statement [x := x′ | b], the angelic
assignment statement {x := x′ | b} and the magic statement magic. We define these

4

Preoteasa and Back

as follows:

Assignment (x := e).q = q[x := e]

Assume [p].q = ¬p ∪ q

Demonic assignement [x := x′ | b].q = (∀x′ • b⇒ q[x := x′])

Angelic assignement {x := x′ | b}.q = (∃x′ • b ∧ q[x := x′])

Magic magic.q = true

The variable x′ is bound in the demonic and angelic assignment statements, and we
assume that q does not contain the variable x′ free.

All the above program constructs except the angelic assignment can be reduced
to a demonic assignment. Moreover, sequential composition and demonic choice of
demonic assignments are also a demonic assignments. Because of these properties
we will always work with demonic assignments in definitions, but we will use all of
the above program constructs in examples. We could also allow assert statements,
but the treatment becomes a little bit simpler when we omit it (assert statements
can be handled without problems, as shown in [8]).

For a monotonic predicate transformer S ∈ mtran we introduce the guard of S
by grd.S = ¬(S.false).

Theorem 2.1 The following properties are true.
grd.(x := e) = true

grd.[p] = p

grd.[x := x′ | b] = (∃x′ • b)
grd.(S1 u S2) = grd.S1 ∪ grd.S2

If p and q are predicates and S is a program, then a total correctness triple, denoted
p {|S |} q, is true if and only if p ⊆ S.q.

For a function f : X → Y we denote by f [x := y] : X → Y the function given
by

f [x := y].z =

{
y if x = z

f.z otherwise

2.2 Invariant diagrams

An invariant diagram is a directed graph where nodes are labeled with invariants
(predicates) and edges are labeled with program statements (monotonic predicate
transformers). The nodes of the invariant diagram are called situations and the
edges are called transitions.

Let I be a nonempty set if indexes. Formally, an invariant diagram is a tuple
(P, T) where P : I → pred are the invariants and T : I × I → mtran are the
transitions. We also call T a transition matrix. The guard of a transition matrix in
a situation i ∈ I, grd.T.i ∈ pred is the disjunction of the guards of all transitions

5

Preoteasa and Back

from i:
grd.T.i =

∨
j∈I

grd.T.i.j

We assume in this paper that edges are labeled only with demonic assignment
statements [x := x′ • R.x.x′]. In general, we can have any statements constructed
using sequential composition of assume, assignment, and demonic assignment state-
ments on the edges. However, such statements can all be reduced mechanically to a
single equivalent demonic assignment statement.

For example, the program for computing the factorial of a number n is rep-
resented as a invariant diagram by choosing I = {Initial , Invariant , Final}, and
giving values to T according to the diagram. A transition from situation i to sit-
uation j is assumed to be magic (the transition which is never enabled) if it is not
drawn explicitly in the diagram. Thus, for instance,

T (Invariant , Invariant) = [x ≤ i] ; x, i := x · i, i+ 1

and
T (Invariant , Initial) = magic.

The execution of an invariant diagram may start in any situation i ∈ I, and
then non-deterministically choose some enabled transition from i leading to some
new situation j ∈ I. The execution continues in this way as long as transitions are
enabled. The execution terminates when a situation i is reached where no transi-
tions are enabled. In [8], we have introduced operational semantics and predicate
transformer semantics for invariant based programs and we proved their equivalence.
We have also introduced correct and complete proof rules for invariant diagrams.
We recall these proof rules below.

Informally, a transition matrix T : I × I → mtran is totally correct with respect
to the initial predicates P : I → pred and final predicates Q : I → pred, denoted
` P {|T |}Q, if for all initial states s and situations i for which P.i.s is true, the
execution always terminates, and Q.j.s′ is true for the termination state s′ and
termination situation j.

We have the following general rule for proving total correctness of invariant
diagrams. If (W,<) is a well founded set and Xw : I → pred, w ∈W , is a family of
predicates, then the following inference rule is true:

((∨X) ⊆ P) ∧ ((∨X) ∩ ¬grd.T ⊆ Q) ∧ (∀i, j, w• ` Xw.i {|Ti,j |}X<w.j)

` P {|T |}Q
(1)

where
X<w =

∨
v<w

Xv and ∨X =
∨

w∈W
Xw

An invariant diagram (P, T) is correct if ` P {|T |}P .
Rule (1) requires proving that a variant decreases on every transition. In [8] we

have introduced a version of this rule which only requires proving that a variant
decreases in some transitions which are part of cycles in the diagram. However, as
our main example has the simple structure of the diagram (2), we will not discuss

6

Preoteasa and Back

further the improved rule for proving total correctness of invariant diagrams, but
be content with describing how one proves correctness of invariant diagrams of this
simple form.

We will in the sequel focus on diagrams of the following simple form:

(2)

We write here w ∈W in the upper right corner of the loop invariant, to indicate
that loop invariant is in fact ∨p =

∨
w∈W pw, even if we just write pw as the situation

constraint.
The proof obligations for this diagram are

α {|S1 |} ∨ p

pw {|S2 |} p<w

∨p {|S3 |}β

where ∨p and p<w are defined similarly to ∨X and X<w.
In practical examples, the predicate pw in diagram 2 is the conjunction of the

situation invariant P and a formula of the form ti = w, where w ∈ W and ti is a
variant term ranging over the set W . In the invariant diagram, we then state the
variant ti by writing ti ∈ W in the upper right corner of situation i (as exemplified
in the factorial example).

The proof obligations for the factorial example above using this more practical
proof rule are as follows:

n ≥ 0 {|x, i := 1, 1 |}n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1

n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1 ∧ n− i+ 1 = w {| [i ≤ n] ; x, i := x · i, i+ 1 |}

n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1 ∧ n− i+ 1 < w

n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1 {| [i > n] |}n ≥ 0 ∧ x = n!

The execution of a diagrams can start from any situation, and it can end in any
situation. In practice, we are mainly interested in diagrams in which the execution
is guaranteed to terminate in some predetermined final situations. For example
we want the factorial diagram presented earlier to always terminate in situation
Final. An invariant diagram with final situations is a tuple (P, T, J) where (P, T)

is an invariant diagram, and J ⊆ I is a non-empty set of final situations. The
diagram (P, T, J) is correct if (P, T) always terminates in a situation in J (we then
say that the diagram is live for the final situations J). Formally we define the total

7

Preoteasa and Back

correctness of an invariant diagram with final situations by the triple

` P {|T |}P J (3)

where for all i ∈ I

P J .i =

{
P.i if i ∈ J
false otherwise

If we require termination only in situation Final for the factorial example, then we
have two additional proof obligations (which are both trivial to establish):

n ≥ 0⇒ true

n ≥ 0 ∧ x = (i− 1)! ∧ i ≤ n+ 1⇒ (i ≤ n ∨ i > n)

We emphasize the final situations on the diagram by drawing them with a ticker
border line as already shown in the factorial example.

An executable invariant diagram is one in which all statements in the diagram are
equivalent to the form [p] ; x := e, where e and p are ordinary program expressions.
They should thus not contain quantifiers or specification functions which are not
part of the target programming language.

Very often in examples it is convenient to draw more than one transition between
two situations i and j. We interpret these as standing for a single transition that is
the demonic choice of all transitions between i and j.

3 Data refinement of invariant diagrams

Data refinement has proved to be a powerful tool in developing software systems.
When writing a complex program, it is often useful to start with an abstract program
on an abstract data structure, and gradually refine it to a more concrete program
working on a concrete data structure. Using this approach the overall proof work is
split in smaller tasks [2,10,11].

3.1 Data refinement of statements

The following diagram describes data refinement:

The abstract statement S modifies the global variables z and abstract variables x,
and leads from an initial abstract situation α.x.z to a final abstract situation β.x.z.
The concrete statement S′ modifies the global variables z and concrete variables y
and leads from an initial concrete situation α′.y.z to a final concrete situation β′.y.z.
The data abstraction relation R1.x.y.z describe how the abstract variable x is related
to the concrete variables y and z in the initial situation. Similarly for R2.x.y.z in
the final situation.

8

Preoteasa and Back

We can define data abstraction in terms of an angelic statement D that computes
for each concrete state some abstract state. Let us define

D1 = {x := x′ |R1.x
′.y.z ∧ α′.y.z}

D2 = {x := x′ |R2.x
′.y.z ∧ β′.y.z}

Here the abstraction (decoding) statements Di include both the abstraction relation
and the concrete invariant. We say that the program S is data refined by S′ via D1

and D2, denoted S vD1,D2 S
′, if D1;S v S′;D2 holds.

Let us now further assume that the abstract statement S is just a demonic
assignment,

S = [x, z := x′, z′ |Q.x.z.x′.z′]

We want to refine the abstract statement in the context where the initial situation
α.x.z holds. This is expressed by the data refinement {α.x.z};S vD1,D2 S

′. This
holds if and only if

α′.y.z ∧R1.x0.y.z ∧ α.x0.z ∧ z = z0 {|S′ |} (∃x •R2.x.y.z ∧ β′.y.z ∧Q.x0.z0.x.z)

3.2 Data refinement of invariant based programs

Data refinement is often used to implement a data module with information hiding.
The specification of the module defines the effect of access procedures in terms of
abstract variables. The implementation of the module is in fact done in term of
concrete variables, in order to achieve efficiency. If we can prove data refinement
for all access methods, then any user of the module will never see a difference, and
may use the module and reason about its behavior as if it was really implemented
in terms of the abstract variables.

The situation with invariant based programs is different. Here we are interested
in deriving a concrete algorithm working on concrete variables. The abstraction is
only useful if it saves us some verification effort, or can simplify the understanding
and/or construction of the algorithm. However, it turns out that data refinement
is quite useful for this purpose also. In many cases, it is easier to first design an
abstract program, working on some abstraction of the intended state, and prove that
it satisfies our requirements, and then refine this to a more concrete program that
works on the state space that we really want to (or have to) use.

Consider the situation in diagram above. The initial situation has the constraint
α′.y.z and the final situation has the constraint β′.y.z. Assume now that we want
the concrete variables y and z to also satisfy the constraint D1.(α.x.z), which says
that there exists some value x such that R1.x.y.z ∧α.x.z holds. In other words, the
variables y and z should also represent some abstract variables x that satisfy the
abstract situation constraint. This means that the initial situation has the overall
constraint

(∃x •R1.x.y.z ∧ α′.y.z ∧ α.x.z)

9

Preoteasa and Back

Similarly, we can argue that the final situation has the overall constraint

(∃x •R2.x.y.z ∧ β′.y.z ∧ β.x.z)

This divides the constraint of the situation into two parts, a concrete and an
abstract part. We are now looking for a concrete transition S′ that leads from the
initial situation to the final situation, when interpreted in this way. We describe
this in an invariant diagram as shown below on the left:

The notation on the left indicates that the invariant of the nested situation is
the conjunction of the constraints in the outer situations and the inner situation,
but such that the variable x is removed by existentially quantifying it. The right
hand diagram is equivalent to the left hand diagram, but written without the data
abstraction notation. The advantage of the left hand side notation is that it shows
the structure of the situation, how it is built up from a concrete and an abstract
requirement.

The transition S′ is now correct if

D1.(α.x.z) {|S′ |}D2.(β.x.y) (4)

or, writing it out explicitly, if

(∃x •R1.x.y.z ∧ α′.y.z ∧ α.x.z) {|S′ |} (∃x •R2.x.y.z ∧ β′.y.z ∧ β.x.z)

holds.
We prove (4) by proving two smaller steps:
(i) the abstract transition S is correct, and
(ii) the concrete transition S′ is a data refinement of the abstract transition S.

This is stated in the next theorem.

Theorem 3.1

α.x.z {|S |}β.x.z (i)

∧

α′.y.z ∧R1.x0.y.z ∧ α.x0.z ∧ z = z0 {|S′ |}β′.y.z ∧ (∃x •R2.x.y.z ∧Q.x0.z0.x.z) (ii)

⇒

D1.(α.x.z) {|S′ |}D2.(β.x.z)

10

Preoteasa and Back

Proving assumptions (i) and (ii) in the theorem will in fact establish the correctness
of the following diagram.

This shows both the abstract transition and the concrete transition, and explains
how the concrete transition is derived from the abstract transition. The verification
of both the abstract and the concrete transition can be done using only information
that is explicitly given in the diagram.

3.3 Termination

We show next that termination of the abstract program is inherited by the concrete
program. Consider the following simple diagram, with a control structure similar to
the factorial function.

(5)

If Si = [x, z := x′, z′ •Qi.x.z.x
′.z′], then the proof obligations for total correct-

ness of the abstract program are

α {|S1 |} ∨ p

pw {|S2 |} p<w

∨p {|S3 |}β

11

Preoteasa and Back

and the proof obligation for the data refinement are

R1.x0.y.z ∧ α.x0.z ∧ z = z0 {|S′1 |} (∃x •R2.x.y.z ∧Q1.x0.z0.x.z)

R2.x0.y.z ∧ (∨p).x0.z ∧ z = z0 {|S′2 |} (∃x •R2.x.y.z ∧Q2.x0.z0.x.z)

R2.x0.y.z ∧ (∨p).x0.z ∧ z = z0 {|S′3 |} (∃x •R3.x.y.z ∧Q3.x0.z0.x.z)

Using Theorem 3.1 we obtain

D1.(α.x.z) {|S′1 |}D2.(∨p.x.z)

D2.(pw.x.z) {|S′2 |}D2.(p<w.x.z)

D2.(∨p.x.z) {|S′3 |}D3.(β.x.z)

(6)

where Di = {x := x′ • Ri.x
′.y.z}. Because Di is disjunctive the relations (6) are

equivalent to

D1.(α.x.z) {|S′1 |}
∨

w(D2.(pw.x.z))

D2.(pw.x.z) {|S′2 |}
∨

v<w(D2.(pv.x.z))∨
w(D2.(pw.x.z)) {|S′3 |}D3.(β.x.z)

(7)

which ensures the total correctness of the following concrete invariant diagram.

(8)

In other words, if we can prove that the abstract program terminates, then any
data refinement of the abstract program will also terminate. We have shown earlier
how termination is proved for programs with the structure (5). This can be easily
generalized to arbitrary diagrams because the termination argument is proved for
every transition, and refinement preserves this property.

3.4 Liveness

We have seen above that termination for the abstract invariant diagram also implies
termination of the concrete diagram. The same thing does not, however, hold for
liveness. If we require that termination only happens in some specific final situations,
then we need to prove this property explicitly for the concrete diagram. Termination
in a specific final situation is thus not preserved by data refinement. (But the
converse is actually true: if the concrete program is live, then the abstract program
is also live.)

12

Preoteasa and Back

The simplest way of guaranteeing that an invariant based program is live is to
check for each non-terminal situation that at least one transition is always enabled
in any state that satisfies the situation constraints. This is usually easy to check.

4 Data refinement of the DSW marking algorithm

We will now apply the data refinement technique presented above to construct the
classical Deutsch-Schorr-Waite marking algorithm as an invariant based program.
This algorithm marks all reachable nodes in an arbitrary directed graph, using only
one bit of extra memory for every graph node. The algorithm is given for a graph
structure represented using two pointers, left and right, associated with each node.
A marking bit is associated with every node, and initially the marking bit is false
for all nodes.

An auxiliary bit called atom is also associated with every node (initially this
bit can contain any value). The algorithm will mark exactly those nodes that are
reachable from a given root node by a path on which all nodes have the atom bit
false. Thus, y will not be marked if every paths from the root to y contains a node
with the atom bit true. If the algorithm should mark all reachable nodes, then the
atom bit must initially be false for all nodes.

The algorithm changes the left and right pointers and the atom bit while per-
forming the marking, but will restore the original values to these variables upon
completion. The original algorithm is rather asymmetric with respect to the treat-
ment of the left and right pointers. In order to simplify the algorithm we generalize
it to solve the marking problem for a graph structure in which each node has a col-
lection of pointers lnk .i for i ∈ I, instead of left and right only. This change enables
us to treat uniformly the lnk.i pointers (in the original algorithm we would need
pairs of lemmas for both left and right pointers, however in the generalized version
all these are replaced by single lemmas about the lnk .i pointers).

We construct the classical DSW marking algorithm in four steps. First we build
an algorithm that marks all nodes that can be reached from a special root node
in an arbitrary directed graph. The graph structure is given by a relation next ⊆
node×node. This initial algorithm uses an auxiliary variable X ranging over sets of
nodes. The set X is initialized with the root element and, as long as X is nonempty,
we either remove an element from X if all its successors are marked, or if there is
an unmarked successor x of an element of X, then we mark x and add it to X. The
algorithm finishes when the set X is empty. We prove that this algorithm marks
all nodes reachable from root using the relation next. Also we prove termination for
this initial algorithm.

The second algorithm uses a stack of nodes instead of a set. In the first version
of the algorithm, any element of the set could be used to proceed with marking, the
stack version always chooses the element at the top of the stack. If all successors
of the top are marked, then the top is removed, otherwise an unmarked successor
of the top of the stack is marked and pushed onto the stack. The stack stores the
path from the current node to the root node. We derive the second algorithm with
a data refinement from the first algorithm.

A second data refinement step replaces the relation next by the collection lnk .i

13

Preoteasa and Back

of pointer functions and a function lbl which associate to every node a label from
I. No extra variables are used for the stack, the stack is represented using the
lnk and lbl variables. The data refinement shows that the new algorithm does the
same computation as the previous algorithm, and that the variables lnk and lbl are
restored to their initial values upon completion.

Finally, a third data refinement step replaces the general lnk .i pointers with left
and right pointers, and thus yields the classical DSW algorithm. The function lbl is
also replaced by the atom bit.

Here we present some steps of the construction of the algorithm, but we do
not give any proofs. All proof obligations for this algorithm have, however, been
mechanically verified with the theorem prover Isabelle/HOL.

4.1 Marking using a set

In the first algorithm we start with a set X containing the root element. As long
as the set X is non-empty we repeat the following steps: if there exists a unmarked
successor node x of a node in X, then we mark x and we add it to X; or if there is
a node x in X such that all successors of x are marked, then we remove x from X.
The algorithm terminates when the set X is empty.

Initially we know that the marking bit of all nodes is false, and we also assume
that there is a finite number of nodes. The assumption that we have a finite number
of nodes will be used to prove the termination of the algorithm. In the final state the
marking bit of a node is true if and only if this node is reachable from root. While
marking, we maintain the invariant that all nodes in the set X are marked, all nodes
marked so far are reachable, and for every reachable node x either x is marked or
there exists a path of un-marked nodes from a node in X to x. The termination is
given by the fact that at each step, we either mark a node and add it to the set X,
or we remove a node from X. Therefore, at each step, the term 2 · |mrk | + |X| is
decreased, where mrk is the set of currently marked nodes and |mrk | stands for the
number of unmarked nodes.

The algorithm works on the following program variables and constants (that
together make up the abstract data structure):

nil : node

root : node

next ⊆ node× node

mrk ⊆ node

X ⊆ node

The type node is the type of all graph nodes. In practice this type is the type of all
memory addresses (pointers). The constant nil is the null pointer, root is the initial
graph node from which we compute the reachable nodes, and next is the relation
which gives the graph structure. The set mrk is the variable in which we compute
the set of reachable nodes. Initially mrk is set to empty-set, and on completion it
will hold the set of all nodes reachable from root. The set X is an auxiliary variable

14

Preoteasa and Back

which is initialized to singleton root. We define the following auxiliary functions:

rch.root = {x | (root, x) ∈ next∗}

rch-um.X.mrk = {x | (∃y ∈ X • (y, x) ∈ next ◦ (next ∩mrk ×mrk)∗)}

where mrk is the set complement of mrk (node−mrk), and for a relation R, R∗ is the
reflexive and transitive closure of R. The set rch.root contains all nodes reachable
from root and rch-um.X.mrk contains all nodes reachable from X along unmarked
nodes. The predicate finite.X is true if the set X is finite.

The following invariant diagram solves the marking problem in terms of the data
representation above.

(9)

We define the statements in the diagram as follows:

S1,1 = [root = nil] ; X := ∅

S1,2 = [root 6= nil] ; X := {root} ; mrk := {root}]

Q2,1 = (λX,mrk , X ′,mrk ′ • (∃x ∈ X, ∃y 6∈ mrk•

(x, y) ∈ next ∧X ′ = X ∪ {y} ∧mrk ′ = mrk ∪ {y}))

Q2,2 = (λX,mrk , X ′,mrk ′ • (∃x ∈ X•

(∀y • (x, y) ∈ next⇒ y ∈ mrk) ∧X ′ = X − {x} ∧mrk ′ = mrk))

S2,1 = [X, mrk := X ′, mrk ′ |Q2,1.X.mrk.X
′.mrk′]

S2,2 = [X, mrk := X ′, mrk ′ |Q2,2.X.mrk.X
′.mrk′]

S3 = [X = ∅]

15

Preoteasa and Back

Total correctness of the above diagram is reduced to the following proof obligations:

init.mrk {|S1,k |} inv.X.mrk

inv.X.mrk .w {|S2,k |} inv.X.mrk .(< w)

inv.X.mrk {|S3 |} final.mrk

for all k ∈ {1, 2}, where

init.mrk = (∀x • (nil, x), (x, nil) 66∈ next) ∧ finite.mrk ∧mrk = ∅

inv.X.mrk = (∀x • (nil, x), (x, nil) 66∈ next) ∧ finite.mrk ∧ finite.X

∧ X ⊆ mrk ⊆ rch.root ∧ rch.root ⊆ (mrk ∪ rch-um.X.mrk)

inv.X.mrk .w = inv.X.mrk ∧ 2 · |mrk |+ |X| = w

final.mrk = (∀x • (nil, x), (x, nil) 66∈ next) ∧ finite.mrk ∧mrk = rch.root

We proved all these proof obligations in Isabelle/HOL theorem prover

4.2 Marking using a stack

Instead of X, we now start with a stack (list) S containing the root element. As
long as the stack is non-empty we repeat the following step: If h is the top element
of S and there exists an unmarked node y such that (h, y) ∈ next, then we mark
y and we add it to the top of the stack. Otherwise we pop the top element of the
stack. The algorithm terminates when the stack is empty.

If S is a list with elements from node, then hd.S it the first (top) element of the
list and tl.S is the list obtained from S by removing the first element. We call hd.S
and tl.S the head and the tail of S, respectively. If S is empty, then hd.S is nil and
tl.S is the empty list. We denote by [] the empty list, [x] the list with one element,
and we use + for list concatenation. The predicate dist.S is true if all elements of S
are distinct of each other and the function set applied to S gives the set containing
the elements of S.

The set variable X from the abstract program is replaced by a variable S which
is a list of distinct elements. The data abstraction invariant states that the set X
is equal to set.S. All other variables from the abstract program are present in the
concrete program with the same meaning.

16

Preoteasa and Back

The diagram for this refinement is:

(10)

where

T1,1 = [root = nil] ; S := []

T1,2 = [root 6= nil] ; S := [root] ; mrk := {root}

T2,1 = [S, mrk := S′, mrk ′ |S 6= [] ∧ (∃y 6∈ mrk • (hd.S, y) ∈ next

∧ mrk ′ = mrk ∪ {y} ∧ S′ = [y] + S)]

T2,2 = [S 6= [] ∧ (∀y • (hd.S, y) ∈ next⇒ y ∈ mrk)] ; S := tl.S

T3 = [S = []]

The proof obligations for this data refinement step, after some simplifications, are

init.mrk ∧mrk = mrk0 {|T1,1 |} root = nil ∧ dist.S ∧ set.S = ∅

init.mrk ∧mrk = mrk0 {|T1,2 |} root 6= nil ∧ dist.S ∧ set.S = {root} ∧mrk = {root}

dist.S ∧X0 = set.S ∧ inv.X0.mrk ∧mrk = mrk0 {|T2,k |}

dist.S ∧Q2,k.X0.mrk0.(set.S).mrk

dist.S ∧X0 = set.S ∧ inv.X0.mrk ∧mrk = mrk0 {|T3 |}X0 = ∅

4.3 Complete derivation

The final marking algorithm is constructed using two additional data refinement
steps. The following diagram collects all these refinement steps into a single diagram.
The diagram shows explicitly all situations, and how they are built up as successive
layers of abstraction. The transitions describe all successive versions of the marking
algorithm. The diagram contains all the information that we need in order to verify

17

Preoteasa and Back

that each version of the algorithm is correct (provided we also have access to the
definitions used in expressing situations and transitions).

4.4 Final algorithm

Expanding definitions in the previous diagram and simplifying the constraints give
us the following final invariant diagram for the DSW marking algorithm.

18

Preoteasa and Back

The main variables used in this final concrete program are lft , rgt , at , and mrk .
The variables lft and rgt store the left and right successors of a graph node. The
variable at defines what nodes are marked and is used during marking, and mrk

contains the set of all reachable nodes at the end. The variables lft , rgt , and at

are altered during marking, but they are restored to their initial values when the
program terminates. The program uses also two auxiliary variables p, t : node.
Variable p stores the head of the stack S, and t stores the head of the tail of S. The
rest of S is stored by temporarily modifying the variables lft , rgt and at .

The invariants use a number of predicates and functions that we will not discuss
further here. Their formal definitions are given below.

lft , rgt : node→ node

p, t : node

at : node→ bool

A = {none, some} where none 6= some are two labels

lnk0 : A→ node→ node

lbl0 : node→ A

19

Preoteasa and Back

lnk.lft.rgt.i =

{
lft if i = none

rgt if i = some

lbl.at.x =

{
some if at.x
none if ¬at.x

nxt.lnk .lbl = {(x, y) | (∃i • lnk .i.x = y) ∧ x = nil ∧ y 6= nil ∧ lbl .x = none}

g.ptr = ptr .p 6= nil ∧ ptr .p 6∈ mrk ∧ ¬at .p

stack.lnk .lbl .x.[] = (x = nil)

stack.lnk .lbl .x.([y] + S) = x 6= nil ∧ x = y ∧ x 6∈ set.S

∧ stack.lnk .lbl .(lnk .(lbl .x).x).S

initlnk.lnk .lbl .p.[] = lnk

initlnk.lnk .lbl .p.([x] + S) = initlnk.(lnk [(lbl .x) := ((lnk .(lbl .x))[x := p])]).lbl .y.S

initlbl.lbl .[] = lbl

initlbl.lbl .([x] + S) = initlbl.(lbl [x := none]).S

5 Conclusions

We have in this paper shown how to carry out data refinement of invariant based pro-
grams, and have applied the technique to the construction of the classical Deutsch-
Schorr-Waite graph marking algorithm. We have used predicate transformer seman-
tics for the transitions in the invariant diagrams, and we have shown that termination
is preserved by data refinement.

We have shown how the overall proof effort of the marking algorithm, is simplified
by first proving a generalized version of it, and then data refining it to the classical
version. All results presented in this paper have been proved mechanically using
the Isabelle/HOL interactive theorem prover. This gives a very solid foundation
of our results. Currently we are working on including data refinement into the
Socos environment [6,7], which is specifically designed to support the construction
of invariant based programs and proving their correctness.

References

[1] J.-R. Abrial. Event based sequential program development: Application to constructing a pointer
program. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME, volume 2805 of Lecture
Notes in Computer Science, pages 51–74. Springer, 2003.

[2] R. J. Back. Correctness preserving program refinements: proof theory and applications, volume 131 of
Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam, 1980.

[3] R. J. Back. Semantic correctness of invariant based programs. In International Workshop on Program
Construction, Chateau de Bonas, France, 1980.

[4] R. J. Back. Invariant based programs and their correctness. In W. Biermann, G Guiho, and Y Kodratoff,
editors, Automatic Program Construction Techniques, pages 223–242. MacMillan Publishing Company,
1983.

[5] R. J. Back. Invariant based programming: Basic approach and teaching experience. Formal Aspects of
Computing, 2008.

20

Preoteasa and Back

[6] R. J. Back, J. Eriksson, and M. Myreen. Verifying invariant based programs in the SOCOS environment.
In P. Boca, J. P. Bowen, and D. A. Duce, editors, Teaching Formal Methods: Practice and Experience,
Electronic Workshops in Computing (eWiC). BCS, Dec 2006.

[7] R. J. Back, J. Eriksson, and M. Myreen. Testing and verifying invariant based programs in the SOCOS
environment. In The International Conference on Tests And Proofs (TAP), 2007.

[8] R. J. Back and V. Preoteasa. Semantics and proof rules of invariant based programs. Technical Report
903, TUCS, Jul 2008.

[9] R. J. Back and J. von Wright. Refinement Calculus. A systematic Introduction. Springer, 1998.

[10] R. J. Back and J. von Wright. Encoding, decoding and data refinement. Formal Aspects of Computing,
12:313–349, 2000.

[11] W. DeRoever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods and Their
Comparison. Cambridge University Press, New York, NY, USA, 1999.

[12] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4), December 1972.

[13] D. E. Knuth. The art of computer programming, volume 1 (3rd ed.): fundamental algorithms. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.

[14] F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. Information and
Computation, 199:200–227, 2005.

[15] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic,
volume 2283 of LNCS. Springer, 2002.

[16] H. Schorr and W. M. Waite. An efficient machine-independent procedure for garbage collection in
various list structures. Commun. ACM, 10(8):501–506, 1967.

21

	Introduction
	Proof theory for invariant diagrams
	Monotonic predicate transformers
	Invariant diagrams

	Data refinement of invariant diagrams
	Data refinement of statements
	Data refinement of invariant based programs
	Termination
	Liveness

	Data refinement of the DSW marking algorithm
	Marking using a set
	Marking using a stack
	Complete derivation
	Final algorithm

	Conclusions
	References

