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Abstract. Open Source software is increasingly used in a wide spec-
trum of applications. While the benefits of the open source components
are unquestionable now, there is a great concern over security assurance
provided by such components. Often open source software is a subject of
frequent updates. The updates might introduce or remove a diverse range
of features and hence violate security properties of the previous releases.
Obviously, a manual inspection of security would be prohibitively slow
and inefficient. Therefore, there is a great demand for the techniques that
would allow the developers to automate the process of security assurance
in the presence of frequent releases. The problem of security assurance
is especially challenging because to ensure scalability, such main open
source initiatives, as OpenStack adopt RESTful architecture. This re-
quires new security assurance techniques to cater to stateless nature of
the system. In this paper, we propose a model-driven framework that
would allow the designers to model the security concerns and facilitate
verification and validation of them in an automated manner. It enables
a regular monitoring of the security features even in the presence of fre-
quent updates. We exemplify our approach with the Keystone component
of OpenStack.

1 Introduction

The adoption of open source technology has increased tremendously in the last
decade. Today most of the modern enterprises are centered around open source
technology. The source code of open source software is distributed publicly and
it is often developed in a collaborative manner.

The open source feature provides diverse design perspectives to the software.
However, the open source software are subject to frequent updates by unknown
users. This raises security concerns as the code can be used and manipulated in
ways that were not initially intended by the organization.

In this work we present model-driven methodology to handle the security
concerns of open-source software from design to implementation level. This work
becomes more challenging when open source software are combined with REST
architectural style. The adoption of REST architecture provides additional ben-
efits of scalability and extensibility to the software encouraging providers to offer
their services to a wider audience and add more features with more convenience.



The use of REST APIs require usage of design methodologies and security mech-
anisms that can handle stateless protocol for stateful applications.

Our approach to handle security concerns for REST compliant open-source
software builds upon the use of Design by Contract strategy[18]. Contracts use
preconditions and postconditions for the methods of a class to identify correct-
ness of the program. They are capable of detecting change in the state of the
program, identify when a certain piece of code violates the pre-defined condi-
tions and can be used for fault localization. We used contracts with models to
provide Security and Rest compliant UML Models (SecReUM). By using model-
based test generation approach, we can generate test cases from SecReUM that
can validate the behavior of the software. In addition, SecReUM can be used to
provide an online/offline monitoring mechanism for KeyStone.

We exemplify our approach with the Keystone component of OpenStack.
OpenStack is an open-source software platform for cloud computing that offers
REST interfaces to provide IaaS (Infrastructure as a Service). The main charac-
teristics of OpenStack include scalability, flexibility, compatibility, and openness
[27]. The open source nature of OpenStack and encouragement of its partners
has made it one of the most prominent cloud computing paradigm. It is deployed
in various companies worldwide that have data volumes measured in petabytes
and are scalable up to 60 million virtual machines and billions of stored objects
[21]. Keystone offers identity service in OpenStack for authentication and au-
thorization. This makes it a critical component of OpenStack as it serves as a
gateway to all its assets.

The objective of our work is to provide an engineering solution to security ex-
perts to periodically monitor their open-source software and identify any security
loopholes that may arise due to frequent updates to code in a collaborative and
open environment. The use of model-driven approach facilitates an automated
approach to validate the open-source components.

The paper is organized as follow: Section 2 briefly explains Keystone and
its interface. Section 3 presents an overview of our overall approach. Section 4
presents our overall approach and section 5 shows generation of contracts with
security features. Section 6 presents the related work and section 7 concludes
the paper.

2 Keystone Open Stack

Keystone is the centralized identity service of OpenStack that offers authen-
tication and authorization. KeyStone authenticates a user by generating a to-
ken. Token can either be scoped or unscoped depending on client’s request and
the configured policy of KeyStone. An unscoped token identifies a user with-
out identifying any project scope, roles etc., whereas a scoped token provides
authorization information of user for particular projects or domains. Figure 1
shows how KeyStone authentication and authorization mechanism is used with
OpenStack. The client sends the authentication request to KeyStone and is sent
back an Identity Token. This token is used by the client to request services from



other OpenStack components. These services validate the identity of the client
by sending the message directly to KeyStone.
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Fig. 1. KeyStone Overview [4]

KeyStone offers REST API in compliance with OpenStack policy. An impor-
tant feature that distinguishes REST from its contemporary SOAP-based APIs
is the concept of resources. REST services expose their functionality as resources
and each resource has a unique URI that provides addressability. CRUD (cre-
ate, retrieve, update and delete) operations can be performed on resources using
standard HTTP methods. These HTTP methods are considered as application-
level constructs that the programs can use to interact with another program
over the network in a standard manner with well-defined semantics [29]. This
implies that only HTTP request methods (GET, PUT, POST, DELETE) can
be invoked on KeyStone resources. In order to offer scalability, the statelessness
feature of REST is ensured by treating every request independently. This means
that every request from the client should contain all the information that is
required to process it and the server is not responsible of keeping any context
information with it. Each resource, when invoked via a URI and standard HTTP
method, responses with response code and resource representation which con-
tains data about resource attributes and links to other resources. The HTTP
response code is a numeric code that tells the clients whether the request went
successful or not. HTTP has a list of status codes that reveal how the request
went [11], for example, 200 means the request was successful, 404 means the
resource was not found and 403 implies that it is forbidden to make this request
on this resource. The client machine interpret these response codes to know how
their request went. The links in resource representation connect resources to each
other and the service client gets an experience of connectivity between resources,
i.e., moving from one resource to another.

The features of connectivity and uniform interface allows use of existing tools
and infrastructure like web crawlers, curl, caches etc. The addressability require-
ment (specially when using hierarchical addresses) helps to provide extensibility
and the statelessness requirement simplify the development of systems that can
handle many service requests simultaneously facilitating scalability [25].



Listing 1.1 below shows an excerpt of POST method on tokens resource in
KeyStone using curl [2] for authentication. This method is called to authenticate
a user with his name and password.The payload contains JSON data that provide
the required information.

cu r l − i \
−H ”Content−Type : app l i c a t i on / j son ” \
−d ’

{ ”auth ” : {
” i d en t i t y ” : {

”methods ” : [ ” password ” ] ,
”password ” : {

” user ” : {
”name” : ”admin” ,
”domain ” : { ” id ” : ” d e f au l t ” } ,
”password ” : ”adminpwd”

}}}}
} ’ \

http :// l o c a l h o s t :5000/ v3/auth/ tokens ; echo

Listing 1.1. POST method for KeyStone [1]

The contemporary SOAP based services are operation centric and are based
on WS-* protocol stack (SOAP, WSDL, etc). They use different specifications
built on top of each other to address different tasks. For example, WS-Resource
Framework[6] and WS-Transfer[12] are commonly used to model state and WS-
Security [10] is used for authentication. A common approach to invoke SOAP-
based service is to call a POST method with a SOAP envelope as shown in
Listing 1.2 where curl is used to invoke a POST method to an authentication
service. All the information about the request parameters and method call are
put inside the body of SOAP (request.xml). The server receives the request,
opens the SOAP envelope and understands the message request. This means the
SOAP messaging protocol is used to just transfer the messages and the semantics
of the method call are determined by the message contents.

Thus, the lightweight message handling mechanism and distinct features of
REST architectural style make it a popular choice for adoption.

3 Overall Approach

Open-source software are open to changes and are updated frequently by differ-
ent users. It becomes a challenge for in-house developers and service providers
of the open-source software to validate periodically that the software continues
to comply with its functional and security requirements. In a usual setting, the
in-house software/ security team manually look for changes and run different
type of analysis techniques, ranging from manual code-inspections to running
different testing tools, to identify errors. Our work provides model-driven secu-
rity assurance framework for open-source software in an automatable manner.



cu r l −−header ”Content−Type : t ext /xml ; cha r s e t=UTF−8” −−header
”SOAPAction : \” http :// api . . . / IAuthen t i c a t i onSe rv i c e /Cl i entLog in \””
\” −−data @request . xml
http : / /11 . 2 2 . 3 3 . 2 31 : 9 080/ Authent i ca t i onSe rv i c e . svc

// Contents o f r eques t . xml
<?xml ve r s i on=” 1 .0 ” encoding=”utf−8”?>

<soap : Envelope xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns : xsd=”http ://www.w3 . org /2001/XMLSchema”
xmlns : soap=”http :// schemas . xmlsoap . org / soap/ enve lope /”>

<soap : Header>
<Authent icat ion xmlns=”http :// tempuri . org /”>

<Password>s t r i ng </Password>
<UserName>s t r i ng </UserName>

</Authent icat ion>
</soap : Header>
<soap : Body>

<HelloWorld xmlns=”http :// tempuri . org /” />
</soap : Body>

</soap : Envelope>

Listing 1.2. WS-Security Username Authentication [5]

This enables the providers of open-source software to periodically verify and
validate their software for the functional and security requirements it promises
to deliver.

The framework is presented in Figure 2. The framework consists of three
main steps: 1) Designing 2) Generating Contracts 3) Testing. The specifications
and implementation of the open source software, that are publicly available,
are taken as input. The security requirements for the system are provided by
security experts and also taken as an input. These three entities are marked as
grey boxes in Figure 2 to indicate their availability beforehand.

In the first step, our Security and REST compliant UML Models (SecReUM)
are designed using our approach detailed in Section 4.

In the second step, we build upon the design by contract strategy and gener-
ate contracts from SecReUM that are implemented as code skeletons . These code
skeletons are enriched with method contracts using our model-to-code transfor-
mation tool[24] and are then manually updated with security contracts and
requirements, using information from SeCReUM, along with the method im-
plementations. The code-skeletons are implemented as wrapper on top of the
open-source software. A wrapper program is capable of invoking another pro-
gram, perhaps with a larger body of code, by providing an interface to call.
Implementation of a wrapper on top of the open-source software under test is an
important component of our model-driven security assurance framework. This
wrapper is maintained in-house and is updated as specifications of open source
software are updated or in case of new security specifications.

The third step of our framework is Testing in which test cases are generated
using different model-based test generation approaches from SecReUM. These
test case are run against the wrapper program, generated above, to validate
the implementation of open source software. Thus, by periodically running same
test suites (in case the specifications are unchanged) or updated one (in case the



specifications are changed), the implementation of open source software can be
validated and errors can be identified using pass/fail results of the test cases.

The traceability of security requirements is also an important part of our
approach. The security requirements are included as part of UML specifications
and are used during validation to identify coverage level of our test cases. These
requirements can be traced back to errors in the models and implementations in
case of failure. This help the developers and security experts in better analysis of
the system. In addition, the unfulfilled pre- and post-conditions help in localizing
the faults in the implementation for both functional properties and the non-
functional properties, e.g, security.

In addition to testing, the models along with implemented wrapper can also
be used to provide verification of specifications and can also serve as a monitor to
identify when a certain piece of updated code violates the functional or security
requirements.

In this paper, we focus in detail on our designing and contract generation
approach, presented in section 4 and section 5, respectively. The model-based
test generation from SecReUM is out of scope of this paper and hence not ad-
dressed. However,for validation, we can not only benefit from our previous work
for validating behavioral REST interfaces [26] but can also take advantage of
large body of work done in generating test cases from behavioral contracts using
UML as a familiar notation.

Security and REST 
compliant UML 

Models(SecReUM)

Designing
Open Source 

S/W  
Specificaitons

Open Source 
Implementation

Security 
Requirements  

Implementing  
Wrapper

Testing

Test
Results Wrapper with 

Contracts and 
Security 

Requirements

Generating 
Contracts

Fig. 2. Model-Driven Framework for Security Assurance

4 Modeling approach for SecReUM

REST APIs use stateless protocol but they can be used to provide applications
with complex behavior having stateful behavior. The stateful services require
that a certain sequence of method invocations must be followed in order to
fulfill the service goals. For example, in order to delete a user in KeyStone,
the user must first authenticate herself in admin role and get a scoped token.



The benefit of giving a stateful view to this behavior of KeyStone facilitates
the understanding of KeyStone behavior and helps in validating the functional
and non-functional behavior of KeyStone by defining conditions under which
different methods can be invoked.

The UML standard provides different types of diagrams that can model the
system from different viewpoints[28]. We model the static structure and behav-
ioral interface of a REST service with a UML class diagram and a UML state
machine, respectively. Both the diagrams are defined with additional constraints
to represent REST features as explained in section 4.1 and section 4.2 . Our
previous work models stateful behavior of REST services [23]. In this work, we
extend our modeling approach with technique to integrate security concerns in
models. Figure 3 and Figure 4 give an example of how we model the REST
interface of KeyStone. We model the behavioral interface of KeyStone from the
viewpoint of our wrapper program that will invoke the KeyStone and can con-
strain the user to invoke the service under right conditions and service provider
to fulfill the functionality expected from it.

4.1 Resource Model:

The static structure of the REST service is represented with a resource model.
The resource model is a class diagram that describes the resources that con-
stitute the service and the relationships between them. The information about
allowed methods on the resources is inferred from the behavioral model. All the
attributes are public since they are available on public APIs. Figure 3 shows
an excerpt of the resource model for KeyStone with our wrapper program. It
consists of five resource namely, SecKS, Token, Project, User, Role. SecKS repre-
sents our security KeyStone wrapper which is connected to KeyStone via Token
resource.

SecKS

+processing: Boolean

Token

+ token: object
+ X-Subject-Token: string
+ issued_at: string
+ expires_at: string
+ links: object
.....

1
1

User

+ id:string
+ enabled: 
boolean
+ name: string
.....

0..1
1

Project

+ project_id: string

.....

Role

+ role: object
+ id: string
+ links: object
+ name: string
.....

0..*

0..*
0..*0..*

0..*

0..*

Fig. 3. Resource Model for KS Security Wrapper(SecKS)



4.2 Behavioral Model:

The purpose of the behavioral model is to describe the dynamic structure of
behavioral interface of a REST service and is represented by a UML state-
machine. Figure 4 shows an excerpt of behavioral interface of KeyStone and
provides information on what methods a user can invoke on a resource and under
what circumstances. Any client can invoke the service to request the token but
only an admin user (shown as actor) can delete a user. If the client is valid, the
token is generated, otherwise not.

A UML state-machine has transitions that are triggered by method calls and
each state has a state invariant. State invariant is a boolean condition that is
true when service is in that state and otherwise false.

In our work, we define invariant of a state as a boolean expression over
addressable resources. In this way, the stateless nature of REST remains un-
compromised since no hidden information about the state of the service is being
kept between method calls. We have used OCL to define state invariants in be-
havioral models of REST services [20]. The UML specification proposes the use
of OCL to define constraints in UML models, including state invariants. OCL is
well supported by many modeling tools [13,14].

In Figure 4 , an OCL expression of Token.token− > size() = 0 in state
Token Not Granted means that the response for invoking GET on token re-
source was not 200, meaning either the resource does not exist or is not reachable
to infer anything about its state. Similarly, Token.token− > size() = 1 implies
the response for invoking GET on token resource was 200, meaning the resource
exists. The state invariant [self.processing = False and
Token.token− > size() = 1] for Token Granted specify that whenever a token
is requested, as a result KeyStone can generate a token and it should not be
processing the request (token generation is an asynchronous call). Thus, in or-
der to define state with stateless protocol REST, we define the state invariant
as a predicate over resources.

In addition, we constrain our behavioral model to have only side-effect meth-
ods, i.e., PUT, POST and DELETE methods as method calls for a transition.
This is because only these HTTP methods are capable of making any changes
to resources.

5 Generating Contracts from SecReUM

Stateful behavior of a software requires a certain order of method invocation or
the conditions under which the methods can be invoked. These condition, i.e.,
the pre- and post-conditions of a method are called contracts. This information
together with the expected effect of an operation become part of the behavioral
interface of a service. Our design approach preserves the sequence of method
invocations and contains behavioral information specifying the conditions under
which these methods can be invoked.



Sec.Req 1.1 OR Sec.Req 
1.2 OR Sec. Req 1.3 OR 
Sec.Req 1.4 OR Sec.Req 2.1 
OR Sec.Req 2.2 

Token_Granted

[self.processing = 
False and 

Token.token->size()=1]

Token_Request_ 
Received

[self.processing 
= True]

Token_Not_Granted

[self.processing = 
False and 

Token.token->size()=0]t2:POST(../v3/auth/tokens)

t2a:
resp_code=404t1:POST(../wrapper/token) Delete_User

[Token.token->size()=1 
and 

User.id->size()=0]

t3:DELETE(../v3/users/{user_id})
[User.id->size()=1]

Admin

t2b:resp_code =200

Fig. 4. Behavioral Model for KS Security Wrapper(SecKS)

5.1 Method Contract with Functional Requirements

The method contracts can be generated from the behavioral model. The precon-
dition of a method should be true in order to fire the method in behavioral model
as it defines the conditions under which a method is allowed to be invoked by
the client. We say that if a method m triggers a transition t in a state machine,
then the precondition for method m is true if the invariant of the source state
of transition t and the guard on t is true. The post-condition constraints the
implementation to provide the functionality expected from it as specified in its
specification document. Thus, the post-condition states that if the precondition
for invoking a method is true then its post-condition should also be true. We
say, that the postcondition of method m is true if the conjunction of state in-
variant of target state of t and the effect on transition t are true provided its
pre-condition is true. The implication principle encompasses the stateful behav-
ior since same method can be fired from different states of the system and have
different results. Thus, if the method is fired with certain pre-conditions then
the corresponding post-condition for that method should be true.

The re-evaluation of the precondition of a method for evaluating the post-
condition may not return the same values, i.e., before the method execution,
since after the method execution values of some of the resources may change.
This situation is kept safe by saving the resource values before method execution
in local values in the wrapper. The values of these variables are later used to
calculate the post-condition. We believe this is not computationally expensive as
we do not need to save the copy of the whole resource/s but only the values that
constitutes guards and invariants that are enabled. Usually, that only requires
few bits of storage per method.

The method contract for method POST on t2 can be written as under. This
listing does not contain information about security requirements for invoking
the method.



PreCondit ion (POST( . . / v3/auth/ tokens ) ) :
( s e l f . p r o c e s s i ng = True )

PostCondit ion (POST( . . / v3/auth/ tokens ) ) :
[ ( s e l f . p r o c e s s i ng = True )==>
( s e l f . p r o c e s s i ng = False and token . token−>s i z e ( )=1) or
( s e l f . p r o c e s s i ng = False and token . token−>s i z e ( )=0) ]

Here, the post-condition implies that whenever a POST method is invoked on
tokens resource from the SecKS(wrapper), SecKS is in processing state implying
an asynchronous behavior. SecKS should eventually get a reply (the wrapper
should not stay in processing state) and a token should either be created or
not. The security requirements for generating a token and their inclusion in the
contract of POST method on tokens are detailed in Section 5.2 and Section 5.3

A DELETE method on User resource will delete the user from the system and
only an authorized user, i.e. an admin, can invoke this method. Section 5.2 and
Section 5.3 explain how authorization is handled in our approach. The method
contract for method on t3 can be written as under without any authorization
information.

PreCondit ion (DELETE( . . / v3/ use r s /{ u s e r i d }}) ) :
( s e l f . p r o c e s s i ng = False and token . token−>s i z e ( )=1)

PostCondit ion (DELETE( . . / v3/ use r s /{ u s e r i d }}) ) :
[ ( s e l f . p r o c e s s i ng = False and token . token−>s i z e ( )=1) and

user . id−>s i z e ( )=1==>
( token . token−>s i z e ( )=1 and user . id−>s i z e ( ) =0]

For detailed description on how contracts are generated from state-machines
under different scenarios, readers are referred to [22].

5.2 Security Requirements in OCL

The security requirements are usually specified by security experts. We expect
these security requirements to be specified in tabular format for each method.
These specifications of security requirements in a tabular format are then trans-
lated to OCL manually. These OCL-based security requirements become part of
method contract during code transformation process as shown in section 5.3.

The functional and security requirements for Keystone at the application
level are not clearly separable. This is because the KeyStone functionality is to
validate the identity of the user, his roles and access rights before generating
scope or unscope token. The security requirements on KeyStone also impose the
same semantics. We classify them under security requirements since the security
experts expect these behaviors from KeyStone at the application level to assure
its security. We explain our approach with two important security concerns,
authentication and authorization. Authentication is explained with transition t2
and authorization is explained with transition t3.

Authentication : Authentication is an important security concern that re-
quire that only the user with right credentials is able to enter the system. It is



also considered as one of the top three security concerns addressed by existing
model-driven security engineering approaches [19]. In Figure 4, an authentication
request to KeyStone triggers transition t2. The security requirements attached
to t2 are listed in Table 1.

Table 1. Requirements for Authentication in KeyStone (excerpt)

No. If Then

1.1 User is valid and has not given an unscoped token should be
generated

scope information
1.2 User is valid and has explicitly requested

unscoped token
1.3 Token is valid and has not given

scope information
1.4 Token is valid and has explicitly

requested unscoped token

2.1 User is valid and has valid scope information a scoped token should be
generated

2.2 Token is valid and has valid scope information

These security requirements are written in OCL. For example, the security
requirement for scoped token is written as:

( ( user . c r ed en t i a l−>s i z e ( )=1 or token . token−>s i z e ( )=1) and
( r eques t . scope−>s i z e ( )=1 and not r eques t . scope . o c l I s I n v a l i d ( ) ) ) ==>

( token . token−>s i z e ( )=1) and token . cata log−>s i z e ( )=1)

In Table 1, the security requirements specify different conditions under which
scoped and unscoped tokens are issued and are written in if-else format on
resources and resource attributes. The security requirements can also be in a
statement form enforcing some rule, for example, the authorization requirement
explained in the next section.

Authorization Authorization defines access rights of users by defining per-
missions on user, user roles and user groups. KeyStone determines whether a
request from the user should be allowed or not based on policy rules defined
in Role Based Access Control (RBAC). In Figure 4, t3 can only be fired by an
admin user and not other wise. In addition, the guard value show that initially
the user being deleted should exist in the system. The information of actors in
the behavioral model can be realized in three ways.
1) Developer can use this information to implement the access rights on re-
sources and help users in understanding and writing correct authorization head-
ers. Different authentication mechanisms can be implemented to control access
to resources [3]. In case, Basic authentication mechanism is implemented, client
sends the user name and password to the server in authorization header. The



authentication information is in base-64 encoding. It should only be used with
HTTPS, as the password can be easily captured and reused over HTTP.

In a typical setting, the authorization header is constructed by first combining
username and password into a string ”username:password” and then encoded in
based64. A typical authorization header in Basic authentication is shown below:

DELETE /v3/ use r s /22/ HTTP/1.1
Host : http :// l o c a l h o s t :5000/ v3/
Author izat ion : Basic aHR0cHdhdGNoOmY=

In case an anonymous requests for a protected resource, HTTP can enforce
basic authentication by rejecting the request with a 401 (Access Denied) status
code.

HTTP/1.1 401 Access Denied
WWW−Authent icate : Bas ic realm=”User”
Content−Length : 0

For KeyStone, authorization to resources is check with token. A typical call
from curl to access User resource using user’s token is given as:

cu r l −s \ −H ”X−Auth−Token : $OS TOKEN” \
”http :// l o c a l h o s t :5000/ v3/ use r s ”

2) The security requirements can be attached as predicates of boolean vari-
ables to transitions and translated to code as such. All the boolean variables for
security requirements are initialized to be false, e.g. sreq1 = False. Whenever,
the postcondition of a requirement is true in the implementation, the boolean
variable is set as True, sreq1 = True. The boolean values of these security re-
quirements are displayed to the user after the system is tested with different test
cases. This added feature gives clear information to security experts as to what
security requirements are satisfied and in identifying the met and unmet security
requirements by the system without looking into the implementation details.

3) It becomes part of method contract. The security requirement for autho-
rization is: Only an admin user can delete a user. In OCL, it is written as:
user.role =′ admin′.

This can be specified in UML as notes (not shown in Figure 4 due to space
limitation). In the next section, we define rules on how they becomes part of the
method contract.

5.3 Method Contracts with Functional and Security Requirements

The security requirements are merged with functional requirements during the
translation process to code. In our example, the KeyStone service is invoked by
POST method on the token resource(POST (../v3/auth/tokens)). We populate
our definition of contracts with security requirements given above such that:

– The statement in if clause become part of the method pre-condition

– The statement in else clause become part of the method post-condition



– The statement/s that are not part of if-else clause become part of both
the pre- and post-condition. By checking the rule in pre-condition, the user
request is validated before processing the method and causing undesired
changed in the system. By placing in the post-condition, the system is val-
idated that it behaves as expected and does not do what it is not required
to do. This serves as a double check on security requirements.

We, thus, require that in order for KeyStone to generate a token the following
method contract must be met:

PreCondit ion (POST( . . / v3/auth/ tokens ) ) :

[ ( s e l f . p r o c e s s i ng = True and ( user . c r ed en t i a l−>s i z e ( )=1 or
token . token−>s i z e ( )=1)
and
( ( r eques t . scope−>s i z e ( )=1 and r eques t . scope <> ’ unscope ’ and not

r eques t . scope . o c l I s I n v a l i d ( ) )
or ( r eques t . scope−>s i z e ( )=0 or r eques t . scope . o c l I s I n v a l i d ( ) or
r eques t . scope = ’ unscope ’ ) ) ]

PostCondit ion (POST( . . / v3/auth/ tokens ) ) :
[ ( ( user . c r ed en t i a l−>s i z e ( )=1 or
token . token−>s i z e ( )=1) and
r eques t . scope−>s i z e ( )=1 and r eques t . scope <> ’ unscope ’ and not

r eques t . scope . o c l I s I n v a l i d ( ) )==>
( s e l f . p r o c e s s i ng = False and token . token−>s i z e ( )=1 and

token . cata log−>s i z e ( )=1)
or ( s e l f . p r o c e s s i ng = True and r eques t . scope−>s i z e ( )=0 or

r eques t . scope . o c l I s I n v a l i d ( ) or
r eques t . scope = ’ unscope ’ ) ==> ( s e l f . p r o c e s s i ng = False and

token . token−>s i z e ( )=1) and token . cata log−>s i z e ( )=0)
]

The preconditions in the listing above shows the boolean expression that
should be true for invoking a POST on KeyStone for either scoped or unscoped
token. The postcondition circumscribes different scenarios for scoped and un-
scoped token. In order to return an unscoped/ scoped token, the previous values,
i.e. the values before method invocation, are checked. If the previous values re-
quire an unscoped/ scoped token then the response of method calls are checked
to ensure if unscoped/ scoped token is actually delivered. The previous values,
i.e., the values before the method invocation are stored as local variables in the
wrapper program.

Similarly, for authorization, the method contract for DELETE on user re-
sources is given as:

PreCondit ion (DELETE( . . / v3/ use r s /{ u s e r i d }) ) ) :

[ s e l f . p r o c e s s i ng = False and token . token−>s i z e ( )=1 and
user . id−>s i z e ( )=1 and user . r o l e=’ admin ’ ]

PostCondit ion (DELETE( . . / v3/ use r s /{ u s e r i d }) ) :
[ ( s e l f . p r o c e s s i ng = False and token . token−>s i z e ( )=1 and
user . id−>s i z e ( )=1 and user . r o l e=’ admin ’ ) ==>
( token . token−>s i z e ( )=1 and user . r o l e=’ admin ’ and
user . id−>s i z e ( )=0) ]

In this listing, user.role =′ admin′ is checked before invoking DELETE
method on User resource to ensure that user with the right credentials is making



the desired change in the system. Interestingly, user.role =′ admin′ is also a
part of the post-condition, i.e., the credentials of the user are checked before
and after the method execution to ensure that the system change is made by
the right user. This double check of the security requirement for authorization
provides added security and guards the system against malicious user during the
communication.

6 Related Work

Research in using models to develop and analyze secure systems has been an
active area of research for more than a decade.The work of Nguyen et al. [19]
provides a comprehensive review of efforts done in the area of model-driven
development of secure systems. Their work encompasses various modeling ap-
proaches like UML-based approaches, UML profiles, DSLs and aspect oriented
approaches and analyzes them for their support for model-to-code and model-
to-model transformations, verification, validation and different types of security
concerns.

UML has been used much to model security concerns. Some approaches use
only UML (e.g., [7], MDSE@R [9], AOMSec [15] etc.) and some use UML pro-
files(e.g., SECTET [8],UMLsec[16], etc.)

In [7], Abramov et. al. present a model-driven approach to integrate access
control policies on database development.

SECTET [8] provides a model-driven security approach for web services.
They also use OCL to define constraints on UML to provide access control. The
approach generates XACML policy files that provide a platform independent
policy for enforcing the access control policy. The SECTET framework mainly
addresses authorization and provides state-dependent permissions that are not
applicable to REST interfaces. UMLsec[16,17] provides a comprehensive and
consistently progressing approach to formally analyze the security properties.
MDSE@R [9] provides a UML profile based approach that uses aspect-oriented
programming to integrate security concerns at the runtime. AOMSec [15] also
uses aspect-oriented approach to model security mechanism and attacks to the
system. A detailed analysis of existing literature is out of scope of this paper.
However, compared to previous work our work strongly relies on existing UML
without the need of any new profiles. This gives the benefit of using many well-
known and mature tools with a wide user base for our approach. Our work also
caters well with the stateless nature of REST APIs.

7 Conclusions

Security experts are often looking out for ways to assure that their security
expectations from a system are met. This becomes even more challenging in
an open-source environment that encourages collaborative environment between
developers that are working within a controlled environment and developers that
are outside a controlled boundary. Our approach provides a security assurance



framework that facilitates the security experts by providing a semi-automatable
approach for validating the system under study for its behavior. We show how the
security concerns can be integrated into the behavioral models of REST services
and how method contracts can be generated from them that can be used to
validate any security loopholes in the open source software in case of frequent
updates. We address authentication and authorization of open source software
using models and provide series of steps on how the security requirement can be
combined with functional contracts. The approach is applied on the KeyStone
component of OpenStack. In our future work, we plan to provide automation of
security concerns to code and extend our work with other security concerns.
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