
Algebra of Monotonic Boolean Transformers

Viorel Preoteasa

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3-5 A, 20520 Turku, Finland

Abstract. Algebras of imperative programming languages have been
successful in reasoning about programs. In general an algebra of pro-
grams is an algebraic structure with programs as elements and with pro-
gram compositions (sequential composition, choice, skip) as algebra op-
erations. Various versions of these algebras were introduced to model par-
tial correctness, total correctness, refinement, demonic choice, and other
aspects. We introduce here an algebra which can be used to model total
correctness, refinement, demonic and angelic choice. The basic model of
our algebra are monotonic Boolean transformers (monotonic functions
from a Boolean algebra to itself).

1 Introduction

Abstract algebra is a useful tool in mathematics. Rather than working with spe-
cific models like natural numbers and algebra of truth values, one could reason
in a more abstract setting and obtain results which are more general and appli-
cable in different models. Algebras of logics are very important tools in studying
various aspects of logical systems. Algebras of programming theories have also a
significant contribution to the simplification of reasoning about programs. Pro-
grams are elements of an algebra and program compositions and program con-
stants (sequential composition, choice, iteration, skip, fail) are the operations of
the algebra. These operations satisfy a number of relations which are used for
reasoning about programs. Kleene algebra with tests (KAT) [12] is an extension
of Kleene algebra and it is suitable for reasoning about programs in a partial cor-
rectness framework. Various versions of Kleene algebras have been introduced,
ranging from Kleene algebra with domain [8] and concurrent Kleene algebra [10]
to an algebra for separation logic [7].

Refinement Calculus [1,2,6,15] is a calculus based on (monotonic) predicate
transformers suitable for program development in a total correctness framework.
Within this calculus various aspects of imperative programming languages can be
formalized. These include total correctness, partial correctness, demonic choice,
and angelic choice. Demonic refinement algebra (DRA) was introduced in [21,22]
as a variation of KAT to allow also reasoning about total correctness. The in-
tended model of DRA is the set of conjunctive predicate transformers and this
algebra cannot represent angelic choice. General refinement algebra (GRA) was

also introduced in [22], but few results were proved and they were mostly re-
lated to iteration. Although the intended model for GRA is the set of monotonic
predicate transformers, GRA does not include the angelic choice operator. GRA
has been further extended in [20] with enabledness and termination operators,
and it was extended for probabilistic programs in [14].

The contribution of this paper is a different extension of GRA with a dual
operator [9,4,5,6]. The intended model for our algebra is the set of monotonic
Boolean transformers (monotonic functions from a Boolean algebra to itself). In
GRA assertions (assumptions) are introduced as disjunctive (conjunctive) ele-
ments which have complement. Using the dual operator we characterize these
assertion (assumptions) using a conjunction of (in)equations which is simpler
than the usual definition from GRA and KAT. We prove that the assertions (as-
sumptions) form a Boolean algebra. Moreover, we also prove that the assertions
defined in the algebra are exactly the program assertions in the model of mono-
tonic Boolean transformers. Having the dual operator and the demonic choice
operator we automatically obtain also the angelic choice operator. In [20,14] the
enabledness and termination operators are introduced using axioms for DRA
and GRA respectively. These operators can be defined in our algebra, and their
axioms can be proved as theorems.

In DRA [22], a pre-post specification statement is introduced and it is used to
prove that a program refines a pre-post specification statement if and only if the
program is correct with respect to the pre and post conditions. The proof of this
fact requires the assumption that all programs are conjunctive, fact which does
not hold for arbitrary monotonic predicate transformers. We have introduced
another specification statement, and we proved a similar result in the absence
of the conjunctivity property.

The paper is structured as follows. Section 2 introduces the monotonic Boolean
transformers that are the model of our algebra. Section 3 introduces the mono-
tonic Boolean transformers algebra and some of its properties. Section 4 in-
troduces the assertions and the assumptions. Some of their properties are also
introduced, and proofs that they form Boolean algebras are given. In Section 5,
we define the weakest precondition, the guard of a program, Hoare triples [11]
for total correctness, data refinement of programs, and we prove some properties
of these constructs. The weakest precondition of top satisfies all axioms set for
the termination operator in [20,14], and dually the guard of a program satisfies
all axioms set for the enabledness operator in [20,14].

All our results were mechanically verified in the Isabelle [16] theorem prover.

2 Monotonic Boolean Transformers

In this section we introduce the concept of monotonic Boolean transformers
which is more general than monotonic predicate transformers. For a set of
statesX, monotonic predicate transformers overX are monotonic functions from
Pred.X to Pred.X where Pred.X = X → Bool and Bool is the complete Boolean
algebra with two elements, true and false. Monotonic predicate transformers are

used for modeling imperative programs. A program is modeled by a predicate
transformer S, where if q ∈ Pred.X is a predicate (set) of final states, then S.q
are the initial states from which the program terminates and if it terminates in
a state s, then s is from q.

In this context we only need the assumption that we work with a complete
Boolean algebra instead of Pred.X. This generalization is mainly used here be-
cause it is sufficient for expressing and proving the properties from this paper.
However, we can also apply these results directly to Boolean algebras of the
form X → Y → Bool, which were used in [3,17,18] for modeling procedures with
parameters. Let 〈B,∧,∨,≤,¬,>,⊥〉 be a complete Boolean algebra. We denote
by Mtran.B the set of all monotonic functions from B to B.

Mtran.B = {S : B → B | ∀p, q : p ≤ q ⇒ S.p ≤ S.q)}

The elements of Mtran.B are called monotonic Boolean transformers, or just
monotonic transformers, or programs.

We point-wise extend all operations except the negation from B to Mtran.B:

(S u T).p = S.p ∧ T.p magic.p = > S v T = (∀p : S.p ≤ T.p)
(S t T).p = S.p ∨ T.p fail.p = ⊥

The extended constants magic and fail are monotonic Boolean transformers and,
if S and T are monotonic Boolean transformers, then SuT , and StT are mono-
tonic Boolean transformers. We could extend the negation similarly, however the
negation applied to a monotonic function is not monotonic.

The program SuT models the demonic choice between executing S or T . The
choice is demonic because the user does not control it. In order for this choice
to be correct, both S and T must be correct. The program S t T models the
angelic choice. Here the choice is angelic because the user can decide between
executing S or T . This choice is correct if one of the programs S and T is
correct. The relation v is the refinement relation. A program S is refined by a
program T if we can replace S by T . The program magic is always correct, but
it cannot be implemented. The program fail never terminates. fail is equivalent
to while true do skip.

If S, T ∈ Mtran, p, q ∈ Bool, then we introduce the transformers S ◦ T , {p},
[p], skip, So, Sω, ||p|| ∈ Mtran, the sequential composition of S and T , the assert
statement of p, the assume statement of p, the skip statement, the dual of S,
the iteration of S, and the post-condition statement of p, respectively. These are
given by the following definitions:

(S ◦ T).p = S.(T.p) (sequential composition)
{p}.q = p ∧ q (assert statement)
[p].q = ¬p ∨ q (assume statement)
skip.p = p (skip statement)
So.p = ¬S.(¬p) (dual of a program)
Sω = µX : S ◦X u skip (iteration)

||p||.q

{
> if p ≤ q
⊥ otherwise

(postcondition statement)

The functional composition of monotonic transformers corresponds to the se-
quential composition of programs. The assert statement {p} executed from a
state in which the predicate p is true behaves as skip, otherwise fails. The as-
sume statement [p] executed from a state in which the predicate p is true behaves
as skip, otherwise behaves as magic. The statement skip does not change the state
of computation. The dual was used in [9,4,5,6] for predicate transformers. The
term conjugate has also been used to name the dual operator. We will use the
dual to define the negation of an assertion in the algebra of monotonic predicate
transformers. The iteration is used to define the while program:

while b do S = ([b] ◦ S)ω ◦ [¬b]

The conditional program can be introduced using the assert statement and the
angelic choice or using the assume statement and the demonic choice:

if b then S else T = {b} ◦ S t {¬b} ◦ T = [b] ◦ S u [¬b] ◦ T

If S ∈ Mtran and p, q ∈ B, then a Hoare triple p {|S|} q is true if p ≤ S.q.
The post-condition statement ||p|| has been used in [17,18] to connect total

correctness Hoare triples to refinement statements. The following relation is true

p {|S|} q ⇔ {p} ◦ ||q|| v S (1)

and it is a consequence of the following theorem.

Theorem 1. If p ∈ B then

1. ||p|| ∈ Mtran (||p|| is monotonic)
2. ||p||.p = >
3. {S.p} ◦ ||p|| v S

Definition 1. A monotonic transformer S is disjunctive if for all p, q ∈ B,
S.(p ∨ q) = S.p ∨ S.q, which is equivalent to

(∀U, V ∈ Mtran : S ◦ (U t V) = (S ◦ U) t (S ◦ V))

A monotonic transformer S is conjunctive if for all p, q ∈ B, S.(p∧q) = S.p∧S.q,
which is equivalent to

(∀U, V ∈ Mtran : S ◦ (U u V) = (S ◦ U) u (S ◦ V))

Next theorem gives a characterization of assertion statements.

Theorem 2. A monotonic transformer S is an assertion if and only if S v skip
and S is disjunctive.

Proof. If S is an assertion it is easy to prove that S v skip and S is disjunctive.
Conversely, assume that S v skip and S is disjunctive. We prove that S = {S.>}.

• {S.>}.q

= {Boolean algebra property}
{S.(q ∨ ¬q)}.q

= {S is disjunctive}
{S.q ∨ S.(¬q)}.q

= {Definition of assert and distributivity}
(S.q ∧ q) ∨ (S.(¬q) ∧ q)

= {S ≤ skip impliesS.q ≤ q}
S.q ∨ (S.(¬q) ∧ q)

= {Prove S.(¬q) ∧ q = ⊥}
• S.(¬q) ∧ q = ⊥
⇔ {⊥ is the least element}

S.(¬q) ∧ q ≤ ⊥
⇐ {S ≤ skip impliesS.(¬q) ≤ ¬q}

¬q ∧ q ≤ ⊥
⇔ {Boolean algebra properties}

true
S.q ∨ ⊥

= {Boolean algebra properties}
S.q �

Theorem 3. A monotonic transformer S is an assumption if and only if S ≥
skip and S is conjunctive.

3 Algebra of monotonic Boolean transformers

We introduce in this section an algebraic structure which has as a model the
monotonic Boolean transformers.

Definition 2. An algebra of monotonic Boolean transformers (abbreviated MBT)
is an algebra A = 〈A,u,t, ◦,_o,_ω, 1,⊥,>〉 where u, t, and ◦ are binary op-
erations, _o, _ω are unary operation and 1, ⊥, and > are constants, which
satisfies the following axioms:

(A1) 〈A,u,t,⊥,>〉 is a bounded distributive lattice
(A2) 〈A, ◦, 1〉 is a monoid

(A3) (xuy)◦z = (x◦z)u (y ◦z)
(A4) x ≤ y ⇒ z ◦ x ≤ z ◦ y
(A5) > ◦ x = >
(A6) x ≤ y ⇔ yo ≤ xo
(A7) xoo = x

(A8) (x ◦ y)o = xo ◦ yo
(A9) (x ◦ >) u (xo ◦ ⊥) = ⊥
(A10) xω = x ◦ xω u 1
(A11) x ◦ z u y ≤ z ⇒ xω ◦ y ≤ z

The algebra of monotonic Boolean transformers includes all operators and
axioms of the general refinement algebra introduced in [22], except the weak
iteration operator (_∗) and its axioms. Additionally it includes the angelic choice
and the dual operator and their corresponding axioms. We also assume that the
lattice of the choice operations is distributive. The iteration operator (ω) is

introduced here only for completion. It will not be used further in this paper.
All properties proved in [22] for ω in the general refinement algebra hold also for
MBT algebra.

The dual operator behaves like a negation operator: it is anti-monotonic,
it is an involution (xoo = x), and the conjunction of x ◦ > and xo ◦ ⊥ is ⊥.
However, the dual operator applied to a monotonic Boolean transformer is also
monotonic. This operator will be used to define the negation for assert and
assume statements of MBT algebra.

Alternatively we could introduce only u, ◦, _o, _ω, 1, and > as primitive
operations, and then define t and ⊥ in terms of u, _o, and >.

Theorem 4. If the constants 1, ⊥, and > from MBT are interpreted as skip,
fail, and magic, then the monotonic Boolean transformers are a model for the
axioms of MBT.

Proof. All properties (A1) to (A11) from Definition 2 are easy to verify.
In [13], multirelations are used to model angelic and demonic nondetermin-

ism, and they are shown to be equivalent to monotonic predicate transformers.
This work would enable showing that the multirelations are also a model for
MBT algebra.

Next theorem lists a number of properties that are true in a MBT algebra.
The properties are direct consequences of the axioms of MBT algebra.

Theorem 5. In MBT the following properties hold:

1. >o = ⊥ and ⊥o = >
2. 1o = 1
3. (x u y)o = xo t yo
4. (x t y)o = xo u yo
5. x = y ⇔ xo = yo

6. (x t y) ◦ z = (x ◦ z) t (y ◦ z)
7. x ◦ (y u z) ≤ (x ◦ y) u (x ◦ z)
8. x ◦ (y t z) ≥ (x ◦ y) t (x ◦ z)
9. ⊥ ◦ x = ⊥

10. x ≤ y ⇒ x ◦ z ≤ y ◦ z
11. x ≤ y ∧ u ≤ v ⇒ x ◦ u ≤ y ◦ v
12. 1 ≤ x⇒ y ≤ x ◦ y
13. 1 ≤ x⇒ y ≤ y ◦ x
14. x ≤ 1⇒ x ◦ y ≤ y
15. x ≤ 1⇒ y ◦ x ≤ y
16. x ≤ x ◦ > and x ◦ ⊥ ≤ x
17. (x ◦ >) t (xo ◦ ⊥) = >
18. (x ◦ ⊥) t (xo ◦ >) = >

Definition 3. An element x is conjunctive if it satisfies

(∀y, z : x ◦ (y u z) = (x ◦ y) u (x ◦ z))

and dually x is disjunctive if it satisfies

(∀y, z : x ◦ (y t z) = (x ◦ y) t (x ◦ z))

The set of conjunctive and disjunctive elements are denoted by Conj and Disj,
respectively.

As pointed out in Section 2, these definitions are equivalent to the definitions
of conjunctive and disjunctive functions in the model of monotonic Boolean
transformers.

Lemma 1. For x ∈ MBT the following properties hold

1. x ∈ Conj⇒ xo ∈ Disj
2. x ∈ Disj⇒ xo ∈ Conj

4 Assertions and assumptions

This section introduces the set of assertions and assumptions of a MBT alge-
bra. In a Kleene algebra with tests [12], the tests (which are the equivalent to
assumptions) are postulated. The tests are elements of a subset of a Kleene al-
gebra and they form a Boolean algebra. In a demonic refinement algebra [22],
guards (which are equivalent to assumptions) are the elements that have a com-
plement with respect to u, ◦,1, and >. Because our algebra contains the dual
operator we are able to introduce the assertions using a conjunction of an in-
equality and an equality which is logically simpler than the definition from [22].
We prove that the assertions and also the assumptions are Boolean algebras, and
moreover, we prove that the assertions and the assumptions from our algebra
correspond exactly to the assertions and the assumptions from the monotonic
Boolean transformers model.

Definition 4. In a MBT algebra the set of assertions is defined by

Assertion = {p : p ≤ 1 ∧ p = (p ◦ >) u po}

Lemma 2. Let p ∈ Assertion then

1. po = (po ◦ ⊥) t p
2. p = (p ◦ >) u 1 and po = (po ◦ ⊥) t 1
3. p, po ∈ Conj and p, po ∈ Disj

Proof. We prove only the last property. First we prove p ∈ Conj, i.e. for all
x, y ∈ MBT, p ◦ (x u y) = (p ◦ x) u (p ◦ y):

• p ◦ (x u y)
= {property 2. of this theorem}

((p ◦ >) u 1) ◦ (x u y)
= {axioms of MBT}

(p ◦ > ◦ (x u y)) u x u y
= {axioms of MBT}

(p ◦ >) u x u y
= {lattice properties}

((p ◦ >) u x) u ((p ◦ >) u y)
= {axioms of MBT}

(((p ◦ >) u 1) ◦ x) t (((p ◦ >) u 1) ◦ y)
= {property 2. of this theorem}

(p ◦ x) u (p ◦ y)

The property p ∈ Disj can be proved similarly, but we also need to use the
distributivity of u over t.

Finally po ∈ Conj and po ∈ Disj follow using Lemma 1. �
The definition of assertions corresponds to assertions in the model of Boolean

transformers.

Theorem 6. In Mtran the set Assertion is the set of all assertions, {p}, for
p ∈ Bool.

Proof. We prove that Assertion = {{p} | p ∈ Bool} in Mtran. First if p ∈ Bool, it
is easy to show that {p} ∈ Assertion. Conversely if x ∈ Assertion, then by Lemma
5 x ∈ Disj, and using Theorem 2, it follows that x ∈ {{p} | p ∈ Bool}. �

Lemma 3. If p, q ∈ Assertion, then p ◦ q = p u q.

Proof. The inequality p ◦ q ≤ p u q follows directly from the axioms of MBT.
The second inequality follows from:

• p u q
= {Assertion definition}

p ◦ > u po u q ◦ > u qo
≤ {sub-derivation}

• po ≤ po ◦ qo ∧ qo ≤ po ◦ qo
= {Theorem 5}

true
• q ≤ po ◦ q ◦ >
⇐ {transitivity of ≤}

q ≤ po ◦ q ∧ po ◦ q ≤ po ◦ q ◦ >
= {Theorem 5}

true

p ◦ > u po ◦ q ◦ > u po ◦ qo
= {po ∈ Conj}

p ◦ > u po ◦ (q ◦ > u qo)
= {q ∈ Assertion}

p ◦ > u po ◦ q
= {MBT axioms}

(p ◦ > u po) ◦ q
= {p ∈ Assertion}

po ◦ qo

This concludes the theorem. �

Definition 5. For an assertion p ∈ Assertion the negation of p, denoted ¬p is
defined by

¬p = (po ◦ ⊥) u 1

Theorem 7. The assertions are closed under u, t, ¬, 1, and ⊥.

Proof. We prove only that p u q ∈ Assertion. It is true that p u q ≤ 1. We prove
also that p u q = (p u q) ◦ > u (p u q)o:

• p u q
= {Lemma 3}

p ◦ q
= {p, q ∈ Assertion}

(p ◦ > u po) ◦ (q ◦ > u qo)
= {axioms of MBT}

p ◦ > u po ◦ (q ◦ > u qo)
= {po ∈ Conj by Lemma 2}

p ◦ > u po ◦ q ◦ > u po ◦ qo
= {MBT axioms}

(p ◦ > u po) ◦ q ◦ > u po ◦ qo
= {p ∈ Assertion}

p ◦ q ◦ > u po ◦ qo
= {MBT axioms}

p ◦ q ◦ > u (p ◦ q)o
= {Lemma 3}

(p u q) ◦ > u (p u q)o. �

Theorem 8. The structure (Assertion,u,t,¬,⊥, 1) is a Boolean algebra.

Proof. The structure (Assertion,u,t,⊥, 1) is a bounded distributive lattice by
Theorem 7 and by the fact that MBT is a distributive lattice. We need to show
also that ¬ satisfies the negation axioms: p u ¬p = ⊥ and p t ¬p = 1. We only
show here p t ¬p = 1.

• p t ¬p
= {Definition of ¬}

p t (po ◦ ⊥ u 1)
= {lattice distributivity}

(p t po ◦ ⊥) u (p t 1)
= {p ∈ Assertion}

(p t po ◦ ⊥) u 1
= {Theorem 5 and MBT axioms}

(po u p ◦ >)o u 1
= {p ∈ Assertion}

po u 1
= {p ≤ 1⇔ 1 ≤ po by MBT axioms}

1 �

Next lemma introduces some additional properties for assertions.

Lemma 4. If p ∈ Assertion and x, y ∈ MBT, then

1. p ◦ p = p and po ◦ po = po

2. p ◦ po = p and po ◦ p = po

3. po ◦ x t (¬p) ◦ > = po ◦ x
4. p ◦ x t (¬p) ◦ y = po ◦ x u (¬p)o ◦ y

Proof. We prove only the last property:

• p ◦ x t (¬p) ◦ y
= {p,¬p ∈ Assertion}

(p ◦ > u po) ◦ x t ((¬p) ◦ > u (¬p)o) ◦ y
= {MBT axioms}

(p ◦ > u po ◦ x) t ((¬p) ◦ > u (¬p)o ◦ y)
= {lattice distributivity}

((p ◦ > u po ◦ x) t (¬p) ◦ >) u ((p ◦ > u po ◦ x) t (¬p)o ◦ y)
= {lattice distributivity}

(p◦>t(¬p)◦>)u(po ◦xt(¬p)◦>)u(p◦>t(¬p)o ◦y)u(po ◦xt(¬p)o ◦y)
= {MBT axioms}

(pt (¬p)) ◦>u (po ◦xt (¬p) ◦>)u (p ◦>t (¬p)o ◦ y)u (po ◦xt (¬p)o ◦ y)
= {Assertion is a Boolean algebra}

(po ◦ x t (¬p) ◦ >) u (p ◦ > t (¬p)o ◦ y) u (po ◦ x t (¬p)o ◦ y
= {Property 3: po ◦ x t (¬p) ◦ > = po ◦ x}

po ◦ x u (¬p)o ◦ y u (po ◦ x t (¬p)o ◦ y)
= {lattice properties}

po ◦ x u (¬p)o ◦ y �

The property 3. from Lemma 4 shows that the two ways of defining the condi-
tional program are also equivalent in MBT. In MBT the conditional program is
defined by

if b then x else y = b ◦ x t ¬b ◦ y = bo ◦ x u (¬b)o ◦ y

The assumptions of MBT are defined similarly to assertions, but using the
duals of the properties for assertions.

Definition 6. The assumptions of MBT, denoted by Assumption ⊆ MBT, are
defined by

Assumption = {g : 1 ≤ g ∧ g = (g ◦ ⊥) t go}

Lemma 5. Let g ∈ Assumption then

1. g ∈ Assumption⇔ go ∈ Assertion
2. go = (go ◦ >) u g
3. g = (g ◦ ⊥) t 1 and go = (go ◦ >) u 1
4. g, go ∈ Conj and g, go ∈ Disj

Proof. These properties can be proved similarly to those for assertion, but using
the dual properties. �

Theorem 9. In Mtran the Assumption is the set of all assumptions, [p], for
p ∈ B.

Proof. This fact can be proved similarly to Theorem 6, using Theorem 3. This
theorem can also be proved using Lemma 5.1, and the fact that in Mtran {p}o =
[p]. �

The negation of an assumption can be defined using the negation of an as-
sertion.

Definition 7. The negation of an assumption g ∈ Assumption, denoted ¬g ∈
Assumption, is given by

¬q = (¬go)o

Theorem 10. The assumptions are closed to the operations u, t, ¬, 1, and >,
and the structure (Assumption,u,t,¬, 1,>) is a Boolean algebra.

5 Weakest precondition, guards, Hoare triples, and data
refinement.

This sections introduces the weakest precondition for elements of aMBT algebra,
and using it introduces valid Hoare triples. Various results connecting valid Hoare
triples, refinement, and data refinement are also proved.

Definition 8. The weakest precondition of a program x and >, denoted wpt.x ∈
MBT, is given by

wpt.x = (x ◦ >) u 1.

This definition is justified by the fact that in the monotonic Boolean transformer
model wpt.S is equal to {S.>} and wpt.(S ◦{p}) is equal to {S.p}. The operator
wpt satisfies all axioms set for the termination operator in [20,14]. These axioms
are listed among the conclusions of the next theorem.

Theorem 11. The following properties are true for wpt.

1. wpt.x ∈ Assertion
2. (wpt.x) ◦ x = x
3. p ∈ Assertion⇒ wpt.p = p
4. p ∈ Assertion ∧ p ◦ x = x⇒ wpt.x ≤ p
5. p ∈ Assertion⇒ wpt.(po) = 1
6. p, q ∈ Assertion⇒ wpt.(po ◦ q) = ¬p t q
7. x ≤ y ⇒ wpt.x ≤ wpt.y
8. wpt.(x ◦ y) = wpt.(x ◦ wpt.y)
9. p ∈ Assertion ∧ x ∈ Conj⇒ x ◦ p = wpt.(x ◦ p) ◦ x (moving assertions)
10. (wpt.x) ◦ > = x ◦ >

Proof. We only show here the proof of property 6.

• wpt.(po ◦ q)
= {Definition}

(po ◦ q ◦ >) u 1
= {Lemma 2}

(((po ◦ ⊥) t 1) ◦ q) u 1
= {MBT axioms}

((po ◦ ⊥) t q) u 1
= {lattice distributivity}

((po ◦ ⊥) u 1) t (q u 1)

= {q ∈ Assertion}
((po ◦ ⊥) u 1) t q

= {definition of ¬}
¬p ∪ q �

In Mtran the guard of a program is defined as the set of all states from which the
program is guaranteed to terminate. Formally in Mtran the guard of a program
S is the predicate ¬S.⊥. In MBT we can also define the guard of a program as
an assumption.

Definition 9. The guard of an element x ∈ MBT, denoted grd.x, is given by

grd.x = x ◦ ⊥ t 1.

In Mtran the guard of a program S corresponds to [¬S.⊥]: grd.S = [¬S.⊥]
The operator grd satisfies all axioms set for the termination operator in

[20,14]. These axioms are listed among the conclusions of the next theorem.

Theorem 12. If x ∈ MBT, and p ∈ Assertion, then

1. grd.x ∈ Assumption
2. grd.x ◦ x = x
3. grd.x = (¬wpt.(x ◦ ⊥))o
4. g ∈ Assumption⇒ g ≤ grd.(g ◦ x)
5. grd.(x ◦ y) = grd.(x ◦ grd.y)
6. (grd.x) ◦ ⊥ = x ◦ ⊥

Proof. We prove only the property 3 here:

• (¬wpt.(x ◦ ⊥))o
= {definition of ¬}

((wpt.(x ◦ ⊥))o ◦ ⊥ u 1)o

= {Theorem 5 and MBT axioms}
(wpt.(x ◦ ⊥)) ◦ > t 1

= {definition of wpt}
(x ◦ ⊥ ◦ > u 1) ◦ > t 1

= {Theorem 5 and MBT axioms}
x ◦ ⊥ t 1

= {definition of grd}
grd.x. �

Definition 10. For p, q, x ∈ MBT, the Hoare total correctness triple p {|x|} q ∈
Bool is defined by

(p {|x|} q) := p ≤ wpt.(x ◦ q).

This definition also corresponds to the classical definition of Hoare total correct-
ness triples in the monotonic Boolean transformers lattice. If p, q ∈ Bool and
S ∈ Mtran, then {p} {|S|} {q} is equivalent to p ≤ S.q.

In [22] the total correctness triple of a program x with respect to a precon-
dition p and a post-condition q is defined by po ◦ x ◦ (−q)o = >. Next theorems
shows that this definition is equivalent to our definition.

Theorem 13. If p ∈ Assertion then

p {|x|} q ⇔ po ◦ x ◦ (¬q)o = >

Proof. First assume p {|x|} q, which implies p◦> ≤ x◦q ◦>. Show po ◦x◦ (¬q)o =
>.

• >
= {Theorem 5}

(x ◦ q)o ◦ ⊥ t x ◦ q ◦ >
≤ {the assumption implies p ◦ > ≤ x ◦ q ◦ >}

po ◦ ⊥ t x ◦ q ◦ >
= {Theorem 5}

(po ◦ ⊥ t 1) ◦ x ◦ q ◦ >
= {Lemma 2}

po ◦ x ◦ q ◦ >
≤ {MBT axioms}

po ◦ x ◦ (q ◦ > t 1)
= {Theorem 5}

po ◦ x ◦ (qo ◦ ⊥ u 1)o

= {definition of ¬}
po ◦ x ◦ (¬q)o

For the second implication assume po ◦ x ◦ (¬q)o = >, which is equivalent to
po ◦x ◦ (q ◦>t 1) = >. To show p {|x|} q it is enough to show p ≤ x ◦ q ◦>, which
follows from p ≤ p ◦ > = p ◦ x ◦ q ◦ > ≤ x ◦ q ◦ >.

• p ◦ >
= {MBT axioms}

p ◦ > ◦ ⊥
= {assumption}

p ◦ po ◦ x ◦ (q ◦ > t 1) ◦ ⊥
= {Lemma 4}

p ◦ x ◦ (q ◦ > t 1) ◦ ⊥
= {Theorem 5}

p ◦ x ◦ q ◦ > �

Definition 11. For x, y, u, v ∈ MBT, the program x is data refined by the pro-
gram y via the programs u and v, denoted x vu,v y, if

u ◦ x ≤ y ◦ v.

This definition for data refinement was used in [19] for constructing invariant
based programs using data refinement. Next theorem allows to conclude a cor-
rectness statement for a program y which data refines a program x, knowing
that x is correct.

Theorem 14. If p, x, y, q, u, v ∈ MBT, then

1. p {|x|} q ∧ x vu,v y ⇒ wpt.(u ◦ p) {|y|}wpt.(v ◦ q)
2. p ∈ Assertion ∧ p {|x|} q ∧ p ◦ x vu,v y ⇒ wpt.(u ◦ p) {|y|}wpt.(w ◦ q)

Proof. We prove only the second property. The first one has a similar proof.
Assume p {|x|} q (⇔ p ≤ wpt.(x ◦ q)) and p ◦ x vu,v y (⇔ u ◦ p ◦ x ≤ y ◦ v).

• wpt.(u ◦ p) {|y|}wpt.(v ◦ q)
= {definition of Hoare triple}

wpt.(u ◦ p) ≤ wpt.(y ◦ wpt.(v ◦ q))
= {Theorem 11}

wpt.(u ◦ p) ≤ wpt.(y ◦ v ◦ q)
⇐ {assumption and wpt monotonic}

wpt.(u ◦ p) ≤ wpt.(u ◦ p ◦ x ◦ q)
= {Theorem 11}

wpt.(u ◦ p) ≤ wpt.(u ◦ p ◦ wpt.(x ◦ q))
⇐ {assumption and wpt monotonic}

wpt.(u ◦ p) ≤ wpt.(u ◦ p ◦ p)
= {Lemma 4}

wpt.(u ◦ p) ≤ wpt.(u ◦ p)
= {≤ is reflexive}

true �

The second property of Theorem 14 is preferable to the first one because the data
refinement p ◦ x vu,v y is easier to prove compared to x vu,v y. In p ◦ x vu,v y
the properties from p can be used as assumption in the proof.

In [22], von Wright uses a statement called havoc to introduce a pre-post-
condition specification statement. von Wright proves that the specification state-
ment is refined by another program x if and only if x is totally correct with
respect to the pre and post conditions. However the proof from [22] uses the
property that all programs are conjunctive, which does not hold in our set-
ting. We introduce another concept that can be used to define the specification
statement and we can prove the equivalence between the refinement of the spec-
ification statement into x and the correctness statement of x. As in case of [22],
this concept cannot be defined and we use two axioms for introducing it. We as-
sume that we have a function |_| : Assertion→ MBT that satisfies the additional
axioms:

(P1) |p| ◦ p ◦ > = > (P2) x ◦ p ◦ > u |p| ≤ x

In the model of monotonic Boolean transformers, if we define |{p}| = ||p||, then
the axioms (P1) and (P2) are satisfied.

Theorem 15. If p, q ∈ Assertion and x ∈ MBT, then p {|x|} q ⇔ p ◦ |q| ≤ x.

Proof. Assume p {|x|} q which is equivalent to p ≤ x ◦ q ◦ >.

• p ◦ |q|
= {Lemma 2}

(p ◦ > u 1) ◦ |q|
= {MBT axioms}

p ◦ > u |q|
≤ {assumption}

x ◦ q ◦ > u |q|
≤ {axiom (P2)}

x

Conversely assume p ◦ |q| ≤ x and show p ≤ x ◦ q ◦ > which is equivalent to
p {|x|} q when p ∈ Assertion

• p
= {Lemma 2}

(p ◦ > u 1)
= {axiom (P1)}

p ◦ |q| ◦ q ◦ > u 1
≤ {lattice properties}

p ◦ |q| ◦ q ◦ >
≤ {assumption}

x ◦ q ◦ > �

6 Conclusions

We have introduced a new algebra for reasoning about imperative programming
languages which supports total correctness, refinement, data refinement, demonic
choice, and angelic choice. Compared to earlier versions of program algebras, this
approach uses the dual of a program as a primitive operation, and the assertion
statements are defined using weaker properties than how they were defined in
previous work.

We proved a number of results about assertions and assumptions. We have
also proved two main theorems. One theorem states a result which can be used
to prove the correctness of a concrete program y, by proving that y data refines
a program x and x is correct. The other theorem shows the equivalence between
the refinement of a specification statement and a Hoare total correctness triple.

All results presented in this paper were mechanically verified in the Isabelle
theorem prover.

References

1. R.-J. Back. On the correctness of refinement in program development. PhD thesis,
Department of Computer Science, University of Helsinki, 1978.

2. R.-J. Back. Correctness preserving program refinements: proof theory and applica-
tions, volume 131 of Mathematical Centre Tracts. Mathematisch Centrum, Ams-
terdam, 1980.

3. R.-J. Back and V. Preoteasa. An algebraic treatment of procedure refinement to
support mechanical verification. Formal Aspects of Computing, 17:69 – 90, May
2005.

4. R.-J. Back and J. von Wright. A lattice-theoretical basis for a specification lan-
guage. In Proceedings of the International Conference on Mathematics of Program
Construction, 375th Anniversary of the Groningen University, pages 139–156, Lon-
don, UK, 1989. Springer-Verlag.

5. R.-J. Back and J. von Wright. Duality in specification languages: a lattice-
theoretical approach. Acta Inf., 27:583–625, July 1990.

6. R.-J. Back and J. von Wright. Refinement Calculus. A systematic Introduction.
Springer, 1998.

7. H.-H. Dang, P. Höfner, and B. Möller. Algebraic separation logic. Journal of Logic
and Algebraic Programming, 80(6):221 – 247, 2011. Relations and Kleene Algebras
in Computer Science.

8. J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. ACM Trans.
Comput. Logic, 7:798–833, October 2006.

9. P. Guerreiro. Another characterization of weakest preconditions. In M. Dezani-
Ciancaglini and U. Montanari, editors, International Symposium on Programming,
volume 137 of Lecture Notes in Computer Science, pages 164–177. Springer Berlin
/ Heidelberg, 1982. 10.1007/3-540-11494-7_12.

10. C. A. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent kleene algebra. In
Proceedings of the 20th International Conference on Concurrency Theory, CON-
CUR 2009, pages 399–414, Berlin, Heidelberg, 2009. Springer-Verlag.

11. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

12. D. Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19:427–
443, May 1997.

13. C. E. Martin, S. A. Curtis, and I. Rewitzky. Modelling angelic and demonic non-
determinism with multirelations. Science of Computer Programming, 65(2):140
– 158, 2007. Special Issue dedicated to selected papers from the conference of
program construction 2004 (MPC 2004).

14. L. Meinicke and K. Solin. Refinement algebra for probabilistic programs. Formal
Aspects of Computing, 22:3–31, 2010. 10.1007/s00165-009-0111-1.

15. C. Morgan. Programming from specifications. Prentice-Hall, Inc., 1990.
16. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
17. V. Preoteasa. Program Variables – The Core of Mechanical Reasoning about Im-

perative Programs. PhD thesis, Turku Centre for Computer Science, Nov 2006.
18. V. Preoteasa. Frame rule for mutually recursive procedures manipulating pointers.

Theoretical Computer Science, 410(42):4216 – 4233, 2009.
19. V. Preoteasa and R.-J. Back. Data refinement of invariant based programs. Elec-

tronic Notes in Theoretical Computer Science, 259:143 – 163, 2009. Proceedings
of the 14th BCS-FACS Refinement Workshop (REFINE 2009).

20. K. Solin and J. von Wright. Enabledness and termination in refinement algebra.
Sci. Comput. Program., 74:654–668, June 2009.

21. J. von Wright. From kleene algebra to refinement algebra. In Proceedings of the
6th International Conference on Mathematics of Program Construction, MPC ’02,
pages 233–262, London, UK, UK, 2002. Springer-Verlag.

22. J. von Wright. Towards a refinement algebra. Sci. Comput. Program., 51:23–45,
May 2004.

