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Abstract

A large number of biomedical relation
extraction methods, targeting for exam-
ple protein-protein interactions (PPI), have
been introduced in the preceding decade.
However, the performance figures reported
for these methods vary enormously, and re-
sults are largely incomparable across differ-
ent studies. In this paper we study reasons
leading to this situation and propose a solu-
tion to resolving them.

1 Introduction

Evaluation results for biomedical relation extrac-
tion methods vary greatly and are largely incom-
parable across different studies. This makes it dif-
ficult to assess what are the best tools, methods,
techniques and general approaches to the task. A
number of recent studies have brought to light
several issues leading to this incomparability. In
this paper we collect together these findings and
discuss several other aspects of relation extraction
experiments that may introduce unwanted vari-
ance into evaluation results. After reviewing the
problems, we propose a solution to the known is-
sues.

We assume throughout the paper the common
task setting where relations are to be extracted
by identifying entity pairs for which the relation
holds, e.g. two proteins that are stated to interact.
While a machine-learning perspective is involved
in some parts of the discussion, most of the prob-
lems can occur for any extraction approach. We
assume that evaluation aims to be able to establish
differences in the performance of compared meth-
ods on the order of a few percentage units or less,
a level of accuracy at least implicitly assumed in

many comparisons of domain extraction methods
but, as we shall discuss next, far from systemati-
cally achieved at present.

2 The problems

2.1 Different corpora

In a recent study of biomedical relation ex-
traction performance across five corpora,
Pyysalo et al. (2008) demonstrated that evalu-
ation results for a single method on different
corpora may vary up to 30%, and found a 19%
average performance difference on the corpora.
These differences stem in part from different
definitions of what should or should not be
extracted as a protein-protein interaction, which
leads to differing positive/negative distributions
of candidate relations: for example, the LLL
corpus (Ńedellec, 2005) contains 164 “true”
(positive) relations out of 330 possible entity
pairs, giving an “all-true” baseline performance
of 66% F-score1, while for the AIMed corpus
(Bunescu et al., 2005) these figures are approx.
1000 positive out of 5800 candidate pairs for a
baseline performance of 29% F-score.

While differing extraction targets are, in gen-
eral, a benefit for evaluation—extraction ap-
proaches should be able to learn different
targets—these differences render (unqualified)
evaluation results from different corpora incom-
parable. Below, we will only consider factors
complicating evaluation on a shared corpus.

1Assigning all candidates into the positive class gives
a r(ecall) of 100% and ap(recision) of cp

cp+cn
, wherecp

andcn are the number of positive and negative candidates
(resp.); F-score is2pr

p+r
.



2.2 Corpus processing

Biomedical corpus annotation is rarely, if ever,
distributed in a form that would explicitly spec-
ify the set of candidate relations. Instead, can-
didates must be generated, often from annotation
that only specifies entities and positive relations.
Negative relations are typically generated under
the closed-world assumption. Along with various
other details of annotation schemes, this opens the
door to varying interpretations of single corpora.

2.2.1 Number of generated examples

With complex annotations including for ex-
ample nested or noncontinuous entities, cor-
pus annotation can allow for strikingly differ-
ent numbers of positive and negative relations:
Sætre et al. (2008) note that the AIMed corpus has
been variously interpreted as containing between
951 and 1071 positive relations with 4026–5631
negative ones. For the most favorable combina-
tion (1071 positive, 4026 negative) the all-true
baseline would stand at 35% and for the least fa-
vorable (951/5631) at 25% F-score. Thus, differ-
ent preprocessings of the corpus can give a very
large absolute difference even for a trivial base-
line, rendering results for different preprocessings
of the corpus incomparable.

A particular difficulty is presented by the ex-
istence of self-interactions, where an annotated
(positive) relation involves only a single entity.
While the AIMed corpus contains 54 such inter-
actions, most studies on AIMed simply ignore
their existence, since generating candidate rela-
tions involving only single entities would increase
the number of negative candidates by thousands
and lead to a considerably more difficult positive-
negative ratio. A similar situation occurs when
extracting directed relations: if each pair of en-
tities is used to generate two directed candidate
relations, the number of negative examples will
more than double.

2.2.2 Entity name blinding

Biomedical corpora often focus on limited sub-
domains, either by design or due to bias intro-
duced from document selection procedure (e.g.
documents cited as evidence in an interaction
database). Consequently, corpora can contain a
disproportionate amount of relations between par-
ticular entities, which can be “memorized” by a
learner if it is allowed to see their names. For ex-
ample, in an experiment on the AIMed corpus we

got an F-score of 33% whenonly the names of
the candidates were used as features. As the all-
true baseline is 30% for our version of the corpus,
this suggests that memorizing names can provide
a small but non-negligible benefit, again leading
to diverging results. Extraction methods should
be able to detect relations between entities whose
names have not occurred in their training data—
indeed, such novel interactions are more interest-
ing than those already annotated. Thus, perfor-
mance increments based on knowing the names
of the entities involved do not reflect real benefits
of extraction methods.

A related issue arises on corpora involving
nested entities. For example on the AIMed cor-
pus, the dataset applied in (Giuliano et al., 2006)
appears to have been preprocessed so that nested
entity names were treated differently depending
on whether the inside entity was part of a true
relation or not. For example, in the sentence
Cloning and functional analysis of [1BAG-1] :
a novel [2[3Bcl-2]-binding protein] with anti-cell
death activitythere are three potential pairs (1,2),
(1,3) and (2,3), but in the Giuliano dataset only
two pairs for this sentence are given, one false
pair, (1,3), and one true pair, (1,2), where the rep-
resentation of the latter does not involve marking
the tokens-binding proteinas belonging to a pro-
tein name (and thus blinding). The negative can-
didate pair (2,3) is excluded in this case. Remov-
ing negative nested protein names raises evaluated
performance in terms of F-score by increasing the
positive/negative ratio. However, this way of pre-
processing the data should not be performed un-
less there is a way to know in advance whether a
nested entity is involved in a relation or not before
running the extraction method. Comparison of
evaluations where one employs such information
and the other does not may not yield meaning-
fully comparable results: Airola et al. (2008) ran
the method published by Giuliano et al. (2006)
on a differently blinded version of AIMed and
reported a 52.4% F-score, over 6% points lower
than the 59.0% reported by Giuliano et al.

2.3 Experimental setup

There are numerous potential pitfalls in setting
up a relation extraction experiment, in particu-
lar when it involves machine learning. Two fre-
quently encountered issues relate to the role of
training and test sets in evaluation.



2.3.1 Isolating training and test data

To establish a meaningful estimate of gener-
alization performance, the training and test sets
must represent independent samples: test data
that resembles the training data more than the
overall distribution benefits overfit learners and
leads to overestimation of performance.

Sætre et al. (2008) observed that a number of
biomedical relation extraction studies performed
cross-validation by first preprocessing the data to
form all the possible candidate pairs of related en-
tities, which were then randomly split into differ-
ent sets for training and evaluation. In this pro-
cedure, pairs from the same sentence ended up
being used both for training and testing within a
single fold. Since the features from two neigh-
boring pairs in a sentence are practically identi-
cal, this was shown to lead to an 18% points over-
estimation of the F-score performance compared
to a more realistic setting. In the realistic test set-
ting, all the data from a single abstract is kept to-
gether through the whole processing pipeline, to
avoid using it both for training and testing in the
same fold.

2.3.2 Parameter selection

The data on which methods are tested should,
ideally, represent completely new, unseen data.
While this ideal is rarely achieved, a small num-
ber of tests on the whole dataset is unlikely to
cause much bias. However, experiments are of-
ten set up to include repeated, systematic tests
on the entire dataset, of which the best result is
reported. Perhaps the most frequent such setup
arises from parameter selection, e.g. using cross-
validation on the entire corpus. Especially when
the parameter space is multi-dimensional and the
data set is small, this approach can find consider-
able benefit from identifying “spikes” in the pa-
rameter space. Evaluation necessarily involves
some random variation for different parameter
settings, and a parameter selection protocol that
allows the test set to be seen will yield an over-
estimate of performance relative to the magnitude
of that variation. On smaller corpora (e.g. LLL),
random effects changing the assignment of just a
few examples can already make a percentage unit
difference in results.

A related issue arises from picking the best
point (e.g. in terms of F-score) from a precision-
recall curve generated for a single extraction

method with fixed overt parameters. This cor-
responds to implicitly optimizing a classification
threshold parameter, again with reference to the
whole dataset. When comparing methods with
otherwise similar performance, these differences
can cause misleading results: Using the method
of Airola et al. (2008) on AIMed, picking the op-
timum threshold was estimated to provide at least
a 2% overestimate over the more realistic setting
of selecting the threshold on the training data.2

2.4 Metrics

Even when the same corpus, preprocessing, ex-
perimental setup, and metric are applied, differ-
ences arising from the details of how the metric is
calculated can cause results to deviate.

2.4.1 Extracting Identical Relations

A relation is typically taken to be correctly ex-
tracted if the (unordered) pair of related entities is
identified. However, this definition leaves open a
question relating to entity identity: are two men-
tions of the same name one or two entities, and
consequently, should two relations annotated be-
tween the same two names both be extracted, or
does it suffice to find either one?

Giuliano et al. (2006) termed two answers to
these questions One Answer per Occurrence in
a Document (OAOD) and One Answer per Re-
lation in a Document (OARD): here the OAOD
criterion requires each mention to be extracted,
while OARD only demands that each unique pair
of names is identified. They found that an oth-
erwise identical evaluation yielded an F-score of
59% under the OAOD criterion and 64% under
OARD, indicating that results evaluated using dif-
ferent criteria cannot be directly compared.

The two alternatives studied by Giuliano et al.
are not the only ones possible: we might propose
One Answer per Sentence, One Answer per Cor-
pus, One Answer per (cross-validation) Fold, or
One Answer per Journal. While one might ar-
gue that extracting each relation from the corpus
once suffices for some practical applications, we
take the view that from the evaluation perspective
the specific names (between which relations are
stated) are of secondary importance and suggest
that each relation be considered. That is, One An-
swer per Occurrence; from this perspective, the
“D” in “OAOD” is superfluous.

2Thanks to Antti Airola for running this number for us.



2.4.2 Averages

How averages are calculated is a lesser, but
not negligible, issue. This question often arises
from cross-validation, where two basic alterna-
tives are available: either calculate performance
for each fold separately and average the results
(macroaveraging), or pool the answers and calcu-
late one result for the entire dataset (microaver-
aging). Different choices might cause non-trivial
differences in otherwise identical setups for small
corpora: for example, when examples are care-
fully divided into cross-validation folds on the
document level, some test sets can contain doc-
uments with unusually high numbers of entities
and thus of candidate relations. With macroaver-
aging, folds with a large number of relations will
contribute equally to the final result as folds with
fewer, whereas if results are pooled the contribu-
tions of folds will be inequal, but each relation
will contribute equally. As the number of candi-
date relations grows quadratically with the num-
ber of entities in a given context and the growth of
positive relations is likely to be slower, we would
expect folds with more relations to represent more
difficult problems in terms of metrics sensitive
to the positive/negative distribution (e.g. F-score)
and thus macroaveraged results to be higher.

3 A proposal for a solution

The problems discussed above highlight a need
for standardization to establish meaningful com-
parisons between different relation extraction
method evaluations. Before these issues are ad-
dressed to some extent, the only direct compar-
isons between methods that can be meaningfully
performed are those done within a single study
(or at least by the same authors) and those from
shared tasks. The incomparability comes at a
great cost to the community, as reimplementation
is often the only way to reliably determine the rel-
ative merits of proposed methods.

We do not expect that specific choices to the
many alternatives discussed could be enforced
by fiat. Instead, we propose a positive solution:
we have constructed a standard dataset contain-
ing data derived from different corpora, building
on the unification of five corpora under a com-
mon format by Pyysalo et al. (2008). We have
extended this work by including explicit candi-
date pairs with blinded protein names, thus ad-
dressing the issues in corpus processing. Further,

predefined train/test splits are provided, and the
distribution of the dataset is accompanied with
evaluation scripts that implement the basic met-
rics in a standardized way, thus eliminating pos-
sible differences arising from metric application.
The data and software is freely available from
http://mars.cs.utu.fi/PPICorpora .

4 Conclusion

We have discussed a number of issues in biomed-
ical relation extraction system evaluation that
complicate, or even prevent, meaningful compar-
ison of reported results, and we proposed a so-
lution to address these issues. We believe that
the proposed dataset and evaluation approach can
serve as a step toward stable, reliable evaluation
of biomedical relation extraction methods.
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