
Fault-tolerant Routing Approach for Reconfigurable
Networks-on-Chip

Pekka Rantala∗, Teijo Lehtonen∗†, Jouni Isoaho∗† and Juha Plosila ∗†
∗University of Turku, Dept. of Information Technology, Communication Systems Lab.

†Turku Centre for Computer Science (TUCS), Lemminkäisenkatu 14A, FIN-20520 Turku, Finland.
Email: { peaura | tetale | jisoaho | juplos }@utu.fi

Abstract— We introduce fault-tolerant on-chip routing phi-
losophy for two-dimensional meshes. It is an extension to the
concept of packet connected circuit, PCC. In order to increase
reliability we have designed an automatic rerouting property
to a single switch node and added return channel to the
communication route. An autonomic routing switch node is
modeled asynchronously and implemented using Haste language.
The logical functionality of routing is illustrated as a single study
case in 7*8 mesh. The routing success is further analyzed in
congesting and faulty environment.

I. INTRODUCTION

The move towards nanoscale circuits poses new challenges
to circuit design. Shrinking dimensions decreases the yield
in manufacturing [1]. The yield can be maintained at an
acceptable level by admitting some amount of faults in a
chip. Electromigration problems can be overcome by the use
of built-in redundancy and dynamically reconfigurable circuit
structure [9]. Thus, error and fault tolerance issues need to
be partly moved to system design and architecture level issue
from today’s low level testing and testability design. Moving
towards reconfigurability, scalability and efficient resource
sharing on redundant platforms will increase fault tolerance
on system-on-chip design.

The traditional method for communication on chip is to use
either point-to-point links or time-division buses such as the
AMBA bus from ARM, Inc [2]. These structures have inherent
problems with scalability and flexibility. A way to lower the
impact of these problems is to merge these two opposites into
a network structure. This network-on-chip will consist of a
shared set of links and routers that will give higher scalability
than the bus and larger flexibility than the point-to-point links
[3].

Routing in direct networks, that can be applied to NoCs, is
introduced in [4]. A two dimensional mesh network topology
(Fig. 1) is the most usual way to interconnect, though there
are efficient alternatives researched by e.g. Dally [5].

This research discusses the five lowest layers of the OSI ref-
erence model [10]. We sketch a fault-tolerant communication
protocol and routing that reaches for a minimal bidirectional
communication path between source and destination node. The
routing algorithm used in this phase of research is simple and
developed especially for this router architecture.

The paper is organized as follows: Section II reviews the
concept of fault-tolerant routing on reconfigurable NoCs. In

CU

CU

CU CU

CU CU

Fig. 1. Section of a typical reconfigurable network-on-chip with switched
interconnection

section III the implementation of a routing switch node is
introduced. Section IV reviews the results of simulating the
routing in network. Finally the future work and conclusions
are presented in sections V and VI.

II. FAULT-TOLERANT APPROACH

A. Fault-tolerant NoC

Fault-tolerance on homogenous and redundant reconfig-
urable network means small granularity and autonomy [8],
[9]. In the case of a fault from manufacturing phase, a
normal microchip is totally discarded due to malfunctioning.
In contrast, reconfigurable logic may only have an erroneous
module that can be switched off and replaced functionally. The
smaller the erroneous part is, the more we can replace them.

To achieve fault-tolerant design philosophy we need to
support independency between functional units. Consequently,
the switch nodes do not have any kind of global control (and
clocking) and the nearest neighbors affect on each other only
by control signals. The increase of bandwidths and mobility
of applications demand low power solutions on circuits. In
this design, it is achieved by asynchrony, autonomy and low
complexity. There is only few ports logic depth in the simple
routing algorithm.

Addressing scheme of the destination is relative, which
increases the autonomy of the units. The switch nodes do not
have their location data when resetting the circuit. The address
is described as rectangular distance to the destination node and
it is always modified correspondingly when sended to the next
node.

B. PCC-based Routing

The routing method introduced in this paper reminds hybrid
packet-circuit switching known as packet connected circuit
(PCC) [6]. The PCC uses a small routing packet that traverses
the network and sets up a circuit switched route for the payload
data to follow. After communication the route resources are
released with a command from the sender side. The same
routing concept is used in SoCBUS [7]. By using the PCC
the need of buffers and thus the latency penalty is eliminated.
Also the granularity of the NoC is as small as possible due to
low-complex routing algorithm. The smallest redundant unit
in this network is the I/O-unit inside the switch node in Fig.
2.

Drawbacks such as rerouting trials decrease due to auto-
matic rerouting between nodes, introduced in the next chapter.
This novel property can make a channel bypass a faulty or
congesting link in network. In addition, the routed data channel
is designed as bidirectional which provides feedback (e.g.
resending requests) from the destination node.

III. SWITCH NODE IMPLEMENTATION

A. Architecture

Fig. 2 presents a single switch node. It is divided into four
I/O-units that take care of the traffic in each direction. From
outside there are control and data signal channels coming from
and going to each I/O-unit. The control signals are 11 bits
wide (including 4+4 bits wide address field for 7*7 mesh)
and data signals one bit (but easily extendable). The channels
inside the node are for control signals between the I/O-units.
The I/O-units have also a connection to each data output
which is not drawn in the Fig. 2. In addition, each I/O-unit is
connected to the local CU that can input and output control
and data signals with the I/O-units. All mentioned channels are
implemented asynchronous way including wires for request-
and acknowledgment signals.

The switch node can route up to two routes in four different
ways according to the Fig. 3. A single I/O-unit can be reserved
for only one route. Fault-tolerance property is that an I/O-unit
can be reserved also for other reasons than routing. That reason
might be permanent faultiness of the data channel connected
to the I/O-unit (detected by e.g. coding like Hamming),
congestion of the data channel or faultiness of the I/O-unit
itself (detected by e.g. current monitoring). All these reasons
can make the I/O-unit reserved and make routes bypass it.

Used routing strategy decides the best routing direction in
each routing case. It is derived from the address field of the
route command and the shortest path ambition. The shortest
path is tried to find with as few turns as possible. Hence, the
route tries to travel straight forward until the other address
coordinate is zero. This strategy causes fewest knee type
configurations (Fig. 3 b and d) that would prevent crossings
of the routes. For instance, a route command received into the
switch node from north with relative address (3, -1) would
come out from the I/O-unit south with address field (3, 0) due
to positive X-distance and negative Y-distance. In the next

IO_unitW

IO_unitN

IO_unitE

IO_unitS

Control in/out
11+2 bits

Data in/out
1+2 bits

Local CU

Fig. 2. Switch node with I/O-units inside and local CU

A) 1-signal straight B) 1-signal knee C) 2-signal straight D) 2-signal knee

Fig. 3. Routing configuration types

node the command would be directed from I/O-unit north to
east.

In this design, an asynchronous router node that detects
errors in data channel is implemented for logical simulation
purposes. It is modeled using Haste and Timeless Design
Environment (TiDE), the design language and toolset for
asynchronous design by Handshake Solutions [11].

B. I/O-unit Configuration

The configuration state flow of a single I/O-unit is described
in Fig. 4. Each I/O-unit has an arbiter that chooses between
six signals: control signals from three other I/O-units inside
the switch node and outside from the adjacent switch node,
data signal from the adjacent switch node and signals from the
local CU. Currently, there are four control commands: route,
unroute, reroute and false dir. Interface to the local CU is not
in the scope of this research. However, it controls the sending
and receiving of the data payload after creating the route (top
left branch of the Fig. 4) unless the I/O-unit is reserved to
some other route.

If the local CU does not reserve this I/O-unit it (and some
other I/O-unit in same switch node) can be reserved for another
route. The procedure of handling a control command from the
adjacent node is presented in the bottom left branch of the flow.
When the command is: route and the I/O-unit is unreserved the
command is transferred to one of the three I/O-units according
to the best direction for the address carried by the command.
Now this I/O-unit is reserved for this target address that is
saved into its registers. The rest three commands unroute,
reroute and false dir can be executed after a route has reserved
this I/O-unit. Unroute is sent by the original source of the route
and it discards the whole route by resetting reservations of all
the I/O-units on the route. Reroute resets also the I/O-unit and
is sent backward along the route to the earlier I/O-unit that

Wait for signal (reset)

Control signal from out Control signal from in

route

Send reroute
backward out

Send route to the
IO-unit in best direction and

update configuration

Send reroute
to target direction

No!

false_dir

Send command
to target direction

and reset

Reroute, unroute
route

Send unroute backward
out and reset unroute

reroute

Send route
to opposite IO-unit

Send route to
rightmost IO-unit

Send reroute
backward and reset

left straight right

Data signal from out

Transfer data to
target direction

No!

Send false_dir
backward and
unroute forward

and reset

Yes!
Is signal faulty?

Which command?

Current direction?

Which command?

Am I reserved?

Transfer ctrl or data out

Control or data
signal from local CU

Send route with modified
address out and update

configuration No!

Send unroute
backward in

Yes!

Am I reserved?

Yes!

Am I reserved?

No!

Yes!

Is this destination?

No!

Send route to
local I/O-unit and

update configuration

Yes!

Fig. 4. Configuration state flow of I/O-unit

handles rerouting. False dir indicates (permanent) failure in
outgoing data channel. It causes reroute command backward
but leaves this I/O-unit reserved to prevent further routes via
it.

Fault detecting is modeled in the top right branch of the
state flow in Fig. 4. The I/O-unit directs the data (bit) to
earlier targeted direction out from the node. In the case of
detected error the route is discarded in forward direction and
the previous I/O-unit in the previous node switch is informed
with false dir command.

Control commands from other three I/O-units are handled
in bottom right branch of the state flow 4. In the case of
unreserved I/O-unit, route command from inside the node is
mediated forward out to the next switch node and correspond-
ing routing configuration is saved. The X- or Y-coordinate
of the relative address field is incremented or decremented
depending on the direction of the I/O-unit. Rerouting property
is utilized again if the I/O-unit is reserved. Unroute command
resets the I/O-unit and sends it forward to the next node
switch. In the case reroute a new routing effort is simply
”right-handed”: the new route is searched from the next I/O-
unit in clockwise direction. If this is not possible the route is
withdrawn to the previous node by sending reroute backward
out. This rerouting strategy does not take into consideration
the address which is not essential according to simulations
results.

IV. NETWORK SIMULATION

A. Routing Progress

The logical simulation model of a single switch node
(without interface to the CU) was realized with TiDE toolset
[11] and mapped to a mesh with VHDL testbench. The speed

and area of the circuit are not optimal yet but a logical routing
simulation demonstrates the functionality well.

In Fig. 5 there is a 7*8 mesh with four letter pairs. The
time unit ∆ means an approximate delay of a route command
traveling through a node (i.e. two I/O-units) without any
rerouting inside the node.

At time T=0 the other sides of nodes pairs A, B, C and
D send route command with address of their counterpart. At
T=∆ the commands have traversed the first node. Route B
has turned towards the target. At T=2∆ the pair E begins also
communication. At T=3∆ D has bounced from the route A
and C and B have traveled across A. At T=5∆ B and C have
completed their route for data transmission. D has turned clock
wisely south and E bounces to A. At T=11∆ A and D have
completed their routes and E is withdrawing after making a
loop route. There are four 2-signal straight -type configurations
(Fig. 3 c) and two 2-signal knee -types (Fig. 3 d). Finally after
T=24∆ the E connection is completed via lower B-node.

B. Routing Quality Measures

In faulty and congestive network traffic the PCC does not
always route. With 2D-mesh topology routing is guaranteed
only with one communicating pair and one fault [5].

With Matlab [12] tool the success of routing was simulated.
In Fig. 6 the probability of success is plotted as a function
of simultaneously contacting node pairs and faulty links be-
tween the nodes. The communicating pairs and the faults are
uniformly distributed over a 25*25 mesh. With amount of
[0, 10, 20 and 30] faults and [5, 8, 10, 12, 15, 18 and 20]
communicating pairs, 200 iterations were driven.

From Fig. 6 it can be seen that probability of successful
routing for all the node pairs decreases rather linearly from

E

A&D

C

B A&E

D

C

T=0

E

C

B

D

C

T≈Δ

E

C

B

D

C

T 2≈ Δ

A

D

E

C

B

D

C

T 3≈ Δ

T 11≈ Δ

T 16≈ Δ T 24≈ Δ

T 5≈ Δ

(1,1) (1,1)

(1,1) (1,1)

B B

B B

A&D

A&D A&D

E

A&D

C

B

D

C

E

C

B

D

C

(1,1) (1,1)

B B

A&D

A&E

A&E A&E

A&EA&E

Knee

Cross

E

C

B

D

C

(1,1)

B

A&D

A&E

E

C

B

D

C

(1,1)

B

A&D

A&E

Fig. 5. Routing case in 7*8 mesh

almost 100% to 0% when number of node pairs increases to
20 while number of faulty links increases to 30.

Also the aggregate route path length was calculated com-
pared to the minimum length. The average path length never
was over 10% over the minimal routing path, when the routing
was successful. Hence, the overhead is not an important issue
when faultiness and traffic increases.

V. FUTURE WORK

Fault-tolerant routing approach introduced in this paper
needs developing on many levels. As mentioned, fault de-
tecting and channel congestion can be performed physically
and logically and embeded to a system in numerous ways.
The reservation of a communication link could be modeled as
permanent or dynamic.

The physical model of the switch node is implemented
currently only for logical simulation purposes. The next de-
velopment phase is to optimize the asynchronous model of
the switch node. Its area and delay measures must achieve
reasonable level on the given NoC architecture.

The architecture of the node might be improved to achieve
smaller granularity and signal delays. Another direction of
development is agent technology that embeds more intelligent
and specialized properties to the switch nodes. However, the
original goal, fault-tolerance, must be retained.

5
10

15
20

0
10

20
30

0

0.2

0.4

0.6

0.8

1

Number of faulty linksNumber of node pairs

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Fig. 6. Routing success

VI. CONCLUSIONS

A novel fault-tolerant routing philosophy, an automatic
rerouting extension to the packet connected circuit, for NoCs
was introduced and analyzed successfully. The routing switch
node was implemented and simulated in faulty environment.
In the presence of faults, the successful routing paths turned
out to be averagely less than 10% longer compared to the
minimum paths without faults. This routing concept gives us
various options to manage fault and congestion challenges on
nano-scale and high bandwidth reconfigurable systems.

REFERENCES

[1] International Technology Roadmap for Semiconductors 2005.
(http://public.itrs.net).

[2] The ARM AMBA protocol.
(http://www.arm.com/products/solutions/AMBAHomePage.html).

[3] Daniel Wiklund, Sumant Sathe, and Dake Liu, Benchmarking of On-
Chip Interconnection Networks. The 16th International Conference on
Microelectronics, 2004. ICM 2004 Proceedings.

[4] L. M. Ni and P. K. McKinley, A survey of wormhole routing techniques
in direct networks. IEEE Computer, 26(2):62–76, 1993.

[5] W.J. Dally, Performance analysis of k-ary n-cube interconnection net-
works. IEEE Trans. Computers. ,Vol. 39, No. 6, June 1990, 775–785.

[6] Daniel Wiklund An on-chip network architecture for hard real time
systems. Licenciate thesis, Linkping Studies in Science and Technology,
Jan. 2003, ISBN 91-7373-577-9.

[7] Daniel Wiklund and Dake Liu, SoCBUS: switched network on chip for
hard real time embedded systems. in Proc of the International Parallel
and Distributed Processing Symposium, 2003.

[8] Barry W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley, 1989.

[9] Teijo Lehtonen, Juha Plosila and Jouni Isoaho, Fault-tolerance in
Nanoscale Circuits. Technical Report, Turku Centre for Computer
Science (TUCS), Aug. 2005.

[10] H. Zimmermann OSI Reference Model - The ISO Model of Architecture
for Open Systems Interconnection. IEEE Transactions on Communica-
tion, 28(4):425-432, April, 1980.

[11] Handshake Solutions http://www.handshakesolutions.com.
[12] Matlab http://www.mathworks.com/

