
MODIFIED SRCMOS CELL FOR HIGH-THROUGHPUT
WAVE-PIPELINED ARITHMETIC UNITS

Tero Säntti and Jouni Isoaho

{teansa | jisoaho}@utu.fi
phone: +358 2 333 6956 fax: +358 2 333 6950

Laboratory of Electronics and Information Technology
University of Turku Lemminkäisenkatu 14-18 20520 Turku Finland

ABSTRACT

In this paper a modified basic cell for wave-pipelines is proposed.
The cell is self resetting and has complementary outputs. Simu-
lations of the cell demonstrate that delay variations for all input
combinations are small, and the cell’s sensitivity to pulse length
variation is reduced. 8x8 and 16x16 -bit multipliers are designed
using 0.35�m 2.5V CMOS technology. The proposed units dis-
play a cycle time of 620 ps, corresponding to maximum operation
frequency of 1.6 GHz.

1. INTRODUCTION

High speed arithmetic units are required to meet the demands of
modern signal processing and multimedia applications. The most
dominant method to achieve the needed performance is the use of
pipelines. Since most designs are based on a clocked approach,
it is quite easy to just add registers in long data paths. This has
a few setbacks, such as penalties in area, latency and power con-
sumption. Even the throughput of a conventional pipeline is less
than optimal, because the added registers require setup and hold
time, and introduce delay for every stage. Power consumption
rises due to clocking of the registers. Also partitioning may cause
some stages to be considerably faster than others. This results in
non-optimal clockrate. To resolve this dilemma, wave-pipelining
comes to rescue. Eliminating the registers reduces overheads in
all problem areas. Unfortunately it also introduces new problems,
such as difficulty of design and rather unstable operation. To al-
leviate the latter, a modified SRCMOS cell is presented. The new
cell also partly assists in design, as more stable subcircuits leave
more headroom for design and variations in process, voltage and
temperature.

2. WAVE-PIPELINING CONCEPT

Wave-pipelining was first introduced by L. Cotten [3] back in 1969.
He called it maximum rate pipelining. For a while it was more
of a beautiful idea than anything to be realized. Modern VLSI
technology has raised the interest to study the possibilities of this
method. Several different schemes have been tried during the past
few years, but none of them has become a standard method. All
these schemes share the same principles of operation, even if some
are done using bipolar transistors instead of MOS devices. The
main idea behind all this is to remove internal registers from pipe-
lines to obtain an attractive group of benefits, including decreased

latency and cycle time as well as reduced area and power con-
sumption.

Registers are used to store data between stages in conventional
pipelines. In a wave-pipeline every stage holds the data for a short
time, while the next stage starts to calculate the outputs to the stage
after that. After the next stage has used the inputs, the previous one
can be reset. This of course places requirements for the stages.
They have to take all the inputs at the same time, and then store
the data internally. Also all the outputs have to be completed at
the same time. These rules hold for a single bit slice and also for
a full width pipeline stage. To get maximum performance, each
stage should have an equal delay.

W
A

V
E

IN
PU

T
S

O
U

T
PU

T
S

Figure 1: Data “waves” in a wave-pipelined logic block.

Wave-pipelines are internally asynchronous, as data travelling
through the pipeline triggers the next active element. They can,
however, also be used in synchronous designs quite easily since
the inputs can be latched with a clocked latch. This results in
externally visible cycle time equal to the cycle time of the latch.
Outputs are latched at the next clock after arriving to the end of
the pipeline. No data corruption can occur, if each stage is able to
pass the data to the next stage before new data arrives. The best
use of all the advantages comes when wave-pipelines are used in
an asynchronous environment. Even then there are certain impor-
tant properties to be considered. If a given asynchronous system
is based on the principles of Sutherland’s micropipelines [7], it is
elastic in nature. This is not true for wave-pipelines. Once data is
fed into the pipeline, there is no way of stopping it until the end,
and if the data is not read in time, it gets overrun by the next data
coming down the pipe.

Numerous studies, e.g. [1], [4] and [5], have shown mathemat-
ically, that wave-pipelining is better than conventional pipelining,
at least in theory. Wave-pipelining is not suitable for components
in which datapaths are strongly mismatched in length, delay or fan-

out. Most arithmetic operations have been transformed into a form
comprising small, identical basic elements thus enabling them to
be wave-pipelined efficiently. Adders and multipliers are common
examples of this. In a basic ripple carry adder there is no possibil-
ity of wave-pipelining due to the carry signal moving horizontally
compared to the data moving vertically. If an adder is composed of
smaller carry look ahead (CLA) elements, it can be pipelined using
conventional pipelining. Still there is a notable difference in the
delay of each bit in any given CLA element, rendering the struc-
ture incompatible with the requirements for wave-pipelining. The
Brent-Kung adder scheme [2] can be implemented in two ways.
The standard way has a quite regular layout with rather messy
wiring and fan-outs. The other way is an array structure having
more regular wiring and fan-out. In a wave-pipeline only fan-out
and regularity of wiring are important, especially since wires are
becoming the most dominant source of delay in designs.

3. BASIC WAVE-PIPELINE CELL

The basic cell described in this article is based on the work of O.
Hauck [6]. He introduced the use of self resetting CMOS (SR-
CMOS) to wave-pipelines. The cell is shown in Figure 2. The

OUT

NETWORK
PULLDOWN

IN
PU

T
S

Figure 2: Basic cell as proposed by O.Hauck.

cell operates quite simply. If the pulldown network forms a path
to ground, the main node above it is pulled down. The righthand
side PMOS device above it is initially open, but since it is only
a small keeper transistor the current does not rise too high. Once
the main node is close to ground the first inverter turns. It controls
the keeper transistor and turns it off to minimise the current. It
also sends the same signal to the output. When this first inverter
has turned, it starts to turn the second one as well. The second in-
verter is there merely to provide control for the resetting transistor,
which is wide, in order to ensure resetting of the cell. At around
this time the inputs should have gone low, and the cell returns to
initial conditions.

To improve the reliability of the system, some modifications
were made. Some modifications were also made in order to get
complementary outputs, since they were needed in the multiplier.
The modified cell is shown in Figure 3. The idea behind both
of the cells is the same: to get as stable characteristics as possi-
ble. The original cell provides almost constant pulse length and is
fairly easy to implement for different fan-outs. The pulses could,
however, be shortened, if the inputs were to drop low before the
internal self resetting comes active. Also too long inputs would
cause an extensive leak current and possibly increase the length of
the output pulse, causing the same problems at the next stage. In
order to counter these hazards, and to bring in complementary out-
puts, a modified cell is proposed. The modified cell requires seven

OUT

OUTNETWORK
PULLDOWN

IN
PU

T
S

Figure 3: Modified cell.

transistors more than the original one, and has a slightly higher la-
tency. These drawbacks are acknowledged as an inevitable trade-
off. Increased reliability comes mainly from the NMOS device
added over the pulldown network. It is controlled by the same
signal as the resetting transistor on the righthand side above it.
Together they isolate the main node from pulldown network and
connect it to the operating voltage. As a result the output pulses
are cut to be equal in length, and slightly longer input pulses will
not cause extensive leaking. They also render the cell insensitive
to new inputs for the duration of the output pulse. Since the control
for this is taken from the inverted output instead of the output of
the second inverter, the pulselength is increased by the delay of the
transmission gate. This further improves stability and reliability of
the cell. Note that the length of the pulse does not affect latency.
It does, however, decrease the number of concurrent waves, or vir-
tual pipeline stages, in the pipeline.

V
o

lt
ag

es
 (

lin
)

0

500m

1

1.5

2

2.5

Time (lin) (TIME)
0 500p 1n

Panel 1

Figure 4: Eyediagram of a full adder cell.

As an example a full adder cell was simulated. It can be seen
from the results that all the combinations causing a pulse either to
the sum or carry lines are well matched. This keeps delay varia-
tions small, thus increasing efficiency and reliability. It also pro-
vides for a longer latching window at the end of the pipeline, since
all signals are valid for longer time. The length of a pulse is about
310 ps. That and the dead time add up to a minimum cycle time of
620 ps, giving a maximum frequency of 1.6 GHz.

Sizing the transistors in the cell is reasonably easy, in the

same order of magnitude as in the original one. This new cell
can be configured to display wide variety of different characteris-
tics. The length of the pulse can be controlled easily, as well as
the delay. Longer delays are sometimes required to match differ-
ent datapaths. These can be acquired by resizing the NMOS or
the PMOS in the transmission gate. The really demanding part is
the designing and sizing the pulldown network. All parallel paths
must have the same conductance while open, and only one path
at a time is allowed to be open. Otherwise there will be a data
dependent mismatch in delay, which is not desirable for reliable
operation. The proposed cell helps in the design of the pulldown
network, since the designer has to match only the beginnings of
the pulses, while the cell cuts the ends at the same time.

4. CASE STUDY: WAVE-PIPELINED MULTIPLIERS

A multiplier was selected to serve as an example because it is al-
gorithmically compatible with wave-pipelining, and it is widely
used in DSP and telecommunication applications. The chosen al-
gorithm also includes an adder, which can be implemented inde-
pendently.

Multiplication is divided into three parts, namely the AND-
stage, the partial product reduction tree and the adder. The first
stage has only one wave at any given time whereas the others have
several, depending on the width of the multiplier. In the AND-
stage an AND operation is performed on all input bit combina-
tions. This produces a matrix of NxN bits, forming the product.
These bits are then fed into the partial product reduction tree. The
tree resembles a Wallace tree [8] in structure, but it has been op-
timised slightly to reduce the number of cells. For the final part,
the adder, a Brent-Kung adder (BKA) was chosen. Advantages of
BKA were briefly discussed earlier. Instead of the standard BKA
architecture the array structure was chosen.

8x8-bit and 16x16-bit multipliers were constructed and simu-
lated using starHSpice from Avant! corporation and 0.35�m CMOS
technology with level 49 transistor models. In Figure 5 the data
waves in the 8x8-bit multiplier are shown. Here each signal is an
intermediate signal between stages. As can be seen, the stages are
almost perfectly of the same length even though the logic varies in
the three before mentioned sections.

V
o

lt
ag

es
 (

lin
)

0

500m

1

1.5

2

2.5

Time (lin) (TIME)
1n 2n 3n 4n 5n 6n

Panel 1

Figure 5: The data waves in the 8x8-bit multiplier.

R
es

u
lt

 (
lin

)

0

20m

40m

Time (lin) (TIME)
1n 2n 3n 4n 5n 6n

Panel 2

Figure 6: The current behaviour of the 8x8-bit multiplier calculat-
ing a single operation.

The minimum cycle time was found to be 620 ps resulting in
operation at 1.6 GHz, as predicted by simulations of a single cell.
The latency of this multiplier was 3.9 ns. For a single operation,
with all inputs high to yield the worst case current, the maximum
current spike reached 38 mA while the average was 14 mA. The
effects of the stages can be seen in the current shown in Figure 6.
The current is highest in the first stage of the partial product reduc-
tion tree. The current keeps on getting lower, until the beginning
of the adder section. The current of the adder remains relatively
stable as the signal moves across the stages. The power consump-
tion is data dependent, as for all units created using this cell. If the
input combination doesn’t form a path to ground, the rest of the
cell remains unchanged, using no power.

V
o

lt
ag

es
 (

lin
)

0

500m

1

1.5

2

2.5

Time (lin) (TIME)
2n 4n 6n 8n

Panel 2

Figure 7: The outputs of the 8x8-bit multiplier at 1.5GHz.

In Figures 7 and 8 the multipliers were driven at the rate of
1.5 GHz. In the figure showing the currents the lower curve is
associated with the 8x8-bit multiplier. Fully loading the pipeline
raised the highest current spike to 79 mA and the average to 60
mA. The same simulations were run with the 16x16-bit version of
the multiplier. In Figure 9 the 16x16-bit multiplier is driven at 1.5
GHz. This shows the latency to be 5 ns, as the first input is applied
to the multiplier at 1 ns. The current characteristics are shown in

the upper curve of Figure 8. The maximum current spike is 280
mA. Again all inputs were held high to get the worst case current.
As stated previously, the power usage is data dependent.

R
es

u
lt

 (
lin

)

0

50m

100m

150m

200m

250m

300m

Time (lin) (TIME)
2n 4n 6n 8n 10n

Panel 3

Figure 8: The current behaviour of the 8x8 and the 16x16 -bit
multipliers at 1.5GHz, lower and upper respectively.

V
o

lt
ag

es
 (

lin
)

0

500m

1

1.5

2

2.5

Time (lin) (TIME)
2n 4n 6n 8n 10n

Panel 4

Figure 9: The outputs of the 16x16-bit multiplier at 1.5GHz.

Wider multipliers are being studied. Latencies for wider mul-
tipliers were estimated from the delay of one stage and the number
of stages required. Estimations are shown in Table 1. The values
that are based on simulations are marked with a ’*’. The cycle time
remains constant regardless of used width. Some latches may be
required to resynchronise the data waves in longer pipelines. The
optimal placing of these latches is such that all partial pipelines
separated by latches are of equal length. The insertion of these
latches also increases the latency by their delay. The latches can
be designed using similar cells as for the logic, using a simple pull-
down network implementing an AND-function between each data
bit and the control signal. Thus the output signal is in the form
required by the surrounding cells.

5. CONCLUSIONS

The proposed basic cell exhibits good performance and stability
with relatively low overheads in area, latency and power consump-

width stages waves latency
8 11 5.5 3.9 ns *

12 13 6.5 4.6 ns
16 14 7.0 5.0 ns *
24 16 8.0 5.7 ns
32 17 8.5 6.1 ns **
48 18 9.0 6.4 ns
64 20 10.0 7.1 ns

Table 1: Estimated latencies. Latencies marked with a ’*’ are ob-
tained from simulations and the latency of 32-bit multiplier (**) is
obtained from a preliminary simulation.

tion. 16x16-bit and 8x8-bit multipliers were simulated, and both
of the multipliers run at the maximum frequency of 1.6 GHz. The
16x16-bit multiplier is to be processed to a fully working chip
within a year.

Since designing wave-pipelines requires a lot of manual labour,
the next research goal is writing dedicated design software. Us-
ing cells proposed here it is possible to generate netlists of logic
blocks. The netlists can then be passed to place and route software
capable of delay balancing the nets. The only truly manual task left
is balancing the pulldown networks and designing a few basic cells
for different fan-outs. A tool like this would make wave-pipelines
a cost efficient way to implement high-performance arithmetic struc-
tures.

6. REFERENCES

[1] W. Burleson, M. Ciesielski, F. Klass and W. Liu, “Wave-
Pipelining: A Tutorial and Research Survey”, IEEE Transac-
tions on VLSI Systems, vol. 6, no. 3, pp. 464-474, September
1998

[2] R. Brent and H.T. Kung, “A Regular Layout for Parallel
Adders”, IEEE Transaction on Computers, vol. C-31, no. 3,
pp. 260-264, March 1982

[3] L. Cotten, “Maximum rate pipelined systems”, in Proc.
AFIPS Spring Joint Comput. Conf., 1969

[4] C. Gray, W. Liu and R. Cavin, “Timing Constraints for Wave-
Pipelined Systems”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 13, no. 8, pp.
987-1004, August 1994

[5] O. Hauck and S. Huss, “Asynchronous Wave Pipelines for
High Throughput Datapaths”, IEEE International Confer-
ence on Electronics, Circuits and Systems, pp. 1.283-1.286,
September 1998

[6] O. Hauck and S. Huss, “Circuit Design for SRCMOS Asyn-
chronous Wave Pipelines”, 4th Asynchronous Circuit Design
Workshop , February 2000

[7] I. Sutherland, “Micropipelines”, The 1988 Turing Award
Lecture, Communication of the ACM, vol. 32, no. 6, pp. 720-
738, June 1989

[8] C. Wallace, “A Suggestion for a Fast Multiplier”, IEEE
transaction on electronic computers, vol. EC-13, pp. 14-17,
February 1964

