
COMMUNICATION SCHEME FOR
AN ADVANCED JAVA CO-PROCESSOR

Tero Säntti and Juha Plosila

{teansa | juplos}@utu.fi
phone: +358 2 333 6956 fax: +358 2 333 6950

Communication Systems Laboratory
Department of Information Technology

University of Turku Lemminkäisenkatu 14-18 20520 Turku Finland

ABSTRACT

This paper describes interface strategies for a Java co-pro-
cessor (from now on JPU). The interface units are inter-
changeable, and share a common communication scheme
towards the co-processor. The first version of the interface
is designed for single CPU and single co-processor environ-
ment. The other is for a network of multiple CPUs and co-
processors. The co-processor does not need to know what
kind of environment is is placed in, as all communication
goes through the interface unit. This modularity of the de-
sign makes the co-processor more reusable and allows sys-
tem level scalability. This work is a part of a project fo-
cusing on design of an advanced Java co-processor for Java
intensive SoC applications.

1. INTRODUCTION

Java is very popular and portable, as it is a write-once run-
any-where language. This enables coders to develop portable
software for any platform. Java code is first compiled into
bytecode, which is then run on a Java Virtual Machine (here-
after JVM). The JVM acts as an interpreter from bytecode
to native microcode, or more recently uses just in time com-
pilation (JIT) to affect the same result a bit faster at the cost
of memory. This software only approach is quite inefficient
in terms of power consumption and execution time. These
problems rise from the fact that executing one Java instruc-
tion requires several native instructions. Another sourcefor
inefficiency is the cache usage. As the JVM is the only
part of software running natively, it occupies the instruction
cache, whereas the Java bytecode is treated as data for the
JVM, hence being located in the data cache. Also the ac-
tual data processed by the Java code is assigned to the data
cache. This clearly causes more memory accesses missing
the cache. When the execution of the bytecode is performed
on a hardware co-processor this is avoided and the overall
amount of memory accesses is reduced.

This work is a part of the REALJava [1] project, which
aims to design a Java co-processor that is easily implemented
to various systems. We have chosen to use asynchronous
techniques in this project because then we can achieve good
performance with reasonable power consumption and vary
easy integration with existing systems, as no clock limita-
tions need to be considered. Asynchronous self-timed cir-
cuit technology [4], where timing is based on local hand-
shakes between circuit blocks instead of a global clock sig-
nal, provides a promising platform for obtaining a highly
modular low-power and low-noise Java accelerator imple-
mentation.

Overview of the paper We proceed as follows. In Sec-
tion 2 we shortly describe the structure of any JVM, and
show how the proposed co-processor fits into the specifica-
tions. Section 3 describes the requirements for the interface.
Sections 4 and 5 go in to more detail for the interfaces in
small and large systems respectively. Finally in Section 6
we draw some conclusions and describe the future efforts
related to the REALJava co-processor.

2. GENERIC JAVA VIRTUAL MACHINE
STRUCTURE

In the Java Virtual Machine Specification [3], Second Edi-
tion the structure and behavior of all JVM’s is specified at a
quite abstract level. This specification can be met using sev-
eral techniques. Usual solutions are software only, includ-
ing some performance enhancing features, such as JIT (Just
In Time Compilation). We have chosen to use a HW/SW
combination [1] in order to maximize the hardware sup-
port and minimize the power consumption. The HW por-
tion (highlighted in Figure 1) handles most of the actual
Java bytecode execution, whereas the SW portion takes care
of memory management, class loading and native method
calling. This partitioning gives the possibility to use the
co-processor with any type of host CPU(s) and operating



systems, as all of the platform dependent properties are im-
plemented in software and (most of) the common bytecode
execution is done in hardware.

Figure 1: Internal architecture of the JVM

Because Java supports multithreading at language level,
it makes sense to integrate several co-processors as a SoC.
This gives an ideal solution for complex systems running
several Java threads and possibly some native code at the
same time. The system architecture can be chosen to be
a network of any kind or bus based, as suitable for other
components in the system.

3. REQUIREMENTS FOR THE INTERFACE AND
PROTOCOL

To control the execution flow of the JPU there must be a
control channel from the CPU to the JPU providing methods
for halting and continuing the execution of the Java thread.
Also the JPU must be able to send an interrupt request (IRQ)
to the CPU, to notify the CPU of an unhandled instruction,
need for more memory to be allocated or the end of the cur-
rent thread. Naturally the CPU needs also data connection
to the JPU, to set several parameters such as memory off-
sets, reserved range and so forth. The JPU is also given
a complete memory channel, to access both program code
and the data required.

The co-processor has own built-in address generation
block and accesses the memory directly without CPU in-
tervention. The interface must also be reasonably fast, as
all communication goes through it. In the multiple JPU
case the interface must also handle some protocol issues not
present in the single JPU setting. The protocol developed
for this purpose is presented in Section 5.

In both cases the JPU has no direct access to the CPU,
but has an interrupt request line. Using this interrupt the
JPU notifies the CPU of unhandled instructions or other oc-
casions requiring CPU intervention. Upon receiving an IRQ

the CPU first reads the contents of a status register in the
JPU to determine the cause of the interrupt. Then the CPU
performs whatever tasks necessary, and orders the JPU to
continue execution. In a multiple JPU environment the IRQ
is managed by sending a datagram to the CPU. A system
with wired IRQ lines is not practical since any given JPU
may be allocated to different CPUs at times.

4. SINGLE CPU SINGLE JPU

In a single CPU single JPU environment the JPU is placed
on the memory bus. Figure 2 shows a conceptual view of
the placement. This approach makes it easy to integrate
the JPU to (virtually) any existing system. The JPU may
be included as a separate ASIC or integrated into the same
chip with the CPU. Clearly the single chip solution provides
several benefits, such as lower power consumption for all
CPU-JPU communication and also for CPU-MEM commu-
nication and reduced area on the circuit board. The separate
ASIC approach gives more flexibility to incorporate the JPU
to systems with 3rd party processors.

CPU JPU MEM

Figure 2: The JPU connected to the CPU and Memory

The control of the bus-ownership is assigned to the CPU.
The CPU sets the CTRL-signals to direct the data flow as
required. The chosen strategy gives good performance, es-
pecially for consecutive data transfers between given end
points (CPU-MEM,CPU-JAVA or JAVA-MEM). Also the
number of extra control pins required between the CPU and
the co-processor is kept at minimum. This solution is shown
in detail in Figure 3.

Write Data[0:31]

Interface unit

A
dd

re
ss

[0
:3

1]

Read

IRQ

CTRL[0:1]

C
P

U

M
E

M

Java processor

IR
Q

S
ta

te
[0

:1
]

D
at

a[
0:

31
]

R
ea

d

W
rit

e

Write

A
dd

re
ss

[0
:3

1]

W
rit

e

R
ea

d

Read

Address[0:31]

Data[0:31]

Address[0:31]

Figure 3: Interface as a separate component, connected to
the Memory Bus. The data bus just connects all three end-
points together, and all units have tri-state drivers.



The CTRL signals control both the interface and the
JPU. This information is used by the co-processor to decide
when the registers contain valid data and the bus is reserved
for the co-processor. Then the co-processor can execute the
thread currently indicated by the registers. This approach
gives the simplest structure for all components, and requires
a minimal set of external communication pins from the CPU
to the co-processor. The CPU must remain silent on the data
bus, when the co-processor is executing, and vice versa. If
the CPU is limited in I/O, the CTRL-signals can be obtained
from the highest bits of the address, but this masks a por-
tion of the memory from the CPU. Also the address bus of
the CPU must maintain its state during JPU execution. The
CTRL codes are shown in Table 1.

CTRL Bus control Destination Notes
00 CPU MEM State at reset and

native programs
01 CPU JPU Setup for JPU
10 JPU MEM JPU executing
11 JPU MEM JPU halts after

finishing current
operation

Table 1: Function of CTRL-signals.

For the single JPU case no special protocol is needed.
The only requirement is that the CPU must be silent on the
memory bus during JPU execution.

5. JPU IN A SOC / NOC ENVIRONMENT

As stated before in Section 2, It seems very beneficial to in-
clude more than one JPU in a large system. This approach
brings forth true multithreading and thus improves perfor-
mance. Also large systems possibly contain several soft-
ware subsystems, such as internet protocols, user interface
controllers and so on, these can easily be coded in Java,
and since they all are executed in parallel the user expe-
rience is enhanced. The multithreading also improves the
predictability of the real time performance, as the threads
do not get any wait states and the caches and stacks for each
thread are kept intact inside their respective JPUs. Figure4
gives an example of connecting multiple CPUs, JPUs and
memories together using a traditional bus-structure.

As can be seen in Figure 5, the channel between the
JPU and the interface unit is exactly the same as for the
single JPU case. This means that the JPU does not know
its environment, and does not require any modification de-
pending on the higher level architecture. The interface unit
needs only a slight modification depending on the actual bus
structure chosen for the system. The interface is responsi-
ble for keeping track of who is using this particular JPU.

MEMn

JPUnCPUnMEM2

JPU2CPU2

CPU1

MEM1

JPU1

Figure 4: A large SoC with several CPUs, JPUs and memo-
ries using a bus structure.

This information is required to be able to allocate the JPU
to some CPU, or tell an other CPU that this JPU is already
in use. Also the IRQ has to be directed to the correct CPU.
The system may have several memories as well, so the inter-
face keeps a record of the memory containing this thread’s
memory areas. These additions give the JPU similar access
to system resources as in the single JPU system.

H
al

t_
Ja

va

A
dd

re
ss

[0
:3

1]

Interface unit

R
ea

d

W
rit

e

A
dd

re
ss

[0
:3

1]

W
rit

e

R
ea

d

D
at

a[
0:

31
]

S
ta

te
[0

:1
]

IR
Q

Java processor

D
A

T
A

G
R

A
M

O
U

T
B

O
U

N
D

D
A

T
A

G
R

A
M

IN
C

O
M

IN
G

CTRL[0:3] CTRL[0:3]

Data[0:31] Data[0:31]

Sender ID Target ID

CPU ID

MEM ID

Write buffer

Halt buffer

State

Registers:

DECODER

Figure 5: An example implementation for the pipelined bus.

The structure of the underlying network or bus is rather
irrelevant, as long as the lower level provides two proper-
ties: 1) the datagrams must arrive in their destination in the
same order that they were sent, and 2) the datagrams arriv-
ing from two different sources to a same destination must
be identifiable. The first property can be be achieved with
a lower level network protocol, like ATM adaptation layer
(AAL) for internet, or by the physical structure of bus. The
example we use here is a pipelined bus structure which guar-
antees the order of the datagrams by structure. The second
property seems quite natural, and should be present in all
solutions.

We chose to use the pipelined bus [2], since it provides
a good platform for multiple processing units accessing the
bus simultaneously. The bus provides high throughput at
the expense of increased latency in comparison to a conven-
tional bus. These properties rise from the structure of bus.
Figure 6 shows the internal 3-level pipelines in each transfer
stage. Our example system has a bus with 32-bit data word
and 4 control bits per datagram as a payload. The bus itself
contains more information about destination and the sender.



The sender’s id is also passed on to the interface unit. A
simple yet efficient protocol for this case is given in Table
2.

Interface nInterface 4Interface 3Interface 2Interface 1

transfer stage transfer stage transfer stage transfer stage transfer stage

arb & ctl arb & ctlarb & ctlarb & ctlarb & ctl

. . .

Figure 6: Detailed view of the pipelined bus with the inter-
face units.

The coding and interface allow for the CPU to send sev-
eral commands down the pipeline improving the overall per-
formance. To prevent possible deadlocks, the CPU can send
only one command together with a halt instruction, until the
JPU sends a message stating that the JPU has completed all
its actions, and has halted. The exception is a write com-
mand, which may contain both parts of the command be-
fore the JPU has halted. If this is not enforced at the CPU, a
deadlock may result, if the JPU has pending memory reads
and the CPU sends a burst of commands. The data from
the memory may be blocked behind the instructions from
the CPU, and they cannot move forward until the JPU has
halted, which it cannot do before it receives the pending
data from the memory. The high throughput also makes it
reasonable to design a burst mode to the protocol. In this
mode the interface unit counts the register addresses instead
of receiving every address from the CPU. To enter the burst
mode the CPU sends first a burst command which contains
the number of consecutive addresses to be written or read.
The the next datagram contains the starting address and ei-
ther a read command or a write command.

6. CONCLUSIONS AND FUTURE WORK

Two strategies for connecting a Java co-processor were de-
scribed in this paper. Both use identical co-processors with-
out any modification. A simple yet efficient communication
protocol for NoC environments was presented.

We plan to continue with designing the REALJava co-
processor, and manufacturing it as a separate ASIC in the
first stage. Later a larger NoC system with several CPUs and
JPUs will be designed to implement a real-life application.

7. REFERENCES

[1] Z. Liang, J. Plosila, and K. Sere. “Asynchronous Java
Accelerator for Embedded Java Virtual Machine”,In
Proc. of IEEE CAS Symposium on Emerging Tech-
nologies, Frontiers of Mobile and Wireless Commu-
nication, Shanghai, China, June 2004.

Code Description Notes
0000 status check returns state information

of the co-processor
0001 halt halts JPU after current

operations have finished and
sends an acknowledgment

1000 continue JPU continues execution
0010 read JPU returns the contents of

the register specified in the
DATA part of the datagram

0011 halt&read JPU halts and then reads
1010 read&continue JPU performs read and

then continues
1011 halt&read JPU halts, then performs

&continue read, then continues
0100 write 2 cycle operation, 1st cycle

contains the register address
and the 2nd contains the
data to be written

0101 halt&write JPU halts and the first
cycle of write is completed
concurrently

1100 write&continue 2nd cycle of write is
completed and then JPU
continues execution

X11X burst length DATA contains the length
of the burst, the next
datagram contains read or
write and start address
may be combined with
halt and/or continue

1101 illegal since write is 2 cycle
command, it can not contain
both halt and continue

1001 reserve reserves the JPU for a CPU,
if the JPU is available and
DATA 6=0, if DATA=0
the JPU is released

Table 2: A protocol for the CPU to access the JPU.

[2] P. Liljeberg, J. Plosila, and J. Isoaho. “Self-Timed
Communication Platform for Implementing High-
Performance Systems-on-Chip”,VLSI Integration, El-
sevier Journal, to appear in 2004.

[3] T. Lindholm and F. Yellin. “The Java Virtual
Machine Specification”, Second Edition, Addison-
Wesley, 1997.

[4] J. Sparso and S. Furber. ”Principles of Asynchronous
Circuit Design - A System Perspective”, Kluwer Aca-
demic Publishers, 2001.


