
Instruction Folding for an
Asynchronous Java Co-Processor

Tero Säntti and Juha Plosila
{teansa | juplos}@utu.fi

Communication Systems Laboratory
Department of Information Technology

University of Turku 20014 Turku Finland

Abstract— This paper presents a novel method for instruction
folding in Java execution. The approach is to use an asynchronous
co-processor for execution of Java bytecode. The folding is done
in the same pipeline stage with instruction decoding. The co-
processor is designed using asynchronous techniques to provide
low power usage with reasonable performance. The co-processor
can be used in a single CPU and single co-processor environment
or in a network of multiple CPUs and co-processors. The co-
processor does not need to know what kind of environment it is
placed in, as all communication goes through an interface unit
designed especially for that environment. This modularity of the
design makes the co-processor more reusable and allows system
level scalability. This work is a part of a project focusing on
design of an advanced Java co-processor for Java intensive SoC
applications.

I. INTRODUCTION

Java is very popular and portable, as it is a write-once run-
any-where language. This enables coders to develop portable
software for any platform. Java code is first compiled into byte-
code, which is then run on a Java Virtual Machine (hereafter
JVM). The JVM acts as an interpreter from bytecode to native
microcode, or more recently uses just in time compilation (JIT)
to affect the same result a bit faster at the cost of memory.
This software only approach is quite inefficient in terms of
power consumption and execution time. These problems rise
from the fact that executing one Java instruction requires
several native instructions. Another source for inefficiency is
the cache usage. As the JVM is the only part of software
running natively, it occupies the instruction cache, whereas
the Java bytecode is treated as data for the JVM, hence being
located in the data cache. Also the actual data processed by
the Java code is assigned to the data cache. This clearly causes
more memory accesses missing the cache. When the execution
of the bytecode is performed on a hardware co-processor this
is avoided and the overall amount of memory accesses is
reduced.

This work is a part of the REALJava [3] project, which aims
to design a Java co-processor that is easily integrated to various
systems. We have chosen to use asynchronous techniques in
this project because then we can achieve good performance
with reasonable power consumption and very easy integration
with existing systems, since no clock limitations need to be
considered. Asynchronous self-timed circuit technology [6],
where timing is based on local handshakes between circuit

blocks instead of a global clock signal, provides a promising
platform for obtaining a highly modular low-power and low-
noise Java accelerator implementation.

Overview of the paper We proceed as follows. In Section
2 we shortly describe the structure of any JVM, and show how
the proposed co-processor fits into the specifications. Section
3 describes the pipeline structure. In Section 4 the instruction
folding is explained, and Section 5 shows the folding unit in
more detail. Finally in Section 6 we draw some conclusions
and describe the future efforts related to the REALJava co-
processor.

II. GENERIC JAVA VIRTUAL MACHINE STRUCTURE

In the Java Virtual Machine Specification [5], Second Edi-
tion the structure and behavior of all JVM’s is specified at
a quite abstract level. This specification can be met using
several techniques. The usual solutions are software only,
including some performance enhancing features, such as JIT
(Just In Time Compilation). We have chosen to use a HW/SW
combination [3] in order to maximize the hardware support
and minimize the power consumption.

Fig. 1. Internal architecture of the JVM

The HW portion (highlighted in Figure 1) handles most of
the actual Java bytecode execution, whereas the SW portion
takes care of memory management, class loading and native



method calling. This partitioning gives the possibility to use
the co-processor with any type of host CPU(s) and operating
systems, as all of the platform dependent properties are
implemented in software and (most of) the common bytecode
execution is done in hardware.

Because Java supports multithreading at language level,
it makes sense to integrate several co-processors as a SoC.
This gives an ideal solution for complex systems running
several Java threads and possibly some native code at the same
time. This approach brings forth true multithreading and thus
improves performance. Also large systems possibly contain
several software subsystems, such as internet protocols, user
interface controllers and so on, these can easily be coded
in Java, and since they all are executed in parallel the user
experience is enhanced. The multithreading also improves the
predictability of the real time performance, as the threads do
not get any wait states and the caches and stacks for each
thread are kept intact inside their respective JPUs. Also the
addition of timers gives the programmer new methods for
controlling timing of execution with real time events.

The system architecture can be chosen to be a network of
any kind or bus based, as suitable for other components in
the system. The structure of the underlying network or bus
is rather irrelevant, as long as the lower level provides two
properties: 1) the datagrams must arrive in their destination
in the same order that they were sent, and 2) the datagrams
arriving from two different sources to a same destination
must be identifiable. The first property can be be achieved
with a lower level network protocol, like ATM adaptation
layer (AAL) for internet, or by the physical structure of bus.
The example we use here is a pipelined bus structure which
guarantees the order of the datagrams by structure. The second
property seems quite natural, and should be present in all
solutions. For demonstration purposes we have chosen to use
the pipelined bus [4], since it provides a good platform for
multiple processing units accessing the bus simultaneously.
The structure is shown in Figure 2. A simple yet efficient
protocol for this case is given in [7].

Fig. 2. Detailed view of the pipelined bus with the interface units.

III. PIPELINE STRUCTURE

The pipeline structure of the co-processor differs from the
structure normally used for processors. This is due to the fact,
that normally the instruction set of a processor is engineered
with hardware implementation in mind, but this is not the
case for Java. The Java bytecode is designed to be executed
in software, resulting in several significant differences. Addi-
tionally the bytecode instructions are based on a stack, instead

of the normal processor approach of using several registers.
This calls for optimizations not seen in conventional processor
design. The pipeline architecture is covered in more detail in
[8].

The Java Virtual Machine Specification states that the JVM
has no internal registers, instead the temporary and working
data is stored in a stack. Normally the software coder can im-
prove performance by reordering the register accesses to keep
the pipeline flowing, but in Java this is not possible, since all
instructions that manipulate data are based on the stack. This
situation is comparable with a normal processor architecture
with only one register available to the programmer. This would
keep the pipeline stalled for a large portion of the time, because
of data dependency issues. To keep our pipeline in effective
use, we have modified the normal pipelining strategy to better
suit the stack based operation.

In the Figure 3 a simplified view of the pipeline structure is
shown. The PC and OP TOP labels stand for program counter
and stack top, respectively. The boxes below those labels show
how they are moved along the pipeline, to keep the values
correct with the instructions related to them. The pipeline
control unit sends a halt command to all pipeline stages upon
receiving an external halt command or a halt request from the
fold and decode unit. The fold and decode unit is required to
have halt access to facilitate pipeline halting when a software
handled instruction is encountered. After the whole pipeline is
idle, the pipeline control sends an IRQ to the host processor.

Fig. 3. A Simplified view of the pipeline.

The ALU contains the write back stage. The write back
stage is included to the ALU because the bytecode instructions
are based on the stack. One might wonder what this has
to do with selecting the pipeline stages, but the answer
is rather simple. In Java bytecode the instructions take the
operands from the stack and write the result back to the stack.
This causes the “normal” pipeline structure to generate huge
amounts of wait-states to move the data to and from the stack.



LV A local variable load, a load from a global register or a push constant
OP An operation that uses the top two entries of the stack and produces a one word result which is stored on the top of the stack.

OP1 An operation that uses the topmost element of the stack and breaks the group
OP2 An operation that uses the top two entries of the stack and breaks the group.

MEM A local variable store or a global register store
NF Non-foldable instructions

TRAP An instruction which is trapped by the hardware and is executed in software instead.

TABLE I
INSTRUCTION CLASSES

Thus the execution in the ALU will be often halted while the
data is moved back and forth.

IV. PRINCIPLES OF INSTRUCTION FOLDING

The instruction folding is performed in order to remove
unnecessary cycles in ALU and also to minimize redundant
stack accesses. These performance hindrances are caused
by bytecode instructions first pushing a value to the stack
and immediately popping it out for processing. The folding
procedure removes these two instructions, and replace them
with one instruction carrying the value and the processing
instruction to the ALU in one cycle.

With the instruction classes presented in Table I we can
fold instructions in patterns shown in Table II. These patterns
all produce VLIW instructions with up to two literal data
elements, an opcode and a destination identifier. It can be
noticed that the maximum length of folding is four instruc-
tions. This however does not mean “only” four bytes in the
original bytecode stream. The original stream may have had
some literal data included, and these are also placed in the
VLIW, as shown in Figure 5. According to our preliminary
analysis the reduction in the number of executed instructions
was between 26.8% and 33.3%. In stack accesses the reduction
varied between 39.3% and 51.2%. This analysis was run on a
modified version of SableVM [1]. SableVM is licensed under
the GNU Lesser General Public License (LGPL), and it can
be obtained from “http://sablevm.org/”.

Pattern Instructions
LV LV OP MEM 4
LV LV OP 3
LV LV OP2 3
LV OP MEM 3
LV OP 2
LV OP1 2
LV OP2 2
LV MEM 2
OP MEM 2

TABLE II
POSSIBLE FOLDINGS

The fact that the whole co-processor is asynchronous helps
us in the folding. In asynchronous circuits the blocks can run
at independent speeds. This means that the folding unit can
perform for instance a maximum of n foldings per second,
where as the ALU may be significantly slower, say n/2

operations per second. The negative effects of independent
speed, such as synchronization delays can be reduced using an
intermediate fifo. The timing marginal for folding is increased
because with asynchronous techniques all units exhibit average
case performance. This means that the ALU may complete
some instructions (bit-wise OR, etc.) in very short time,
whereas some instructions (32-bit multiplication) take a lot
more time. Since folding may produce new VLIW (Very Long
Instruction Word) instructions at the rate of 1/1 to 1/4 in
comparison to the original bytecode stream, the fifo balances
the effects of both folding and the average case performance
of the ALU. In our architecture the fifo also performs minor
tasks, such as sign extension and address calculation for local
variable accesses.

V. FOLDING UNIT IN MORE DETAIL

The folding unit receives data from the instruction buffer.
The instruction cache handles the actual memory accessing,
so the instruction buffer needs only to access the cache.
The address is generated at the instruction buffer. The buffer
is active in communication towards the cache and passive
towards the folding and decoding unit. The folding unit is
active in both directions, towards the buffer and towards the
decoded instruction fifo. The fifo performs sign extension on
the data, if required. The fifo is passive in all directions,
towards the folding unit and towards the register access unit.

Fig. 4. The instruction folding and decoding pipeline.

The folding and decode unit has two communication chan-
nels to the instruction buffer. This is required because in-
structions may be followed by data, such as literal operand
or an address. The amount of data can be found out only by
decoding the instruction first. After the decoding is completed,



the correct amount of data bytes is read in parallel. The amount
of data is between 0 and 4 bytes. If it is 0 bytes, no request
is sent to the data read port. Since we read the data items
in parallel to the fetch data –module shown in Figure 5, the
instruction buffer can move the next instruction to the output
end of the buffer without unnecessary delays.

After the instruction has been decoded and the data related
to that instruction is read in, the next instruction is checked
to see if it can be folded with the previous one. If it can be,
then the procedure is repeated to see if the third instruction
can be folded. If at any point the instructions can not be
folded together, the previous instructions are sent out, and the
procedure starts over with the current instruction as a base for
new foldings.

Fig. 5. The internal structure of the folding unit.

Figure 5 shows the internal structure of the folding unit.
The FSM stands for Finite State Machine, which controls the
operation of the unit. The ROM table approach is chosen,
because Java bytecode is not optimized for hardware decoding.
The instructions of Java bytecode are just listed in order and
given the order number as an opcode. This would lead to a very
complicated decoder, if implemented directly using standard
logic elements. The ROM approach is also further validated by
the fact that we can easily store microcode in the same table,
as well as instruction classes and the number of data bytes
related to a given instruction. This keeps our FSM simple and
fast. All the entries in the ROM table are coded with one-hot
scheme and the table is implemented as a precharged MOS
NOR ROM matrix. The precharging is done when request is
low, so the response time is minimal.

The output format register stores partial foldings, until
they are completed. If a folding pattern is not terminated
with a valid instruction for that pattern, the partial folding
is executed one by one, and folding of the next instruction
will be attempted. The register keeps record of which fields
in it are valid at any given time. When a pattern is completed,
the register pushes its contents to the fifo in the main pipeline,
and prepares for a new folding autonomously.

VI. CONCLUSIONS AND FUTURE WORK

A novel pipeline structure with instruction folding for Java
execution was presented. The structure takes into account
the peculiarities of the Java bytecode streams, and provides
reasonable performance with low power usage. The instruction
folding removes unnecessary stack accesses, thus eliminating
needless power consumption as well as reducing execution
time.

The approach chosen here is energy aware, even in compar-
ison to running compiled C code on the CPU. This is achieved
by using asynchronous circuit techniques. Asynchronous cir-
cuits excel especially in situations where the workload of the
processing unit is not constant. Synchronous systems waste
a lot of power by clocking internal latches even when no
processing is done. This type of energy wasting is not present
in asynchronous system. Also the current consumption of
asynchronous systems (usually) is more stable, resulting in
less noise.

We are currently investigating the potential benefits of
integrating hardware timers to the JPU and expanding the JVM
with own functions designed to make use of the timers. These
functions would make it possible for users to execute pieces
of code based on timer information. This would bring the real
time performance of Java applications to a new level.

We plan to continue with designing the REALJava co-
processor. The co-processor concept and hardware-software
co-operation will be verified by building a FPGA demonstra-
tor. At the same time dedicated memory structures supporting
advanced garbage collection methods are investigated. After
the FPGA phase we will continue manufacturing the co-
processor as a separate ASIC. Later a larger SoC / NoC system
with several CPUs and JPUs will be designed to implement a
real-life application.

REFERENCES

[1] E. Gagnon. “A Portable Research Framework for the Execution of Java
Bytecode“, Ph.D. thesis, School of Computer Science, McGill University,
Montreal, 2002.

[2] J. Hennessy and D. Patterson. “Computer Architecture: a Quantitative
Approach”, Second Edition, Morgan Kaufmann Publishers, Inc., 1996.

[3] Z. Liang, J. Plosila, and K. Sere. “Asynchronous Java Accelerator for
Embedded Java Virtual Machine”, In Proc. of IEEE CAS Symposium on
Emerging Technologies, Frontiers of Mobile and Wireless Communica-
tion, Shanghai, China, June 2004.

[4] P. Liljeberg, J. Plosila, and J. Isoaho. “Self-Timed Communication Plat-
form for Implementing High-Performance Systems-on-Chip”, the VLSI
Integration Journal 38, Elsevier, 2004.

[5] T. Lindholm and F. Yellin. “The Java Virtual Machine Specification”,
Second Edition, Addison-Wesley, 1997.

[6] J. Sparso and S. Furber. ”Principles of Asynchronous Circuit Design - A
System Perspective”, Kluwer Academic Publishers, 2001.

[7] T. Säntti and J. Plosila. “Communication Scheme for an Advanced Java
Co-Processor”, In Proc. IEEE Norchip 2004, Oslo, Norway, November
2004.

[8] T. Säntti and J. Plosila. “Architecture for an Advanced Java Co-
Processor”, In Proc. International Symposium on Signals, Circuits and
Systems 2005, Iasi, Romania, July 2005.


