
Real Time Flow Control for an
Advanced Java Co-Processor

Tero Säntti and Juha Plosila
{teansa | juplos}@utu.fi

Communication Systems Laboratory
Department of Information Technology

University of Turku 20014 Turku Finland

Abstract— This paper presents a novel method for real time
flow control in Java execution. The approach is to use a co-
processor for execution of Java bytecode, enhanced with timers.
The co-processor is designed using asynchronous techniques to
provide low power usage with reasonable performance. The
co-processor can be used in a single CPU and single co-
processor environment or in a network of multiple CPUs and
co-processors. The co-processor does not need to know what kind
of environment it is placed in, as all communication goes through
an interface unit designed especially for that environment. This
modularity of the design makes the co-processor more reusable
and allows system level scalability. This work is a part of a
project focusing on design of an advanced Java co-processor for
Java intensive SoC applications.

I. INTRODUCTION

Java is very popular and portable, as it is a write-once run-
any-where language. This enables coders to develop portable
software for any platform. Java code is first compiled into byte-
code, which is then run on a Java Virtual Machine (hereafter
JVM). The JVM acts as an interpreter from bytecode to native
microcode, or more recently uses just in time compilation (JIT)
to affect the same result a bit faster at the cost of memory.
This software only approach is quite inefficient in terms of
power consumption and execution time. These problems rise
from the fact that executing one Java instruction requires
several native instructions. Another source for inefficiency is
the cache usage. As the JVM is the only part of software
running natively, it occupies the instruction cache, whereas
the Java bytecode is treated as data for the JVM, hence being
located in the data cache. Also the actual data processed by
the Java code is assigned to the data cache. This clearly causes
more memory accesses missing the cache. When the execution
of the bytecode is performed on a hardware co-processor this
is avoided and the overall amount of memory accesses is
reduced.

This work is a part of the REALJava [2] project, which aims
to design a Java co-processor that is easily integrated to various
systems. We have chosen to use asynchronous techniques in
this project because then we can achieve good performance
with reasonable power consumption and very easy integration
with existing systems, since no clock limitations need to be
considered. Asynchronous self-timed circuit technology [6],
where timing is based on local handshakes between circuit
blocks instead of a global clock signal, provides a promising

platform for obtaining a highly modular low-power and low-
noise Java accelerator implementation.

Overview of the paper We proceed as follows. In Section
2 we shortly describe the structure of any JVM, and show how
the proposed co-processor fits into the specifications. Section
3 describes the timers and other real time devices. In Section
4 the invocation methods for the timers are presented. As an
example we show how to use the timers to create a chess clock
in Section 5. Finally in Section 6 we draw some conclusions
and describe the future efforts related to the REALJava co-
processor.

II. GENERIC JAVA VIRTUAL MACHINE STRUCTURE

In the Java Virtual Machine Specification [4], Second Edi-
tion the structure and behavior of all JVM’s is specified at
a quite abstract level. This specification can be met using
several techniques. The usual solutions are software only,
including some performance enhancing features, such as JIT
(Just In Time Compilation). We have chosen to use a HW/SW
combination [2] in order to maximize the hardware support
and minimize the power consumption.

The HW portion (highlighted in Figure 1) handles most of
the actual Java bytecode execution, whereas the SW portion
takes care of memory management, class loading and native
method calling. This partitioning gives the possibility to use
the co-processor with any type of host CPU(s) and operating
systems, as all of the platform dependent properties are im-
plemented in software and (most of) the common bytecode
execution is done in hardware. We are also investigating
possible benefits of adding hardware support for garbage
collection.

Because Java supports multithreading at language level,
it makes sense to integrate several co-processors as a SoC.
This gives an ideal solution for complex systems running
several Java threads and possibly some native code at the same
time. This approach brings forth true multithreading and thus
improves performance. Also large systems possibly contain
several software subsystems, such as internet protocols, user
interface controllers and so on, these can easily be coded
in Java, and since they all are executed in parallel the user
experience is enhanced. The multithreading also improves the
predictability of the real time performance, as the threads do
not get any wait states and the caches and stacks for each



Fig. 1. Internal architecture of the JVM

thread are kept intact inside their respective JPUs. Also the
addition of timers gives the programmer new methods for
controlling timing of execution with real time events.

The system architecture can be chosen to be a network of
any kind or bus based, as suitable for other components in
the system. The structure of the underlying network or bus
is rather irrelevant, as long as the lower level provides two
properties: 1) the datagrams must arrive in their destination
in the same order that they were sent, and 2) the datagrams
arriving from two different sources to a same destination
must be identifiable. The first property can be be achieved
with a lower level network protocol, like ATM adaptation
layer (AAL) for internet, or by the physical structure of bus.
The example we use here is a pipelined bus structure which
guarantees the order of the datagrams by structure. The second
property seems quite natural, and should be present in all
solutions. For demonstration purposes we have chosen to use
the pipelined bus [3], since it provides a good platform for
multiple processing units accessing the bus simultaneously.
The structure is shown in Figure 2. A simple yet efficient
protocol for this case is given in [7].

Fig. 2. Detailed view of the pipelined bus with the interface units.

III. TIMER MODULES

In order to take control of real time events during execution
of Java bytecode we propose to add hardware timers to the
co-processor module. These timers are to be programmable,
with prescaler functions. As our co-processor it self is asyn-
chronous, these timers need an external clock supply to be
able to measure real time accurately. The asynchronity of the

co-processor also forces us to use the timers as asynchronous
counters. It is possible to use them as synchronous counters,
but that requires use of external clock as a reference. We have
chosen to include four timer modules and four external timing
modules. The timers and external modules are connected to
a main controller, that resumes the pipeline operation after
receiving an event from any of the sources. The controller
allows the sources to masked out, so that the software coder
can exclude some event sources, when desired. These timers
can be used for a variety of purposes, such as real time clocks,
communications (baud clock for serial transmissions), time
interval based control and simple pulse width modulation. A
simplified view of the timers and their connections to the
pipeline is shown in Figure 3. Please note that the pipeline
differs from the “normal” 5 stage approach used for example in
DLX [1]. This is due to the stack based operation of bytecode.
All of the data manipulating instructions read the data from
the stack and write it back to the stack. There is no need for
a write back stage, as it would always cause the pipeline to
stall. The pipeline architecture is covered in more detail in
[8], where we have also shown other methods to speed up
execution and reduce power consumption. The structure of
the fold & decode unit and the rationale behind the idea of
instruction folding can be found in [9].

Fig. 3. Internal architecture of the JPU with timers

The timer modules are composed of a 32-bit counter, a
prescaler and either a overflow detection unit or a comparator
and a period register. In the first configuration, shown in Figure
4 the 32-bit counter can be accessed in read or write mode,
to provide fine grain control of the time interval. The counter
steps up by one point per every rising edge of the incoming
clock signal. As the counter steps over the maximum value
and generates an overflow, the module sends an event to the
controller. The prescaler is provides longer units of time. The



default value after reset is zero, but it can be selected as 1,
2, 4, 8, 16, 32 or 64. If the prescaler is assigned the value 0
then the counter stops responding to incoming clock events,
thus consuming only leakage current. Note that the incoming
clock signal does not have to be periodic, these timers can be
also used as pulse counters.

Fig. 4. The structure of a timer with simple overflow detection

The other option is to use a period register, as shown in
Figure 5. With this scheme the programmer can set the number
of clock ticks in the period register. When this number is
reached, the unit resets the timer register to start a new cycle
and sends an event to the controller. This way the programmer
needs to set the period only once, and (s)he always gets
exactly the same period. The prescaler works exactly as in
the simpler version. If the timer control has received an event,
as is still handling it, the new one will remain pending until
the controller is free. The timer whose event is pending, will
continue counting normally, thus the period will remain the
same. It is up to the programmer to make sure, that the event
handling does not take too much time, if accurate real time
performance is desired.

The external timing sources have some configuration op-
tions as well. They can be configured to send an event for the
rising or the falling edges of the incoming signal or for both,
detecting any change on external timing source. If an event to
trigger a new event arrives on the same external timing source
before the previous one is handled, it is ignored. Events on the
other external sources and the timers are held pending by the
timer controller during the handling of any event. This way
we do not lose events, even if we are already responding to
one event.

IV. INVOKING TIMER FUNCTIONS

Since Java gives a lot of freedom in implementation of the
JVM, we simply add the required classes to our JVM. These

Fig. 5. The structure of a timer with a period register

new methods can be invoked as any other Java methods, and
the coder does not need to know the internal functionality
of the methods. Note that we will use the “xx()” notation to
refer to a method call in Java language used by a programmer
and xx to refer to a bytecode instruction performing the
functionality. Similar methods can be added to software only
JVMs to provide compatibility, but they would not achieve
the same accuracy, because of the unpredictable real time
performance of software only Java execution.

When a timer method is invoked, the SW portion of the
JVM loads the class containing the method, and performs
verification and other chores, such as initializing a new stack
frame. After that the actual bytecode section is executed. Our
JVM implementation notices calls to the timer class, and in-
stead of the normal procedure performs required manipulations
on the co-processors timer registers. As an example the coder
could call a method to halt execution, until timer0 has over-
flowed. He would do this by calling first “set timer mask(1)”
to select timer0 as the only active timer module and then
“set timer prescaler(1,1)” to start the timer0 with prescaler
value ’1’. Finally a call to “timer halt()” would keep the
co-processor idle until the event occurs. The JVM would
perform these task as follows. First, when encountering the
call to “set timer mask()” the SW portion writes the requested
mask to the co-processors timer controller register. Then the
SW portion receives the call to the “timer halt()” and writes
the timer halt command to the co-processor. Finally, in the
SW portions point of view, the control is passed back to
the co-processor. The co-processor, upon receiving control
and finding the timer halt command remains idle until the
timer sends an event through the controller. Naturally the co-
processor can also be waken up by the SW portion of the JVM
to provide interrupt services.

The timers may also be used with the methods and classes
presented in The Real-Time Specification for Java [5]. If this
method is used, the SW portion of the virtual machine must
be coded to suit the specification. It must be noted that the
timers presented in this paper are suitable for use as real time



timers, not as timers for simulation time or cpu time. If the
Java application requires timers based on alternative time lines,
they must be implemented in the SW portion of the virtual
machine.

V. EXAMPLE: A SIMPLE CHESS CLOCK

As an example of using the timers and external timing
connections a simple chess clock is presented. The whole
software is coded in Java, using standard techniques except
for the time keeping and event handling. The user interface
is assumed to be a simple panel display showing the times
remaining for each player and two buttons to select whose
turn it is.

The buttons are connected to two of the external timing
sources. The buttons are equipped with pull-up resistors and
connect to ground, if pressed. At the beginning the period
registers of two timers are set to a value corresponding one
second (depends on the speed of incoming clock signal).
Both of the timers remain idle at this time. The external
timing sources are set to send an event on the falling edge.
Now the program activates the the white players timer, and
remains idle, waiting for an event from the timer controller.
If the timer sends an event to signal the processor that a
second has elapsed, the display is adjusted as necessary. If
the white players button is pressed, signaling that the white
player has completed his turn, the white players timer is halted
and the black players timer is (re)started. The procedure is
repeated, interchanging white and black for every turn, until
the game is over or either player runs out of time. The starting
and restarting of the timers is done simply by setting their
respective prescalers to either 0 (stopped) or 1 (running). A
flowchart of the operation is shown in Figure 6. In the wait
for event -state the leaving edge is chosen based on the event
received. The update display -state also directs control to two
different directions, and the selection here is done based on
remaining time.

Fig. 6. Flowchart of the chess clock

VI. CONCLUSIONS AND FUTURE WORK

A novel timer structure for real time flow control in Java
execution was presented. The structure takes into account the

peculiarities of the Java bytecode streams, and provides rea-
sonable performance with low power usage. The predictability
of real time behavior is greatly enhanced.

The approach chosen here is energy aware, even in compar-
ison to running compiled C code on the CPU. This is achieved
by using asynchronous circuit techniques. Asynchronous cir-
cuits excel especially in situations where the workload of the
processing unit is not constant. Synchronous systems waste
a lot of power by clocking internal latches even when no
processing is done. This type of energy wasting is not present
in asynchronous system. Also the current consumption of
asynchronous systems (usually) is more stable, resulting in
lesser noise.

We proposed integrating hardware timers to the JPU and
expanding the JVM with own functions designed to make use
of the timers. These functions would make it possible for users
to execute pieces of code based on timer information. The
proposed set-up has 4 internal timers and 4 external timing
connections. All of these would be configurable and they could
be masked out, when not needed. This would bring the real
time performance of Java applications to a new level.

We plan to continue with designing the REALJava co-
processor as follows. The co-processor concept and hardware-
software co-operation will be verified by building a FPGA
demonstrator. The FPGA based JVM will also be used to
validate design decisions, such as weather or not to include a
floating point unit to the ALU. At the same time dedicated
memory structures supporting advanced garbage collection
(GC) methods are investigated in order to minimize the fluctu-
ations in execution times caused by traditional GC algorithms.
After the FPGA phase we will continue manufacturing the co-
processor as a separate ASIC. Later a larger SoC / NoC system
with several CPUs and JPUs will be designed to implement a
real-life application.

REFERENCES

[1] J. Hennessy and D. Patterson. “Computer Architecture: a Quantitative
Approach”, Second Edition, Morgan Kaufmann Publishers, Inc., 1996.

[2] Z. Liang, J. Plosila, and K. Sere. “Asynchronous Java Accelerator for
Embedded Java Virtual Machine”, In Proc. of IEEE CAS Symposium on
Emerging Technologies, Frontiers of Mobile and Wireless Communica-
tion, Shanghai, China, June 2004.

[3] P. Liljeberg, J. Plosila, and J. Isoaho. “Self-Timed Communication Plat-
form for Implementing High-Performance Systems-on-Chip”, the VLSI
Integration Journal 38, Elsevier, 2004.

[4] T. Lindholm and F. Yellin. “The Java Virtual Machine Specification”,
Second Edition, Addison-Wesley, 1997.

[5] The Real-Time for Java Expert Group. “The Real-Time Specification for
Java”, Addison-Wesley, 2000.

[6] J. Sparso and S. Furber. ”Principles of Asynchronous Circuit Design - A
System Perspective”, Kluwer Academic Publishers, 2001.

[7] T. Säntti and J. Plosila. “Communication Scheme for an Advanced Java
Co-Processor”, In Proc. Norchip 2004, Oslo, Norway, November 2004.

[8] T. Säntti and J. Plosila. “Architecture for an Advanced Java Co-
Processor”, In Proc. ISSCS 2005, Iasi, Romania, July 2005.

[9] T. Säntti and J. Plosila. “Instruction Folding for an Asynchronous Java
Co-Processor”, to appear In Proc. Tampere SoC 2005, Tampere, Finland,
November 2005.


