
Ontology-driven Development of interactive TV
Applications using Smart Space Approach

M. Mohsin Saleemi, Natalia Diaz Rodriguez, Johan Lilius

1Department of Information Technologies,
Åbo Akademi University, Turku, Finland

2Turku Centre for Computer Science (TUCS)
email: (msaleemi, ndiaz, jlilius) @abo.fi

Abstract. The integration of semantic technologies and TV services is a
substantial innovation to improve the services to users in an environment
that is extended beyond the fixed home environment. But currently, this
integration is mainly limited to provide personalized recommendation
services and systems by matching user static preferences. Designing and
development of interactive TV applications using semantic technologies
are not realized yet. In this work, we explore the potential of introduction
of semantic technologies and smart spaces in design and development of
interactive TV (iTV) applications. We use an example scenario to show
how future iTV applications include the combination of information from
different sources. We proposed a methodology and show how ontology
driven approach can help to design and develop these iTV applications.
We demonstrate the suitability of our ontology-driven application de-
velopment tools and rule based-approach for the development of highly
dynamic context-aware iTV applications.

1 Introduction

With the advent of new standards and technologies for transmission, develop-
ment and execution environments, interactive TV is evolving rapidly as a reality
in all of its forms such as digital TV, mobile TV and Internet protocol TV
(IPTV) etc. The term interactive TV applications means different things to dif-
ferent people and no single definition is presently accepted by all researchers.
European Broadcasting Union defines iTV applications as enhanced or interac-
tive services with digital Television [2]. BBC defines iTV as follows: iTV is the
content and services (in addition to linear TV channels) which are available for
digital viewers to navigate through on their TV screens. In practice, this means
giving viewers control over some video, audio, graphical and text elements, or
allowing them to use simple games and quizzes or send simple communication
back to broadcasters [1]. These definitions are usually supported by broadcasters
providing iTV applications and are generally related to and bounded to specific
TV programs.

Due to the recent technological developments, ICT landscape is evolving
into a highly interactive distributed environment that demands integration of



information in heterogeneous technologies and systems. Information in this en-
vironment is accessed using a range of different devices. These devices include
portable devices ( such as mobile phones, PDAs, smart phones, tablets) and fixed
or non-portable devices (such as TV, set-top boxes, desktop computers, Personal
video recorders). These devices provide new possibilities of interaction and all of
them have the capacity to execute applications and share information with each
other. With the birth of IPTV, Television and Web came closer to each other by
sharing a substantial set of methodologies to provide the users immerse inter-
active experience. Users now have more control over data and content creation,
consumption and sharing. It is foreseen that the future interactive TV applica-
tions would involve not only a wide range of digital devices in highly interactive,
dynamically changing and context-aware environment but also data/information
from different sources such as web. Connecting up all kind of information and
content by being much more dependent on the environment (physical and social
environment) could enable whole universe of converged iTV applications. For
example, assume an iTV banking application that shows users account balance
and other details on TV screen (or mobile TV screen). User can use this appli-
cation to pay his bills etc. The application could detect the presence of other
persons in the room and could automatically hide the balance details when the
living room TV is being used to display application content. The same applica-
tion while using on smartphone could detect it as a personal device and show
all banking details.

It is clear that creating such interactive applications requires establishing
concrete development infrastructures and methodologies that can provide a suf-
ficient level of abstraction to hide the complexity. Currently there is no commonly
agreed suitable method for development of iTV applications and different organi-
zations have their own platforms and approaches and APIs (JavaTV API, MHP,
OCAP API etc). Several companies such as Aircode, Alticast, ItVBox and Car-
dinal etc. are using their tools for development of iTV applications. Their tools
provide graphical environment to easily create simple iTV applications. These
environments and tools are too limited for creation of complex iTV applications
that involve information and resources from many sources. In order to make
full use of the power of interactivity and content consumption, data and device
interoperability issues must be solved and data must be structured in a way
that could enable multiple devices to consume and share data between them.
Moreover, traditional development methods and techniques must be replaced by
scalable, agile and configurable methodologies.

Smart spaces provide solution for the interoperability problem by standard-
izing how to describe data formats. A Smart Space is an abstraction of space
that encapsulates both the information in a physical space as well as the access
to this information, such that it allows devices to join and leave the space. In
this way, a Smart Space becomes a dynamic environment whose identity changes
over time when the set of entities interact with it to share information between
them. Smart spaces could take advantage of digital TV / IPTV technologies to
deliver content/data to the receiving devices and this data could be shared be-



tween heterogeneous devices present in the smart space. Smart space application
development tools could be used to develop interoperable interactive TV appli-
cations that employ mixture of information from different sources and devices
rather than a standard remote control. As a result of this convergence, a whole
new universe of applications could be possible.

In our previous work we have developed a programming interoperability solu-
tion [4] [8] for rapid application development in Smart Spaces and it is based on
the open source Smart-M3 architecture [9]. This paper discusses an approach for
ontology driven iTV application development and incorporating context-aware
Event Control Action (ECA) rules in iTV applications such that they can be
reactive to the user’s context, while refraining from affecting the Smart-M3 plat-
form standard. We further provide evaluation of our rule-based implementation
by demonstrating the suitability of this approach for context-aware iTV appli-
cations.

2 Background and Motivations

Due to the IP based TV services, TV and web came closer to each other and the
distinction between iTV applications and web services is becoming even harder
as the operators combine and develop different technologies to serve specific
situations. Moreover, iTV could use web as information space i.e utilizing web
as an ultimate information source by means of variety of technologies such as
semantic web RDF etc.

In view of recent advances, the definition of iTV applications has been
changed and the definitions specified in previous section need to be modified
to reflect the changes. We define iTV applications as services that are context
aware and that could actively engage users to interact using multiple devices to
participate in the application that may or may not be bounded to TV program
and can be delivered and consumed through any medium such as broadcast, ca-
ble, IP, web etc. Moreover, information from heterogeneous sources could be used
seamlessly. This definition cover all important aspects such as content, device
and platform independence but highly context aware to adapt to user prefer-
ences. This brings the creation of such iTV applications closer to the creation of
regular software as we know if for PC and mobile devices.

We believe that future interactive TV application would increasingly involve
not only a wide range of digital devices in highly interactive, dynamically chang-
ing environment but also data/information from different sources such as web.
Moreover, they would also take benefits from pervasive computing environment
to deliver highly personalized context-aware TV applications to the users. This
is due to the increase in number of digital appliances embedded in the users sur-
rounding. It gives rise pervasive interactive space that interconnects user, physi-
cal resources and computational entities. For example, iTV banking application
given in the previous section. Hence there is a need to shift to new applica-
tion development methodologies that can cope with issues such as dynamicity



in terms of adding new devices and services, context-awareness, inferring new
knowledge and sharing it with others.

– Ontologies are perfect candidates for modeling context information which is
highly desirable in future iTV applications to provide personal services de-
pendent on the environment. Users at different contexts have different needs
and expectations and ontologies can model the users context in effective way.

– As the concept of iTV has been evolving after the advent of IPTV, users are
expecting highly dynamic systems where they can join and leave anytime
to consume services. Smart space provides this dynamic environment and
ontologies are important concept in smart space based infrastructure.

– Reasoning and inferring new knowledge from available information and search-
ing and querying for their desired services are becoming essential part of iTV
usages as TV came closer to the web in recent years. Ontology driven archi-
tectures can provide reasoning capabilities in an effective way

– Users now have range of devices in addition to the TV in their personal space
to interact and consume iTV applications. It makes it a ubiquitous system
where information from heterogeneous information sources such as sensors,
digital appliances, web, smartphones, TV, PVR etc is used for realization of
truly interactive applications. Ontologies are immediate solution for handling
heterogeneity and provide information level interoperability to the users.

We propose to use ontology driven iTV applications development because
It is perceived that the use of ontologies will essentially change the way

in which software systems/applications are built and that software designers
will have libraries of ontologies from which they can choose relevant ones. Use
of ontologies in application development provides competitive advantages over
traditional approach enabling greater information sharing and reuse. Ontology-
driven development (ODD) additionally exploits knowledge exploitation using
reasoning over the maintained ontology.

In this work, we explore the potential of introduction of smart spaces in the
design and development of interactive TV applications. In the previous work
[8] [4], we have developed ontology-driven tools and frameworks for rapid ap-
plication development for smart spaces. We are now applying our ideas and
methodologies of smart spaces to interactive TV domain as we believe this con-
vergence could provide potential benefits in terms of value-added applications to
the users. Our tools and methodologies provide benefits which are not currently
realized in iTV domain such as i) abstracting underlying platform ii) porting ap-
plications to different devices and platforms iii) reduce efforts in learning APIs
. Our approach for developing highly interactive applications deals with the key
issues such as flexibility with respect to adding new devices and services to the
smart space, high level of abstractions, rule-based reasoning, task-based and
recommendation-based design and automatic code generation from application
ontology.



3 Literature review

In the recent years, there has been a coordinated efforts from multiple organi-
zations and research groups towards inclusion of semantics in interactive TV
services and platforms. Work presented in [10] describes a semantics-aware plat-
form for interactive TV services in order to distribute, process and consume the
media content. They proposed an interactive TV receiver framework capable of
collecting, extending and reasoning semantic data related to broadcast multi-
media content. The work presented in [15] outlines video annotation technique,
ontology-based modeling, multimedia metadata and user profiling through se-
mantic reasoning. The main goal of this work is to create a personalized digital
TV recommender based on metadata. Other work in the direction of personal-
ized TV programs recommendation systems based on semantics include [7], [11].
All these approaches use semantics information for reasoning purpose to deliver
personalized TV content.

Model based approaches have been widely used for model-based user interface
development [12]. Work presented in [13] and [3] describes approaches for model-
driven development of interactive user interfaces. similarly in researches like [6]
and [5] which applies modeling concepts for creating platform independent user
interfaces.

To the best of our knowledge, there is no work done on the creation of
ontology-driven application for interactive TV. Our approach for developing
highly interactive applications deals with the key issues such as flexibility with
respect to adding new devices and services for interaction, high level of abstrac-
tions, rule-based reasoning, task-based and recommendation-based design and
automatic code generation from application ontology to facilitate application
programmer. We have developed tools and frameworks for ontology-driven ap-
plication development and applied them to interactive TV domain to realize the
scenarios with mixture of technologies, systems, information and devices.

4 Enhanced iTV Application Scenario

We chose AuctionTV example scenario given in [14] because it exploits additional
interaction and participation by iTV users. This application allows one of the
participants to offer some item on sale through auction. This auctioneer get the
role master and other users join afterwards get the role participant. Whenever
a participant p bids on the item, the auctioneer raises the price confirming the
bid. When the acceptable bid has been made and confirmed, the bidding process
can be ended and the participant with highest bid gets the role winner.

We extended this basic scenario in number of ways to recommend users only
particular items for bidding which are of their interest. This is done by observing
users TV viewing history, content consumption behavior, personal preferences
etc. and mapping all this knowledge to users profile ontology. We assume that
various digital devices in particular user space (e.g. home) can exchange infor-
mation through the smart space. Assuming that there are different TV stations



and programs embedding their schedules on their WebPages by using some com-
mon semantics for program description. TV can then recommend TV programs
for particular user based on the user profile ontology. It can further recommend
particular interactive applications based on the preferences and profile ontology.
For example consider a user has been watching Shakiras new video song and has
liked her page on Facebook. The system can recommend him an iTV applica-
tion of bidding for her latest album based on harvesting and querying his content
consumption behavior and personal preferences given on social networks. It can
add an event to the users calendar when the auction will happen. At the time of
the auction, the banking application on users smartphone can check the account
detail and user can decide based on the information if he has to join the auction.
The system can identify different users and give recommendations according to
particular users profile. In this scenario, information between different sources
and devices is communicated through the smart space. Smart space allows the
fusion of all this information to enable intelligent ambient iTV applications which
are not limited to only TV.

This interactive application exhibits important properties which enable it
to be modeled and developed using our ontology driven smart space approach.
Firstly, inferencing the user’s preferences by semantically matching user’s profiles
with metadata of the content provided by the content providers. This activates
appropriate services for the user from the available resources. Secondly, het-
erogeneous devices could be used for interaction with the system making it a
multi-device environment. Thirdly, the application is driven by user’s actions
and time-based events could also be used. Fourthly, subscriptions could be used
in the situations where one action could be performed before any other action
e.g. after a bid is made, the amount of next bid should be raised.

All these properties make smart space an ideal choice for the development
of such kind of interactive TV applications as smart space addresses the is-
sues of reasoning, heterogeneous devices, interoperability, subscription based and
user-driven actions. Our approach for application development provides higher
level of abstraction by automatically generating ontology API from application
ontology by mapping OWL ontology concepts into Object Oriented program-
ming language concepts. This enables application developers to create innova-
tive Smart Space applications using traditional Object Oriented programming
concepts without worrying about the complexity of OWL ontologies.

4.1 System Architecture

In this section, the overall system architecture is outlined for the application
described in the previous section. Figure 1 depicts this architecture. It consists
of four main elements. First, the content provider sources such as IPTV, mobile
TV, digital TV, portable media providers etc. Second, application and adver-
tisement providers who provide application and advertisement content to be
consumed by the users. Third, Modeling component that models the content
and its metedata. This modules require that the information on TV content and
advertisement must be defined using some standard for representing metadata



Fig. 1. System structure

such as MPEG-7. The metadata for TV content includes title of the TV pro-
gram, its category, actors, authors or anchor of the program etc., and for the
advertisement it includes name of the item, category, model, manufacturer, re-
quirements and features etc. We build ontologies based on this information which
relate these concepts and their relations. Fourth, our smart space infrastructure
including SIB and reasoning engine. This infrastructure is the core component
which used to store the ontologies and provide reasoning. It also facilitate inter-
action and communication with the user devices through KPs for sharing and
updating information between them. Users profiles are also stored in the SIB as
user profile ontology. Users receive personalized advertisement and applications
based on their profile ontology. Users with heterogeneous devices can interact
with the smart space (SIB) to share information between them.

5 Ontology-driven Development Methodology

The pervasiveness in iTV applications increases the complexity of application
development due to the extended context space. This requires development ap-
proaches based on higher level of abstractions. Model-driven approach is promis-
ing as models are not only used for design, development, maintenance but also
for generating executable code for specific applications and platforms. The main
drawback of model driven approach for pervasive application development is its
lack of support for reasoning tools. On the other hand, ontology driven devel-
opment (ODD) follows similar approach as MDA by using ontologies in Model
driven engineering process but ODD additionally exploits knowledge exploita-
tion using reasoning over the maintained ontology. There are several factors
that make ontology-driven development a suitable choice for building pervasive
software applications.



– Languages for representing ontologies (OWL, etc.) are syntactically and se-
mantically richer than common MDA approach of modeling in UML. UML
models lack the formal semantics while ontologies are more explicit and pre-
cise.

– Ontology driven approach is theoretically found on logic. While ontology
allows automated reasoning or inference, UML model does not.

– UML follows unique name assumption where same name always refer to the
same object and different names refer to different objects. OWL, on the other
hand, provides features to discipline names and two properties or two classes
can be stated to be equivalent (equivalentClass, equivalentProperty)

– There are other developments related to OWL that are in progress such as
expressive rule language (SWRL etc) and OWL services

In this section we present an ontology-driven methodology for development
of intelligent pervasive iTV applications.

Domain Ontology: Domain ontology models a specific domain which rep-
resents part of the world. Particular meanings of the terms/concepts applied to
the domain are provided by the domain ontology. Domain ontologies are compu-
tation independent and represent concepts of the particular domain in question.
For example, in our example scenario, the domain is TV domain and the con-
cepts in the domain such as viewers, program etc. have particular meanings in
this domain. In our proposed methodology, part of the domain ontology could
be converted into Smart space independent application model.

Context Ontology: Context ontology defines different user’s context con-
cepts such as location, time, audience, etc and used for the reasoning purpose in
combination with the standard user profile to improve content consumption and
interaction experience. In the proposed methodology, the context ontology could
be derived from domain ontology. This is because some portion of the domain
ontology might be used for reasoning purpose. Context ontology characterizes
the state and situation of a user and is important for personalized ambient ser-
vices by taking into account the context of the user. For example, if the user is in
the home or office while listening a particular song? are there other people in the
room ? etc. Users can use manage, link and synchronize available functionalities
and behaviors of applications and the resources according to available context
information.

Application Ontology: Application ontology describes the concepts and
their relationships in the application. For example, item, participant, winner,
calendar etc. in our example AuctionTV application scenario.

Task Ontology: Task ontology specifies a library of different tasks that
the devices provide to the users. For example, tasks and services provided by
different devices such as mobile phone, PVR etc. in a smart room. The business
logic of the application could also be defined using task ontology. In this case
the total behavior is the combination of this emerged behaviors defined in the
task ontology.



Inference rules: The context inference process requires deterministic infer-
ence rules to infer new context. These rules are either general or domain specific.

Smart Space Independent App. Model: With particular domain, task
and application ontologies, a Smartspace independent Application model is cre-
ated.

Smart Space Specific App. Model: The Smart Space independent appli-
cation model is then converted to Smart Space specific application model. The
context ontology and inference rules are used to make the system into a partic-
ular setting of Smart space. That is, based on the context of a user at a given
situation, a particular setting of the smart space specific to that situation will
be applied.

Code and software artifacts: This module contains the corresponding
artifacts at the low level. In our case it would consists of the SIB which contains
task ontology and context ontology.

The split in the proposed methodology gives more structured design and al-
low reusability of task, domain and context ontologies for other applications in
that domain. The methodology has to be mapped to the underlying smart-M3
architecture. Such methodology provides higher level of abstraction and changes
the physical environment into a programmable space in which users can mange,
synchronize, link and consume accessible functionalities and behaviors of iTV
application devices and services in the environment according to context infor-
mation.

Using this methodology and the reasoning rules enable users to program their
own environment to some extent which appear be possible by having iTV appli-
cations and users sharing same conceptual world model. Abstract rule language
could be used to do business logic of the applications and enable and synchro-
nize information flow between devices and iTV applications according to the
contextual information.

6 Inference rules using PythonRules Module

We have developed a Python Module for easy definition of rules in our approach
for Smart-M3. The interaction with the Semantic Information Broker (SIB) is
made so that the Python developer does not have to deal with RDF triples
or semantic technologies like query languages to access the central repository of
shared information. The Python Rule module makes use of the Ontology Library
Generator (OWL to Python) and its framework as abstraction of the interface
with the SIB. The PythonRules module allows the programmer to write rules
on the fly i.e. can be executed directly and interpreted as any other Python
statement. Secondly, the module allows rules to be stored in the class RuleSoup
which handles the whole set of rules and runs them when needed. For the first
case, operators (// and >>) were overloaded for rule syntax clarification and
expressivity. In the second case, declaring a rule does not implies its execution
and delays it until the programmer desires it by calling the method execute() of
PythonRule class or runAll() from the RuleSoup class.



With Clause Class: The Class With represents the With Clause of the Rule
and the first parameter of the PythonRule Class. It contains a list of Individuals
which are requirement to be present on the Smart Space.

– init (assumptions): Provides to the class With the individuals that appear
later on the When and Then clauses in the same rule. All the individuals
to be used on different clauses in the same rule must be added as input
parameter to this class except the instances of objects which are created in
the Then clause.

– evaluate(): Evaluates, without executing the rule, the With clause returning
True if all of the individuals in With clause are different than None and
they exist in the SIB, this is, if they have already been created in the Smart
Space.

– getWithIndividuals(): Returns all the instances representing the individu-
als participating on the rule and that have been specified previously when
creating the With clause.

When Clause Class: The Class When represents the When Clause of the
Rule and the second parameter of the PythonRule Class. It contains a condition
which is requirement to be satisfied for the rule to fire.

– init (condition): Initializes the class When with one or several boolean
conditional statements to be satisfied. If they are more than one condition,
they must be expressed as a single one through Python regular boolean
operators.

– evaluate(): Evaluates, without executing the rule, the When condition.
– getWhenConditions(): Returns the rule condition.

Then Clause Class: The Class Then represents the Then Clause of the rule
and the third parameter of the PythonRule Class. It contains a list of Python
actions to execute if the With and When clauses hold.

– init (consequent): Initializes the class Then with one or a list of sentences
to be executed if the rule condition holds. Note that they are not executed
until execute() is called (unless the rule is created on the fly with the oper-
ators // and >>). An example of statement could be e.g., creating a new
individual.

– execute(): Executes the provided statements.
– getThen(): Returns the rule actions (or consequent of the rule).
– getReturnValues(): Returns the values (if any, in case of need) returned by

each of the statements included in the Then clause.

The execution of the rules is achieved through the subscription capability of
the SSAP protocol to the Smart Space. This generates asynchronous notifications
when changes occur in the Smart Space. However, this is a concrete implementa-
tion of Smart Space broker (Smart-M3 ) but PythonRules module aims at being
independent of the information broker or repository used. The class Individual
wraps, for this purpose, the Ontology class corresponding to the Python class



whose objects are used within the classes When, With and Then. Individual also
hides, by means of its helper methods, the use of RDF queries and namespaces
to the programmer, who only needs logic Python expressions, i.e., basically any
Python expression plus the added value of the rule construction.

7 Implementation and Evaluation

Our application development tools are used as follows:

1. Smart-M3 Ontology to Python API Generator : First of all, the ontologies to
be used need to be converted automatically to their corresponding Python
classes. For this purpose, our Ontology Library [4] is used, generating classes
for each Ontology class together with their properties and methods.

2. Programming Knowledge Processors: When the Ontology Library has gener-
ated the needed classes with the included middleware, containing getters and
setters methods, this middleware already abstracts the communication with
the SIB allowing programming of KPs. The generated EmptyKP.py file can
be used as a starting template; instance declarations automatically trans-
late to RDF insertions into the SIB (after committing changes). This allows
other applications connected to the same Smart Space to know about the
existence of those individuals and to interact with them.

3. Python Rules for Smart Space programming : Since the previous middleware
still requires a considerable number of calls before achieving interaction with
the repository, as well as working with specific namespaces, PythonRules
provides a higher abstraction layer for fast specification and configuration of
the Smart Space’s behavior.

The rules can either be executed synchronously (when declared in real time)
or stored together in the class RuleSoup. In the latter case they can be run all
at once and executed asynchronously (when their conditions are satisfied).

7.1 Ontology Development

As our approach is based on ontology driven application development, the first
step is to create application and domain ontologies. We developed an application
ontology for the application scenario described in section IV. Figure 2 illustrates
the excerpt from the application ontology. The ontology shows the semantic
relationships between different concepts.

As we are dealing with the interactive TV domain in this particular sce-
nario, the domain ontology consist of the concepts related to TV content such
as category, title, actors, schedule etc. The domain ontology can be automati-
cally generated using the metadata available for each TV program. The figure 3
describes the an example TV program ontology.



Fig. 2. Application Ontology

7.2 Programming Knowledge Processors: iTV Use case

When the application programmer does not deal with RDF Triples directly,
but mainly with logic Python ordinary statements, the translation of problems
described with natural language into programs becomes much easier. This section
describes two knowledge processors that are created for the evaluation of example
scenario. The TVBroadcasterKP creates a new Calendar and a new Event. These
knowledge processors use the APIs that are generated from the ontologies by our
tool.

1 class TVBroadcaster_KP(KnowledgeProcessor):

2

3 def initialize(self):

4 self.registerOntology(CalendarOntology ())

5 self.createUpdatedProgramEvent("Spanish people around

the world: Finland")

6

7 def createNewCalendar(self , title):

8 googleCalendar = Calendar ()

9 googleCalendar.setTitle(XSDString(title))

10

11 def createUpdatedProgramEvent(self ,title):

12 event = Event()

13 event.setTitle(XSDString(title))

14 event.setDtStart(XSDDateTime(datetime (2012 , 8, 15,

17,0,0)))

15 print "BBC Broadcaster just added a calendar event

with updated programme"

16

17 def main(args):



Fig. 3. iTV Program Ontology

18 app = QtGui.QApplication(sys.argv)

19 smartSpace = (’x’, (TCPConnector , (’127.0.0.1 ’, 10010)))

20

21 kp = TVBroadcaster_KP.create(smartSpace)

22 sys.exit(app.exec_())

Listing 1.1. Knowledge processor for TV Program

The AuctionItemsManagerKP is an example Class that creates new Items
for sale at an Auction.

24 class AuctionItemsManager_KP(KnowledgeProcessor):

25

26 def initialize(self):

27 self.registerOntology(AuctionOntologyOntology ())

28 self.addNewItemForSale("Cool100in1")

29

30 def addNewItemForSale(self ,name):

31 event = Item()

32 event.setItemName(XSDString(name))

33 event.setDateOfStart(XSDDateTime(datetime (2012 , 8,

17, 17,0,0)))

34 #event.setHasStartingPrice(XSDInteger (200))

35 print "e-Auction Items Manager just added a new item

for sale: ",name

36

37

38 def main(args):

39 app = QtGui.QApplication(sys.argv)



40 smartSpace = (’x’, (TCPConnector , (’127.0.0.1 ’, 10010)))

41

42 kp = AuctionItemsManager_KP.create(smartSpace)

43 sys.exit(app.exec_())

Listing 1.2. Knowledge Processor for Auction Application

7.3 Inference Rules

We created two simple rules for the evaluation purpose.
Rule 1: If in an electronic auction, the new gadget Cool100in1 is offered for

sale, Natalia would like to be notified as soon as this item appears in the Auction.
If this occurs, an event on her calendar should be created immediately to remind
her to bid. The particular implementation of this rule using our PythonRule
module is given in the listing 7.3

45 withClause = With([ newGadgetItem ])

46 whenClause = When(newGadgetItem.getProperty("ItemName") == "

Cool100in1")

47 thenClause = Then([ remindToBidEvent.new(Event),

48 remindToBidEvent.setProperty(Title = XSDString("Cool100in1

in e-Auction , Remember to Bid!")),

49 remindToBidEvent.setProperty(DtStart = XSDDateTime(

newGadgetItem.getProperty("HasDateOfStart"))),

50 remindToBidEvent.setObject("MemberOf", nataliaCalendar.get

()),

51 GoogleCalendar("smartspacecalendar@gmail.com", "smartspace

").addEvent("Remember to Bid for

Cool100in1!","","e-

Auction", dayBefore(XSDDateTime(newGadgetItem.

getProperty("DateOfStart"))),

dayBefore1hourAfter(

XSDDateTime(newGadgetItem.getProperty("DateOfStart")))

, None)])

52

53 rule = PythonRule(withClause , whenClause , thenClause)

Rule 2: If there is a new event in the broadcaster calendar which includes
Natalia’s favorite documentary, Spanish people around the world, happening in
Finland, she would like to be notified on her calendar not to miss it.

55 withClause = With([ favouriteDocumentaryEvent ])

56 whenClause = When(favouriteDocumentaryEvent.getProperty("

Title") == "Spanish people around the world: Finland")

57 thenClause = Then([ remindDocumentaryEvent.new(Event),

58 remindDocumentaryEvent.setProperty(Title = XSDString("

Spanish people around the world in Finland!")),

59 remindDocumentaryEvent.setProperty(DtStart = XSDDateTime(

favouriteDocumentaryEvent.getProperty("DtStart")-

oneDay)),



60 remindDocumentaryEvent.setObject("MemberOf",

nataliaCalendar.get()),

61 GoogleCalendar("smartspacecalendar@gmail.com", "

smartspace").addEvent("Tomorrow is your favourite

documentary","","BBC

Broadcaster", dayBefore(XSDDateTime(

favouriteDocumentaryEvent.getProperty("DtStart"))),

dayBefore1hourAfter(XSDDateTime(

favouriteDocumentaryEvent.getProperty("DtStart"))),

None)])

62

63 rule = PythonRule(withClause , whenClause , thenClause)

64

65 # Running the whole RuleSoup ...

66 ruleSoup = RuleSoup ()

67 ruleSoup.addRule(rule)

68 ruleSoup.runAllRules ()

69 # Waiting for creation of new Events ...

70 sys.exit(app.exec_())

8 Discussion

For this use case, we first developed the ontologies in Protege and then these
ontologies are fed as input to our tool to generate ontology libraries. We then
implemented the knowledge processors that reflect the functionality of the appli-
cation. Knowledge processors use the generated ontology APIs. We then defined
the rules using PythonRules Module which describes the rule expressions em-
bedded into Python language.

Our approach for ontology-driven iTV application development worked well
for these simple rules. We aim to extend it to evaluate more complex scenarios
and context-aware iTV applications.

9 Conclusions and Future work

In this paper we have presented how to develop interactive TV application us-
ing ontology-driven smart space approach. We have also demonstrated the suit-
ability of our rule-based approach to support a highly dynamic context-aware
service that includes reasoning for situation detection. We have developed a
context-aware service in the domain of interactive TV and evaluated it using
our developed ontology-driven tools. Future work includes development of more
complex application scenarios that could benefit from pervasiveness. Moreover,
performance and scalability of the approach will be evaluated by increasing the
number of entities, number of events generated and the number of rules. For this
purpose, evaluation parameter reaction time will be defined.



Acknowledgment

The research work presented in this paper is based on DIEM project and the
authors would like to acknowledge all the partners of this project.

References

1. British broadcasting corporation: Enhanced tv formats: http://www.bbc.co.uk/
commissioning/interactive/.

2. European broadcasting union: Multimedia homepage of the european broadcast
union (ebu), geneva, switzerland. http://www.ebu.ch/en/multimedia/index.php.

3. Model-driven development of advanced user interfaces.
4. Smart-M3 software at sourceforge.net, release 0.9.4beta, May 2010. [Online]. Avail-

able: http://sourceforge.net/projects/smart-m3/.
5. S. K. A. Coyette and J. Vanderdonckt. Applying model-based techniques to the

development of uis for mobile computers. In In Human-Computer Interaction
INTERACT 2007, page 150, 2007.

6. J. Eisenstein, J. Vanderdonckt, and A. Puerta. Applying model-based techniques
to the development of uis for mobile computers. In IN IUI 2001 International
Conference On Intelligent User Interfaces, pages 69–76. ACM Press, 2001.

7. F. Hopfgartner and J. Jose. Semantic user profiling techniques for personalised
multimedia recommendation. Multimedia Systems, 16(4-5):255–274, 2010.

8. A. Kaustell, M. M. Saleemi, T. Rosqvist, J. Jokiniemi, J. Lilius, and I. Porres.
Framework for Smart Space Application Development. In Proceedings of the In-
ternational Workshop on Semantic Interoperability, IWSI, 2011.

9. I. Oliver and J. Honkola. Personal semantic web through a space based computing
environment. In Proceedings of the 2nd International Conference on Semantic
Computing, 2008.

10. A. Papadimitriou, C. Anagnostopoulos, V. Tsetsos, S. Paskalis, and S. Had-
jiefthymiades. S.: A semantics-aware platform for interactive tv services. In In
the Proceedings of the 1st International Conference on New Media Technology (I-
MEDIA 07) Graz Austria, 2007.

11. L. A. G.-J. H. Pieter Bellekens, Kees van der Sluijs and A. Kaptein. Semantics-
based Framework for Personalized Access to TV Content: Personalized TV Guide
Use Case.

12. V. d. B. J. H. H. S.-S. Pleu, A. Model driven development of advanced user
interfaces.

13. A. Pleuss, D. Gračanin, and X. Zhang. Model-driven development of interactive
and integrated 2d and 3d user interfaces using mml. In Proceedings of the 16th
International Conference on 3D Web Technology, pages 89–92. ACM, 2011.

14. J. Van Den Bergh, B. Bruynooghe, J. Moons, S. Huypens, K. Handekyn, and
K. Coninx. Model-driven creation of staged participatory multimedia events on
tv. In Proceedings of the 5th European conference on Interactive TV: a shared
experience, EuroITV’07, pages 21–30, Berlin, Heidelberg, 2007. Springer-Verlag.

15. A. G.-S. M. R.-C. B. B.-M. M. L.-N. J. G.-D. Yolanda Blanco-Fernndez, Jos J.
Pazos-Arias. Avatar: An advanced multi-agent recommender system of person-
alized tv contents by semantic reasoning. In Web Information Systems WISE
2004.


