
PERIODS OF FACTORS OF THE FIBONACCI WORD
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Abstract. We show that if w is a factor of the infinite Fibonacci word, then
the least period of w is a Fibonacci number.

1. Introduction

The Fibonacci word is arguably one of the most studied infinite sequence in
combinatorics on words, see e.g., [17, 9, 6, 12, 18, 21, 16, 22, 19, 7, 15, 11, 13].
It is one of the simplest non-periodic infinite words, and certainly the simplest
Sturmian word providing insight to the properties of all Sturmian words [14]. The
Fibonacci word has been used to prove optimality of various results ranging from
text algorithms to the periodicity of infinite words [4, 5, 15, 20], see also [2]. In
the future, the finite Fibonacci words might have an equally important role in
theoretical computer science as what Fibonacci numbers have in mathematics today.

The aim of this paper is to present, to our knowledge, a new property of the
Fibonacci word. We show that if a word is a nonempty factor of the Fibonacci
word, then its least period is a Fibonacci number. This is a tightening of a folklore
property of the Fibonacci word stating that if a square is a factor of the Fibonacci
word, then “root” of the square is a conjugate of a finite Fibonacci word [21], see
also [19].

An outline of this paper follows. In the next section we present some definitions
and a number of well-known properties relevant to our discussion. In Section 3 we
present and prove the aforementioned property of the Fibonacci word. Section 4
concludes this paper with some comments on how the new property relates to some
old ones and an idea for a generalization of this property to Sturmian words.

2. Definitions and Preliminary Results

In this section we present necessary definitions and properties of the Fibonacci
word, following the terminology of [14]. For unexplained notions, we refer to [3].

Let us define a sequence of words (fn)n≥−1 as follows:

f−1 = 1, f0 = 0, and fn = fn−1fn−2,

for n ≥ 1. The words fn are referred to as the finite Fibonacci words. The limit
f = limn→∞ fn is called the (infinite) Fibonacci word.

Lemma 1 (de Luca [6]). The finite Fibonacci words are primitive.

We denote Fn = |fn|, so that the numbers F−1, F0, F1, F2, . . . correspond to the
Fibonacci numbers 1, 1, 2, 3 . . .. For notational purposes, we refer to a number F−2

in some of the lemmas that follow, and therefore we define F−2 = 0.
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Let w = w1w2 · · ·wn, with wi letters. An integer p ≥ 1 is a period of w if i ≡ j
(mod p) implies wi = wj for all i, j = 1, 2, . . . n. The least period of a word w
is called the period of w, and denoted by p(w). The rational number |w|/p(w) is
called the order of w, and denoted by ord(w). If p(w) = |w|, then w is called
unbordered ; otherwise w is called bordered.

Let C: {0, 1}∗ → {0, 1}∗ denote a cyclic permutation on words defined by

C(ε) = ε, C(ax) = xa,

where ε is the empty word and a ∈ {0, 1}.
For n ≥ 1, let gn denote an auxiliary word

gn = CFn−1(fn) = fn−2fn−1.

The following lemma is proved, e.g., in [1].

Lemma 2. For n ≥ 2, we have

fnfn−1 = fn−1gn, and fn−1fn = fngn−1.

Furthermore, for all n ≥ 1, the words fn and gn differ only by the last two letters.

The following lemma is also proved in [14, Chapter 2].

Lemma 3 (Morse and Hedlund [17]). For all n ≥ 0, the Fibonacci word has exactly
n+ 1 distinct factors of length n.

It is well-known, and easy to see, that f 2
n occurs in f for all n ≥ 0. Since fn is

primitive and since there are Fn + 1 factors of length Fn, there exists precisely one
factor of length Fn of f that is not a conjugate of fn. This word is termed singular,
and we denote it by cn.

Lemma 4 (Wen and Wen [22]). Singular words satisfy the recursive formula

(1) c0 = 1, c1 = 00, c2 = 101, cn = cn−2cn−3cn−2

for n ≥ 3.

Lemma 5 (Séébold [21]). If a word u2 is a factor of f , then u is a conjugate of
some finite Fibonacci word.

We say that an infinite word is kth-power-free for some real number k ≥ 1 if it
does not have a factor of order greater than or equal to k. The previous lemma
with Lemma 1 imply the following.

Lemma 6 (Karhumäki [12]). The Fibonacci word is 4th-power-free.

Actually much more can be said about the repetitions in f , see [16], but the
previous result is more suitable for our purposes.

The following three lemmas are proved in [14, Chapter 8].

Lemma 7 (Mignosi et al. [15]). If a word w has two periods p and q with q < p ≤
|w|, then the prefix of w of length |w| − q has a period p− q.

Lemma 8 (Mignosi et al. [15]). If words uv and vw have a period p and |v| ≥ p,
then the word uvw has a period p.

Lemma 9 (Fine and Wilf [10]). Suppose that a word w has periods p and q. If

|w| ≥ p+ q − gcd(p, q),

then w has a period gcd(p, q).
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3. Main Result

In this section we show that the least period of any factor of the Fibonacci word
is a Fibonacci number. We start by proving this for factors whose length is a
Fibonacci number, see Theorem 1.

Lemma 10. If a word w is a bordered factor of f with |w| = Fn for some n ≥ 0,
then either Fn−2 or Fn−1 is period of w.

Proof. The claim is readily verified for n = 0, 1, 2, so we may suppose that n ≥ 3.
The word w is either a conjugate of fn or it equals the singular word cn. In the
latter case, Equation (1) shows that w has a period Fn−1. Therefore we may assume
that w is a conjugate of fn, say

w = Ci(fn),

where 0 ≤ i < Fn. We have three cases to consider.
Suppose first that 0 ≤ i ≤ Fn−1 − 2. Since n ≥ 3, Lemma 2 implies that

f 2
n = fn−1fn−2fn−1fn−2 = fn−1fn−1gn−2fn−2.

Notice that the word w occurs in f 2
n at position i ≤ Fn−1−2. Since gn−2 and fn−2

differ only by the last two letters, and since fn−2 is a prefix of fn−1, we see that w
is a factor of f 3

n−1. Therefore w has a period Fn−1.
Suppose then that Fn−1 ≤ i ≤ Fn − 2. Since n ≥ 3, Lemma 2 implies that

CFn−1(f 2
n ) = fn−2fn−1fn−2fn−1 = fn−2fn−2gn−1fn−1.

Notice that the word w occurs in CFn−1(f 2
n ) at position i−Fn−1 ≤ Fn−2−2. Since

gn−1 and fn−1 differ only by the last two letters, and clearly fn−1 is a prefix of
f 2

n−2, we see that w is a factor of f 3
n−2. Therefore w has a period Fn−2.

Suppose finally that i = Fn−1 − 1 or i = Fn − 1. For all other values of i we
just showed that Ci(fn) is bordered. Since fn is primitive, and every primitive
word over two letters has at least two unbordered conjugates (the lexicographically
smallest and largest conjugates), it follows that the words Ci(fn) for i = Fn−1 − 1
and i = Fn − 1 are unbordered. This completes the proof. �

The following lemma can be proved by a simple induction.

Lemma 11. For all n ≥ 3, we have

Fn ≥ 4Fn−3 and Fn−2 <
1
2Fn < Fn−1

Now we are ready to prove a theorem that is a part of our main result, Theorem 2.

Theorem 1. If a word w is a factor of f with |w| = Fn for some n ≥ 0, then the
period of w equals Fn−2, Fn−1, or Fn.

Proof. The claim is readily verified for n = 0, 1, 2, so we may suppose that n ≥ 3.
We divide the proof into several cases.

Suppose first that p(w) < Fn−2. Then 2 p(w) < |w|, and so the word w has
a prefix of the form u2 with |u| = p(w). Lemma 5 implies that the word u is a
conjugate of fk for some k ≤ n−3, and therefore p(w) ≤ Fn−3. But now Lemma 11
implies that

ord(w) =
|w|

p(w)
≥ Fn

Fn−3
≥ 4,

contradicting Lemma 6.
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If p(w) = Fn−2, the claim holds.
Suppose then that Fn−2 < p(w) < 1

2Fn. Since |w| = Fn, it follows that w has a
prefix of the form u2 with |u| = p(w). By Lemma 5, we have that u is a conjugate
of some finite Fibonacci word. But since Fn−2 < p(w) < Fn−1 by Lemma 11, we
see that |u| = p(w) is not a Fibonacci number, a contradiction.

Suppose now that 1
2Fn ≤ p(w) < Fn−1. It follows from Lemma 10 that Fn−1 is a

period of w. By applying Lemma 7, we see that the prefix of w of length |w|−p(w),
denote it by u, has a period Fn−1 − p(w). Consequently,

(2) ord(u) =
|w| − p(w)
Fn−1 − p(w)

=
Fn − p(w)
Fn−1 − p(w)

.

Notice that the function (Fn− x)/(Fn−1− x) is increasing for x < Fn−1. Denoting
x = 1

2Fn, we have

Fn − x
Fn−1 − x

=
Fn

2Fn−1 − Fn
=

Fn

Fn−3
≥ 4,

and therefore this inequality holds for all 1
2Fn ≤ x < Fn−1. In particular it holds

for x = p(w), and hence the Equation (2) gives ord(u) ≥ 4. Since u is a factor of f ,
this contradicts Lemma 6.

If p(w) = Fn−1, the claim holds.
Suppose finally that p(w) > Fn−1. Then Lemma 10 implies that w is unbordered,

and therefore p(w) = Fn. The proof is complete. �

Lemma 12. If a word w is a factor of f with Fn−1 ≤ |w| < Fn and n ≥ 0, then w
has a period that is a Fibonacci number.

Proof. The claim is readily verified for n = 0, 1, 2, so we may suppose that n ≥ 3.
There exists a factor of f , say z, such that w is a proper prefix of z and |z| = Fn.

If z is bordered, then by Theorem 1 either p(z) = Fn−2 or p(z) = Fn−1, and
consequently w has a period Fn−2 or Fn−1.

Suppose then that z is unbordered. By the proof of Lemma 10, we know that
either

(3) z = CFn−1−1(fn), or z = CFn−1(fn).

Write z = ua, where u ∈ {0, 1}∗ and a ∈ {0, 1}. Then we have either

au = CFn−1−2(fn), or au = CFn−2(fn).

Since n ≥ 3, these words are distinct from the words in (3). Hence the word
ua is a bordered factor of f of length Fn, and therefore either p(au) = Fn−2 or
p(au) = Fn−1 by Theorem 1. Hence u has a period Fn−2 or Fn−1, and so does the
word w because w is a prefix of u. This completes the proof. �

As an immediate corollary, we can determine the unbounded factors of the Fi-
bonacci word.

Corollary 1. If a word w is an unbounded factor of f , then w is a conjugate of fn

for some n ≥ −1.

We now need only one more lemma before proving the main theorem.

Lemma 13. Suppose that k and m are integers with 2 ≤ k < m. Then

4 gcd(Fk, Fm) ≤ Fm.
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Proof. The integers Fk, Fk+1, Fk+2 are pairwise coprime. Therefore the claim holds
if m ≤ k + 2. On the other hand, if m > k + 2 the claim follows from Lemma 11
because Fm ≥ Fk+3 ≥ 4Fk. �

The following result is the main theorem of this paper.

Theorem 2. If a word w is a nonempty factor of the Fibonacci word, then the
period of w is a Fibonacci number.

Proof. We prove the claim by induction on |w|. The claim is readily verified for
|w| = 1, 2, . . . , 8. Suppose now that |w| ≥ 9.

Lemma 12 implies that there exists an integer n ≥ 0 such that the word w has
a period Fn. If |w| = Fn, the claim follows from Theorem 1. Therefore we may
suppose that |w| > Fn, and thus we have p(w) < |w|. Let us write w = axb, where
a and b are letters.

Claim A. We have either

(4) p(w) = p(ax) or p(w) = p(xb).

To derive a contradiction, let us suppose that the claim does not hold. Then
p(ax) < p(w) and p(xb) < p(w). Now we have |x| ≥ p(ax). Indeed, if |x| < p(ax),
then p(ax) = |ax|, and so p(w) = |w|, a contradiction. Consequently, we have
p(ax) 6= p(xb). Namely, if p(ax) = p(xb), then Lemma 8 implies that p(w) =
p(ax), a contradiction. Therefore the induction assumption implies that there exist
two distinct integers k and m such that p(ax) = Fk and p(xb) = Fm. Since
|ax| = |xb| ≥ 8 and f is 4th-power-free, it follows that m, k ≥ 2. Without loss of
generality, we may assume that k < m. Then, since Fk < Fm < Fn, we get

|x| = |w| − 2 ≥ Fn − 1 ≥ Fm + Fk − 1 ≥ Fm + Fk − gcd(Fk, Fm).

Observe that both Fk and Fm are periods of x. Hence Lemma 9 implies that x has
a period gcd(Fk, Fm). Therefore Lemma 13 implies

ord(x) =
|x|

p(x)
≥ Fm + Fk − 1

gcd(Fk, Fm)
≥ Fm

gcd(Fk, Fm)
≥ 4.

Hence the word x is factor of f with ord(x) ≥ 4, contradicting Lemma 6. Claim A
is thus proved.

Now we can finish the proof of Theorem 2. By the induction assumption, both
p(ax) and p(xb) are Fibonacci numbers. Thus the period of w is also a Fibonacci
number by Claim A. The proof is now complete. �

4. Discussion

Theorem 2 is a fundamental property of the Fibonacci word: It establishes a
nontrivial connection between the Fibonacci word and Fibonacci numbers. Hence
the author was expecting to find it, or some other property directly implying it, in
the literature on the Fibonacci word. The properties most similar to Theorem 2
the author was able to find are the following: Pirillo [19] shows that if a word of
the form ur with r > (2 +ϕ)/2, where ϕ is the golden ratio, is a factor of f , then u
is a conjugate of a finite Fibonacci word. In [6], de Luca and De Luca show that a
word w is a factor of a Sturmian word if and only if its fractional root is a conjugate
of a standard word. However, though these results come close to ours, they do not
seem to directly imply Theorem 2.
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A conjecture of a generalization to all Sturmian words follows. Let t denote a
Sturmian word with slope α, and let the continued fraction expansion of α be

α = [ 0, 1 + d1, d2, d3, . . . ].

Denote
q−1 = q0 = 1 and qn = dnqn−1 + qn

for n ≥ 1. Finally, define

Π(α) :=
⋃
n≥0

{ iqn + qn−1 : i = 0, 1, . . . , dn }.

We conjecture that if a word w is a nonempty factor of t, then the least period of w
is in the set Π(α). A proof of this conjecture might follow the lines of the proof of
Theorem 2, the main problem would be to show the following: If a word w = axb
is an unbordered finite Sturmian word, then either p(w) = p(ax) or p(w) = p(xb).
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