
Environment Modeling in Model-Based Testing: Concepts,
Prospects and Research Challenges

A Systematic Literature Review

Faezeh Siavashi
Åbo Akademi University
Joukahainengatan 3-5
20520 Turku, Finland

faezeh.siavashi@abo.fi

Dragos Truscan
Åbo Akademi University
Joukahainengatan 3-5
20520 Turku, Finland

dragos.truscan@abo.fi

ABSTRACT
In this paper, we describe a systematic literature review
(SLR) on the use of environment models in model-based
testing (MBT). By applying selection criteria, we narrowed
down the identified studies from two hundred ninety seven
papers to sixty one papers which are used in this analysis.
The results show that environment models are especially
useful in testing systems with high complexity and non-
deterministic behaviors in terms of facilitating automatic
test generation. However, building environment models is
not a trivial task due to the lack of a systematic methodol-
ogy and of supporting tools for automation.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems—Environments; D.2.4 [Software Engineering]:
Software/Program Verification—Model checking

Keywords
environment model, software testing, model-based testing,
systematic literature review

1. INTRODUCTION
Model-Based Testing (MBT) is a black-box testing tech-

nique that generates tests from abstract behavioral mod-
els [23]. The models can represent either the expected be-
havior of the system under test (SUT) or of its environment,
or in some cases of both. In this context, abstraction is ben-
eficial in hiding unnecessary details of the implementation
and reducing the complexity of testing. Nevertheless, it is
also essential that a test model is detailed enough in order
to generate effective test cases. Finding the right level of
abstraction for the test model is one of the challenges in
MBT [23].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
EASE ’15, April 27 - 29, 2015, Nanjing, China
Copyright 2015 ACM 978-1-4503-3350-4/15/04 ...$15.00
http://dx.doi.org/10.1145/2745802.2745830.

MBT can be used for both online and offline testing. In
online testing, the test inputs are generated and executed
on-the-fly, whereas in offline testing, test inputs are first
generated and later on executed as a batch [22].

In complex computer systems, which operate in environ-
ments with large numbers of events and different timings,
testing leads to a large number of test cases to cover all pos-
sible states of the system. Executing all possible test cases
becomes time consuming and unfeasible. Therefore, more
advanced methods are required in MBT in order to opti-
mize the number of test cases and reduce the complexity of
testing [9].

Environment modeling is an activity that specifies a part
of the real world, in which the system is integrated. The
process of environment modeling results into an environment
model, which captures all relevant assumptions and contains
all interactions with the SUT [11]. Environment modeling
can help addressing the problem of testing complex systems,
since one can use environment models to generate automatic
test cases for a particular behavior of the SUT.

The main objective of this SLR is to understand how an
environment model can enable MBT and what are the cur-
rent problems and research challenges. In this paper, we do
not attempt to compare different approaches, instead, we
extract the information as presented by the authors of the
available literature in order to present a complete picture of
the research done on this topic. To our best of knowledge,
this is the first systematic literature review on different ap-
proaches in environment modeling.

The remainder of this paper proceeds as follows: in Sec-
tion 2, we define the research method, provide research ques-
tions, and describe the material selection process based on
the defined selection criteria. In Section 3, we answer the
research questions and present the data analysis from our
findings. In Section 4, we discuss validity threats, while in
Section 5, we provide a discussion and conclusions.

2. RESEARCH METHOD
In this work, we follow the research method suggested by

Kitchenham and Brereton [13] for conducting a systematic
literature review. However, we describe a summary of the
process here, while deferring more details to [20].

Research questions: The following research questions
are addressed in this paper:

• RQ1: What are the characteristics of the environment
models used for MBT?

• RQ2: What are the advantages of using environment
models in MBT?

• RQ3: What formalism and tools have been used for
creating environment models in MBT?

• RQ4: What problems and challenges have been ob-
served by researchers using environment models in MBT?

Search terms: First, we selected a set of keywords from
the research questions and then defined the search term:

(”environment model” OR ”environment behavior model”
OR ”environmental model” OR ”environmental modelling”
OR ”environment modelling” OR ”environment modeling”
OR ”environmental modeling”) AND
(”model-based testing” OR ”model based testing”OR testing
OR test OR ”software testing”)

Sources of studies: The electronic libraries that we used
for searching are: ACM digital library, IEEE Explore, Sci-
ence Direct, Springer, and Google Scholar. The reason for
using Google Scholar is to ensure that we covered all avail-
able and relevant papers that are published by miscellaneous
publishers or shared in other databases.

Selection criteria: A set of inclusion and exclusion cri-
teria has been defined in order to collect relevant studies and
filter out irrelevant ones. The inclusion criteria were:

• The objective of the study should be to discuss, apply
or investigate the environment model methodologies
for the purpose of testing.

• The studies must be written in English.

• The study should be published in a journal or confer-
ence proceedings.

• The study should answer at least one of the research
questions.

• The study should be published between the years 2000
and 2014 (September).

The exclusion criteria are:

• The studies for which only extended abstracts were
available.

• The papers that are about environmental engineering
or biological studies or other studies outside the scope
of software engineering/testing.

• Master’s theses and Doctoral monographs. We as-
sumed that these works have been previously reported
and presented as conference or journal publications.

The inclusion and exclusion criteria were applied during the
selection process in parallel with reading the full papers.

Procedure of selecting primary studies:
Step 1. 297 studies were identified by using the search

terms in the electronic libraries.
Step2. We reviewed title and abstract of the identified

papers and selected 120 studies.

Step 3. We read the content of the selected studies and
applied the selection criteria. In parallel, we made a data
extraction form in our Excel spread sheet and recorded de-
tails of each study, such as authors, year of publication, etc.
In this step, we reduced the number of studies to 63.

Step 4. We added all relevant references that we found in
63 papers and applied Steps 1-3 on them (snowballing [10]).
From the references, we selected 5 more studies, so the total
number from this step reached to 68.

Step 5: We found that 7 papers were redundant, so we
removed them and 61 studies remained.

In this paper, we report the findings that we retrieved
by studying 61 studies, which we refer to them as primary
studies.

For each repository the number of selected papers in each
step is shown in Table 1.

Table 1: The number of selected papers in each
repository and in each step of SLR

Database Step1 Step2 Step3 Step4 Step5 %

ACM 33 12 7 8 7 11%

IEEE Explore 125 48 25 25 24 39%

ScienceDirect 26 7 4 4 4 7%

Springer 72 36 20 22 18 30%

Google Scholar∗ 41 17 7 9 8 13%

Total 297 120 63 68 61 100%

* Only papers that are published in miscellaneous repositories

The last column in Table 1 shows that a large percent-
age of the publications, 39%, comes from IEEE Explore (24
studies), followed by 30% papers from Springer (18 studies).
Google Scholar and ACM have 13% and 11% respectively (8
and 7 studies). Only 7% of the papers are selected from Sci-
ence Direct (4 studies). Here, Google Scholar has a smaller
percentage, since we removed the studies that were origi-
nally found in the other databases.

Figure 1 shows the number of primary studies from 2000-
2014 by five years interval. It can be noticed that in recent
years there has been increased attention towards environ-
ment modeling in MBT. This may be due to the growing rate
of the complexity of computer systems and applications and
subsequently the testing process is becoming more complex.
Thus, using environment models as a technique for reducing
the complexity is becoming more popular.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

2000-2004 2005-2009 2010-2014

Figure 1: Number of primary papers by five years
intervals

3. RESULTS
In this section, we present how the literature answers the

research questions. We start with the information about the
characteristics of environment models (RQ1), followed by an
overview of the role of environment models in MBT (RQ2).
Next, we present a list of modeling formalism, tools and
methodologies that are based on environment models (RQ3).
Finally, we look at the current limitations and challenges
that are reported by the literature (RQ4). Citations of the
selected papers are given in this section for further reading.

Out of 61 studies, 95% are empirical studies (i.e., exper-
iments on case studies). 5% were theoretical studies which
are based on providing concepts, formal definitions, method-
ology or references to other work.

Due to the lack of space, we only present a short overview
of our findings. More details of the analysis and references
to the primary studies are presented in [20].

3.1 RQ1 - What are the characteristics of en-
vironment models used for MBT?

All primary studies, either implicitly or explicitly, pre-
sented general characteristics of using an environment model
in their testing approaches. Below, we present them in more
detail:

• Specific aspects of the SUT: An environment model
can be specified in a way that it covers only certain part(s)
of the SUT in order to test those parts. Therefore, different
parts of a system can be tested separately. Besides, envi-
ronment models can be defined in a way that they contain
different test scenarios to violate specific functionality of the
SUT. Twelve out of 61 primary studies fall in this category.

• Non-determinism: Non-determinism is an important
feature in modeling complex systems with unpredictable en-
vironments. It is not a trivial task to model a system which
can accept and react to unpredictable conditions. Therefore,
using environment models can help in defining the contin-
uous and unpredictable interactions [7]. Non-deterministic
environment models give more options to choose among en-
abled test inputs. We found that 3 primary studies present
environment models with non-deterministic behavior.

• Include multiple entities: A SUT can have commu-
nications with different environment entities such as users,
other systems, or a part of the actual environment (i.g. tem-
perature or the sunlight). There are two ways in specifying
multiple environments in a test model: it can be defined
as a single model containing all environment interactions,
or it can be defined as multiple environment components.
In both cases, the environment model should capture all as-
sumptions of the environment. Also it should control the in-
teractions among the entities as well. Ten papers presented
their work using different environment entities.

• Dynamic and static behavior: An environment model
is able to support both static and dynamic behaviors of a
SUT. Static behaviors mostly indicate what are the inputs of
the environment model into the SUT and what type of data
and properties are supported by the environment model. In
change, dynamic behaviors specify the interactions of the en-
vironment model with the SUT, the timing properties and
the order of test inputs based on the current outputs dur-
ing test execution. Six papers used environment models to
specify dynamic and static behavior.

• Abstraction: A model is an abstract specification of
the real world. An abstract model can be defined by re-
stricting the range of input values, omitting some functions
or reducing the time span. Environment models can be mod-
eled to only focus on the more abstract interactions. Six
papers in our review emphasize on the importance of the
abstraction level of the test model when using environment
models.

• Control of time: Environment models generate timed
input traces, which can occur in the real environment, to
ensure that the system can satisfy specific timing proper-
ties. This characteristics can be beneficial in modeling and
testing real-time systems. Nine studies show that environ-
ment models can be used for testing systems with timing
properties, such as real-time systems.

• Explicit behaviors: Having separate models for the
SUT and its environment has advantages modifying each of
them separately. For instance, when environment models
are used in test generation, they typically encode test goals.
Whenever test requirements change, only the environment
models should be changed. Six papers argue that environ-
ment models used in MBT have explicit nature depicting
the expected behavior of the system.

• Source of knowledge for modeling: The source of
knowledge about an environment can come from the require-
ments, or from the assumptions of the test designers. The
requirements are a list of the specifications that a system
must follow and need to be tested. When the system spec-
ifications are not available, assumptions of the environment
can be observed from the actual environment and then for-
mally defined. From the literature, we found that seventeen
papers define their environment models from the require-
ments that are provided in the documentation of the SUT.
Also, sixteen papers explicitly claimed that they define their
environment via assumptions.

3.2 RQ2 - What are the advantages of using
environment models in MBT?

Based on the MBT taxonomy illustrated by Utting et
al. [23], testing of a system using MBT consists of three main
dimensions: modeling, test generation, and test execution.
Our findings from the primary studies show that applying
environment modeling can be beneficial in all these dimen-
sions. Environment modeling brings the following benefits:

• Test oracle creation: In MBT, a test oracle is usu-
ally encoded in the test model, and during test generation
it is assigned to the generated test cases. In complex sys-
tems, in order to reduce the complexity of testing and focus
on certain functionality, environment model can be used to
model certain test oracles. Three of the primary studies
discussed explicitly about test oracle generation using envi-
ronment models.

• Automated test generation: In online testing, it is
essential to automatically generate test cases. Automation
prevents human errors, which might occur with manual test-
ing, and reduces the time of generating test cases. A Test
harness (automated testing framework) can be built by a
set of test data to automatically run tests and monitor the
outputs. Environment model can be used in automation of
testing. Twelve papers present that environment models are
used to generate test inputs for the SUT during testing.

• Optimal test generation: Optimized test case gener-
ation is discussed as a benefit of using environment models
in testing, making the testing process more efficient. It is
caused by having support for abstraction in environment
modeling. This advantage is presented in five papers.

• Reducing the size of the state space: One of the
main issues in executing and simulating complex models (or
models with a wide range of inputs) is that the number of
symbolic states that should be explored increases during test
execution, which causes the system to run out of memory.
This problem is known as state space explosion. Reducing
the size of the state space can be done by using bounded
data types, resetting clock variables, or defining model in-
variants which limit the enabled states at a given time. Five
studies report that well-defined environment models signifi-
cantly reduce the search space by constraining the ranges of
certain test inputs.

• Early validation of requirements: Using explicit en-
vironment models can be helpful for validating the require-
ments at the early stage of the system design. Inconsisten-
cies in specifications can be detected when building the mod-
els. In addition, they can be used to guide the simulation of
early prototypes of the SUT. Two primary studies discuss
this issue as an advantage of using environment models.

• Re-usability: Different SUTs or different versions (re-
gression) of the same SUT can be tested using a single en-
vironment model (see for instance [4]). Generally, environ-
ment models will be changed relatively rarely unless some
errors originating from requirements are discovered during
testing. Therefore, the modeling efforts can be reduced by
using the same models in different testing contexts. Five
primary studies report this advantage.

• Different testing types: Our findings show that en-
vironment models can be applied in different testing ap-
proaches, such as safety testing (5 studies), robustness test-
ing (2 studies) and regression testing (3 studies). Safety and
robustness can be verified by creating erroneous test inputs
to the SUT. Moreover, since environment models are able
to test certain parts of the SUT, applying them in regres-
sion testing can improve the testing effort. Also, environ-
ment models have been studied in Aspect Oriented Model-
ing (AOM) [6] where are known as context models. In AOM,
an environment consists of some smaller models, which com-
municate with each other and with the SUT.

• Applicable into all testing levels: The primary stud-
ies show that environment models can be applied at all test-
ing levels: system, integration, and unit. The majority of
the studies describe applying environment modeling at the
system level (43 studies) and few number of them report us-
ing environment models at the integration level (3 studies)
and the unit level (6 studies).

3.3 RQ3 - What formalisms and tools have been
used for creating environment models in
MBT?

We detected a large range of modeling languages and va-
riety of modeling and testing tools from the primary studies.
In this section, we provide the list of the most frequent lan-
guages and tools, their references, and briefly discuss some
of the most referenced tools.

• UML: The majority of the studies use the Unified Mod-
eling Language (UML) [19] as the modeling language. In our
review, 20 primary studies are built on UML either by using
its standard behavioral diagrams such as sequence and state
diagrams, or UML profiles such as Fondue [16], MARTE [1],
SysML [8] and MbRTE (Executable model-based robustness
testing environment) [24]. The structure of the environment
is a model that describes all various entities and their rela-
tionships (also known as a domain model in the literature)
and consists of one or more environment components. The
domain model provides the information on all relationships
and properties between the components.

• Timed-Automata: Six primary studies present the
MBT approaches using Timed Automata (TA) [3]. The tools
used with TA are UPPAAL, its an online testing tool (UP-
PAAL TRON) and Maude. UPPAAL is a model-checker
which allows simulation and verification of TA-based speci-
fications. Environment models can be specified in UPPAAL
as deterministic or non-deterministic. UPPAAL-TRON is
an online testing tool that generates test cases from TA and
executes them against the SUT [14]. Maude is a tool based
on supporting equational logic and rewriting logic [15]. It
represents model generation rules by applying rewriting the-
ories, instead of describing a model directly. It can be ap-
plied for modifying the TA model.

• AEG: Six primary studies present their experiments on
testing with Attributed Event Grammar (AEG) [4], which
is used for testing real-time and embedded systems. Event
grammars are text-based and are appropriate for specifying
the dynamic environment with an arbitrary number of ac-
tors and events. Models based on event grammars can be
designed either for the environment or for the environment
and the SUT. They can also contain hazardous states to as-
sess the safety of the SUT. The environment models can be
used to automatically generate test cases.

• Petri Nets: Four primary studies are based on Petri
Nets, using the TINA tool (TIme Petri Net Analyser) [5].
TINA is a software environment for the editing and analysis
of Petri nets and Timed Petri nets. The environment mod-
els in TINA have the same properties as the models defined
in UPPAAL. Similar, to UPPAAL, the environment model
supports both non-deterministic and deterministic assump-
tions.

• Lutin: Three primary studies discuss testing with the
Lutin language [18]. Lutin is a test-based language for spec-
ifying random reactive behaviors, specially developed for
modeling and testing reactive systems. The Lurette test
generator is used for random or guided test case generation.

• BEG: Two primary studies show how environment mod-
els can be designed in the Bandera Environment Generator
(BEG) [21], a tool that automates the generation of environ-
ments for model-checking Java programs. The tool is able
to decompose a given Java program into small modules and
create the environment models out of it.

Table 2 shows all formalism and modeling tools that have
been used for environment modeling.

Table 2: Formalism and tools for environment mod-
eling
Formalism/ Languages Tools # Studies

UML

UML tools

10
UML/MARTE 5
UML Fondue 2
UML/SysML 1
ESML 1
MbRTE 1

Timed Automata
UPPAAL 4
UPPAAL TRON 1
Maude 1

Event Grammar AEG 6
Petri nets TINA 4
Lutin Lurette 3
Java BEG 2
QR QR models 2
TSML AUTOSAR 1
Esterel Esterel 1
SPIN Promela 1
TML JUMBL 1
Markov model Markov model 1
TTCN-3 TTCN-3 1
SLAM SLAM 1
DoB Degree-of-Belief(DoB) 1
BLAST BLAST 1

3.4 RQ4 - What problems and challenges have
been observed by researchers using envi-
ronment models in MBT?

We identified several studies that describe problems in
MBT using environment models. Also, they identify re-
search areas in MBT for further investigations.

• Lack of methodology for environment modeling:
Many of the identified studies use environment models for
testing, but without discussing explicitly how they are cre-
ated. Methodological aspects of creating environment mod-
els are only discussed in a limited number of papers (e.g., in
[9] for UML models). Kishi and Noda emphasize the impor-
tance of having a strategy for defining environment model
in aspect oriented approaches [12]. Dividing an environ-
ment model into several sub-models requires a well-defined
methodology as well.

• Test adaptation is manually implemented: The
studies show that although once an environment model is
specified, then the test generation will be automatic. Yet
creating the test adapter which can transform the model-
level test inputs into executable test cases is manual and
error prone process (e.g. in [17]).

• Multiple test adaptations: In systems with multi-
ple environment entities, multiple test adaptations are re-
quired [2]. The reason is that the interactions among the
environment entities as well as interactions between the en-
vironments and the SUT are usually complex.

• Lack of extensive experiments: The results of our
findings show that environment modeling is still immature
in some aspects of MBT. For instance, reports have shown

that environment models are good choices in robustness test-
ing [24] and regression testing. However, there are very few
studies which applied the environment models in practice.
Moreover, reusability of environment model can be investi-
gated more and other advantages of using environment mod-
els can be studied in more details.

• Complex specifications: It is still a challenge to ex-
pand the environment modeling in complex systems and for
more complicated environments. As it is noted by Auguston
et al., more methods are required in order to evaluate en-
vironment modeling in large and complex SUTs with large
number of test cases automated by the environment [4].

4. VALIDITY THREATS
There are four main threats related to our SLR. One is

related to studies that we might have missed in our search.
Despite the fact that we followed all the steps mentioned in
the systematic review process, we cannot be certain that all
of the approaches that use environment models in MBT have
been identified. Some exclusions were made during reading
titles and abstracts, which could have removed studies with
relevant content. However, in the second round of the search
(snowballing), we made the effort of finding all the studies
that were we did not find (or excluded) in the initial round.

Next threat is that there might be some studies that can
not be found in any of the selected repositories. We are
aware that there are some repositories (e.g. Scopus) that
may have more collections of studies. Nevertheless, we con-
verged our search into those repositories to which we could
have access and in addition we included Google Scholar to
find additional works.

Another threat is that the measurements may not be re-
liable. This can be caused from lack of reliability in the
searching databases, or from the lack of metrics of compar-
ing and selecting the papers. We made all efforts to obtain
all published studies that are available in the databases. For
each resource, we recorded the details and the information
about how and where we searched, in order to make the
search repeatable in the future. Moreover, as mentioned in
the search and selection process, we searched several dif-
ferent repositories as well as books, conference proceedings
and journals, where the most updated works and tools are
presented.

Moreover, judgmental errors may have happened during
the classification of the papers. We followed the terminolo-
gies and classifications that are defined by the literature.
Besides, for each classification, we provide the referenced
definition, to prevent ambiguity. Based on the quality as-
sessment that we presented in [20], more than 84% of the
studies are evaluated as high or very high quality. Thus, the
reliability of our measurements can be acknowledged.

5. DISCUSSION AND CONCLUSIONS
In this SLR, we defined research questions about environ-

ment modeling in MBT. We searched the keywords in differ-
ent resources based on the defined inclusion and exclusion
criteria. Sixty-one primary studies are found answering the
research questions and the data are extracted and analyzed.

We identified the main characteristics of an environment
model and provided a list of its advantages that are reported
in the literature. From the characteristics and advantages,
we clarified that using environment models can be helpful

in robustness testing, safety testing and regression testing.
Also, we showed that in what modeling languages environ-
ment models have been studied.

The limitations and current challenges in testing with en-
vironment models were summarized as well. The studies
report that although the environment modeling helps in the
automation of test case generation, yet some case test cases
are written manually. Also, the transformation from the
symbolic test cases to test scripts is still a manual process.

More research is needed to develop some statistical meth-
ods to evaluate and analyze the applicability of environment
models in MBT.

From the literature, we clearly conclude that there is still
plenty of potential for investigating environment modeling
and automating test generation specially w.r.t. non-functional
testing approaches. Extensions of the current methodologies
are needed to overcome these limitations.

6. REFERENCES
[1] The UML Profile for MARTE: Modeling and Analysis

of Real-Time and Embedded Systems.
http://www.omgmarte.org/, 2013. [Online; accessed
22-December-2014].

[2] N. Adjir, P. De Saqui-Sannes, and K. Rahmouni.
Testing Real-Time Systems Using TINA. In M. Núñez,
P. Baker, and M. Merayo, editors, Testing of Software
and Communication Systems, volume 5826 of LNCS,
pages 1–15. Springer Berlin Heidelberg, 2009.

[3] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[4] M. Auguston, J. B. Michael, and M.-T. Shing.
Environment behavior models for automation of
testing and assessment of system safety . Information
and Software Technology, 48(10):971 – 980, 2006.
Advances in Model-based Testing.

[5] B. Berthomieu and F. Vernadat. Time petri nets
analysis with TINA. In Quantitative Evaluation of
Systems, 2006. QEST 2006. Third International
Conference on, pages 123–124. IEEE, 2006.

[6] T. Elrad, O. Aldawud, and A. Bader. Aspect-oriented
modeling: Bridging the gap between implementation
and design. In Generative Programming and
Component Engineering, pages 189–201. Springer,
2002.

[7] G. Fraser and F. Wotawa. Test-Case Generation and
Coverage Analysis for Nondeterministic Systems Using
Model-Checkers. In International Conference on
Software Engineering Advances, pages 45–45, Aug
2007.

[8] S. Friedenthal, A. Moore, and R. Steiner. A practical
guide to SysML: the systems modeling language.
Elsevier, 2011.

[9] M. Iqbal, A. Arcuri, and L. Briand. Environment
Modeling with UML/MARTE to Support Black-Box
System Testing for Real-Time Embedded Systems:
Methodology and Industrial Case Studies. In
D. Petriu, N. Rouquette, and Ø. Haugen, editors,
Model Driven Engineering Languages and Systems,
LNCS, pages 286–300. Springer Berlin Heidelberg,
2010.

[10] S. Jalali and C. Wohlin. Systematic Literature
Studies: Database Searches vs. Backward Snowballing.

In Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM, pages 29–38, New York, NY,
USA, 2012. ACM.

[11] G. Karsai, S. Neema, and D. Sharp. Model-driven
architecture for embedded software: A synopsis and
an example. Science of Computer Programming,
73(1):26 – 38, 2008. Special Issue on Foundations and
Applications of Model Driven Architecture (MDA).

[12] T. Kishi and N. Noda. Aspect-oriented context
modeling for embedded systems. Early Aspects:
Aspect-Oriented Requirements Engineering and
Architecture Design, page 69, 2004.

[13] B. Kitchenham, O. Pearl Brereton, D. Budgen,
M. Turner, J. Bailey, and S. Linkman. Systematic
Literature Reviews in Software Engineering - A
Systematic Literature Review. Inf. Softw. Technol.,
51(1):7–15, Jan. 2009.

[14] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou.
Testing real-time embedded software using
uppaal-tron: An industrial case study. In Proceedings
of the 5th ACM International Conference on
Embedded Software, EMSOFT ’05, pages 299–306,
New York, NY, USA, 2005. ACM.

[15] G. Li, S. Yuen, and M. Adachi. Environmental
simulation of real-time systems with nested interrupts.
In Theoretical Aspects of Software Engineering, 2009.
TASE 2009. Third IEEE International Symposium on,
pages 21–28, July 2009.

[16] L. Lucio, L. Pedro, and D. Buchs. A methodology and
a framework for model-based testing. In Rapid
Integration of Software Engineering Techniques, pages
57–70. Springer, 2005.

[17] M. Mews, J. Svacina, and S. Weissleder. From
AUTOSAR Models to Co-simulation for MiL-Testing
in the Automotive Domain. In International
Conference on Software Testing, Verification and
Validation, pages 519–528, April 2012.

[18] R. Pascal, R. Yvan, and J. Erwan. Lutin: A language
for specifying and executing reactive scenarios.
EURASIP Journal on Embedded Systems, 2008, 2008.

[19] J. Rumbaugh, I. Jacobson, and G. Booch. Unified
Modeling Language Reference Manual, The. Pearson
Higher Education, 2004.

[20] F. Siavashi and D. Truscan. A systematic literature
review on environment modeling techniques in
model-based testing. Technical Report 1129, 2015,
http://tucs.fi/publications/view/?pub_id=tSiTr15a.

[21] O. Tkachuk, M. Dwyer, and C. Pasareanu. Automated
environment generation for software model checking. In
International Conference on Automated Software
Engineering, 2003. Proceedings. , pages 116–127, Oct 2003.

[22] M. Utting and B. Legeard. Practical model-based testing: a
tools approach. Morgan Kaufmann, 2010.

[23] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of
Model-based Testing Approaches. Softw. Test. Verif.
Reliab., 22(5):297–312, Aug. 2012.

[24] S. Yang, B. Liu, Shihai, and M. Lu. Model-based
robustness testing for avionics-embedded software .
Chinese Journal of Aeronautics, 26(3):730 – 740, 2013.

