
On Mutating UPPAAL Timed Automata to Assess Robustness of
Web Services

Faezeh Siavashi1, Dragos Truscan1 and Jüri Vain2

1Faculty of Science and Engineering, Åbo Akademi University, Vattenborgsvägen 3, 20500, Åbo, Finland
2Department of Computer Science, Tallinn University of Technology, Akadeemia tee 15A, Tallinn, Estonia

{faezeh.siavashi, dragos.truscan}@abo.fi, juri.vain@ttu.ee

Keywords: Web service composition, Specification mutation, Robustness testing, Model-Based Testing, UPPAAL, TRON

Abstract: We present a model-based mutation technique for testing the robustness of Web service compositions. Specifi-
cations of a Web service composition is modeled by UPPAAL Timed Automata and the conformance between
the model and the implementation is validated by online model-based testing with the UPPAAL TRON tool.
By applying a set of well-defined mutation operators, we generated model mutations. We validate all generate
mutants and exclude the invalid ones. The remaining mutants are used for online robustness testing providing
invalid test inputs and revealing vulnerabilities of the implementation under test. We experimented our method
on a Booking System web service composition. The results show that from a total of 1346 generated mutants,
393 are found suitable for online model-based testing. After running the tests, 40 of the mutants revealed
3 new errors in the implementation. The experiment shows that our approach of mutating specifications is
effective in detecting errors that were not revealing in the conventional conformance testing methods.

1 INTRODUCTION

Recently, the popularity of web services has increased
in the industry. Web services are software appli-
cations that support machine-to-machine interactions
over the Internet. They are accessible via ubiquitous
protocols while expressing a well-defined interface.
This advantage opens the door to new business oppor-
tunities by making it easy to communicate with part-
ner services and by covering a wider range of users.
Web Service Composition (WSC) is the combination
of different services to satisfy a new service. Exam-
ples of using WSC can be seen in many web appli-
cations that enhance their services by using utilities
that are offered by famous companies such as Google,
Amazon, and Facebook (Sheng et al., 2014).

One principle characteristics of a WSC is its dis-
tributed resources, where other services or client web
applications access to information by message proto-
cols. This kind of systems should be robust against
erroneous inputs. In this context, testing WSCs plays
an important role. Not only the expected behavior of
the implementation under test (IUT) should be tested,
but also the IUT should not contain any unexpected
behavior. The functionality of the system can be
checked by running test cases derived from the spec-
ification while finding unexpected behaviors of the

system can be done by robustness testing, which exe-
cutes invalid inputs and detects the vulnerabilities or
unexpected behavior of the IUT.

Defining test inputs by modeling the specifica-
tions is preferred over the manually written test scripts
since the machine can verify the correctness of the
models and automatically generate the test inputs.
Moreover, it supports more extensive and systemat-
ically constructed sets of test cases.

One way to create invalid test inputs is using mu-
tation testing, where a set of well-defined mutation
operators systematically create syntactic changes to
the specifications and produce mutants. This con-
cept was primarily applied for mutating the source
code of a system, however, it has also been applied
to different modeling languages as well (Budd and
Gopal, 1985). Mutants generate invalid scenarios as
test cases, which are executed against the IUT. If the
IUT respects the mutation without raising an excep-
tion, it means that its behavior is inconsistent with its
specification (i.e, the IUT accepts an unspecified se-
quence of inputs).

In this paper, we propose an approach for robust-
ness testing of WSCs using UPPAAL Timed Automata
(UTA). The conformance between the model and the
IUT is first checked via UPPAAL TRON, an online
testing tool which supports both test generation and



test execution. In online testing, only one test input
is generated and executed on the IUT at a time, and
based on the test output the next test input will be se-
lected.

As a first contribution, we introduce a testing
method, which derives mutants from the specification
and executes them via online testing. We use a selec-
tion of the mutation operators that are defined in the
literature and slightly change them to generate mu-
tants that are suitable for our work.

As a second contribution, in our methodology, we
add verification properties to mutated model segments
to ensure reachability of the mutated elements at run-
time. This step is supported by a mutation genera-
tor tool, which implements selected mutation opera-
tors and performs early verification of each mutant. If
a mutant does not pass the verification properties, it
cannot be used for online testing, hence, we eliminate
them. Furthermore, to ensure that the mutated part
will be executed during the testing process, we mon-
itor whether the mutated elements are reached during
test execution.

As a third contribution, we empirically evaluate
which existing mutation operators for UPPAAL timed
automata are applicable to online testing. We define
two formulas to measure the efficiency of mutation
operators as well as their rates of fault detection.

The remainder of this paper is organized as fol-
lows: In Section 2, we briefly review the background
studies. We present the steps of our methodology on
specification mutation testing in Section 3 and selec-
tion criteria for valid mutants. The experiment is pre-
sented in Section 4. The results are discussed and pos-
sible improvements are suggested in Section 6, and
the threats of validity of the proposed method are dis-
cussed in Section 7. We review the literature for re-
lated work in Section 8. Finally, we conclude our
study and present future work in Section 9.

2 Background

We first review UPPAAL tool set, and introduce the
conformance testing with UPPAAL TRON and the
concept of specification mutation testing.

2.1 UPPAAL Timed Automata (UTA)

UPPAAL is a model-checker tool for modeling, simu-
lation, and verification of real-time systems using an
extended version of timed automata called UPPAAL
timed automata (UTA) (Beharmann et al., 2004). A
timed automaton is a finite state machine with loca-
tions, actions, and clocks.

Figure 1: Example of an UTA model

In UPPAAL, a system is designed as a network of
several such timed-automata called processes work-
ing in parallel. A process can be executed individu-
ally or in sync with another process. Synchronization
of two processes is possible by using input/output ac-
tions (denoted as ”!” for emitting and ”?” for receiv-
ing synchronizations, respectively). The processes
consist of locations and edges. The state of the system
can be shown by the locations of all processes, their
clock values, and their variable values. The edges be-
tween locations represent state transitions including
clock resets. UPPAAL is extended further with global
and local to some process variables that can be of type
integer, boolean, and clock.

Transitions can be constrained by predicates (over
the clocks or variables) known as guards, which de-
fines when the corresponding edge is enabled. The
state transitions are specified on edges as variable up-
dates. A location can be restricted over the clock in-
variants, which specify how long the system can stay
in that location. If there is more than one enabled edge
at a time, then one of them will be randomly selected.
This means that UPPAAL supports non-deterministic
modeling, which gives more freedom to represent be-
haviors, especially in systems with random discrete
events (Hessel et al., 2008).

An example of a UTA model is shown in Figure 1.
The model consists of two automata modeling the be-
havior of a system under test and of its environment.
The communication between the system and its envi-
ronment is modeled using channel synchronizations
and shared variables.

The UPPAAL model-checker uses a simplified ver-
sion of TCTL (Alur et al., 1990), which enables to
exhaustively verify the models w.r.t their specifica-
tions. The query language consists of state formu-
lae and path formulae. State formulae (ϕ) is an ex-
pression that describes the properties of an individ-
ual state while path formulae can be used to specify
which properties (like reachability, safety, and live-
ness ) hold over a given path (Beharmann et al., 2004).

If there is a state in the model that has no enabled
outgoing transitions, then the model is said to be in
a deadlock. A � not deadlock query, can be used
to verify that for all paths in the model, there is no
deadlock state.



The safety property checks that ”something bad
will never happen”. In UPPAAL it can be expressed
in the form A � ϕ (ϕ should be true in all reachable
states) and E � ϕ (there should exist a maximal path
such that ϕ is always true).

The liveness property determines that ”something
will eventually happen” and it is shown by A ♦ ϕ (ϕ
is eventually satisfied) and ϕ φ (whenever ϕ is sat-
isfied, then eventually φ will be satisfied).

Reachability properties validate the basic behavior
of the model by checking whether a certain property
is possible in the model with the given paths. The
reachability can be expressed in the form of E ♦ ϕ

(there is a path from the initial state, such that ϕ is
eventually satisfied along that path).

2.2 Online Model-Based Testing

There are two distinct approaches in testing: offline
and online testing. In offline testing, the complete test
scenarios and test oracle are created before the test
execution, whereas online testing is a combination of
test generation and execution: only one test input at
a time is generated and executed and the next test in-
put depends on the current test output (Larsen et al.,
2005b). This continues until the test termination cri-
teria are satisfied or an error occurs. Usually, the test
stimulus is selected randomly from the enabled test
inputs. In online testing, the state-explosion problem
is reduced because only a portion of the state space is
needed to be calculated and stored at each time. Also,
the non-determinism of systems can be simulated on-
the-fly by random selection of the tests.

In this study, we use the online Model-Based Test-
ing (MBT) UPPAAL TRON, which is an input/output
conformance testing tool for testing real-time systems
based on the rtioco conformance relation (Larsen
et al., 2005a). An UTA model typically consists of
two partitions: a system partition and an environment
partition. The abstract test inputs generated from the
environment are translated into executable test inputs
by using an adapter, which is an interface between
TRON and the IUT. The outputs of the IUT also trans-
lated to model-level test outputs. Thus, the I/O con-
formance of the model and of the IUT is observed by
TRON.

The result of online testing with TRON can be
passed, failed or inconclusive. An inconclusive test
result means that the environment model cannot be
updated since the IUT output is unexpected or it has a
delay in providing test output.

2.3 Specification Mutation Analysis

Specification mutation analysis is used to design
tests to evaluate the correctness and consistency of
the specification and the program (Budd and Gopal,
1985). When the mutation analysis is applied to
the specification a set of mutation operators create
slightly altered versions (mutants) of the specifica-
tion. The tests will be generated from the mutated
specification and used to assess whether the IUT is
accepting the faulty tests.

In the literature (Belli et al., 2016) the following
types of mutants are defined:

Killed: A mutant is said to be killed if tests gener-
ated from it fail against the implementation, under the
precondition that the tests generated from the original
model have passed.

Alive: A mutant is called alive if the IUT passes
all test cases generated by the mutant. Alive mutants
can be divided into two types:

Equivalent: An alive mutant is semantically
equivalent if it manifests the same behavior as the
original model, whereas they are syntactically differ-
ent.

Non-equivalent: An alive mutant is known as
non-equivalent if it does not have the same behavior
as the original model, however, the differences can-
not be detected during testing. These mutants indi-
cate that the implementation is too permissive and is
not able to detect the invalid inputs.

Our goal of using mutation for testing is to find
the non-equivalent alive mutants since they show
that there might be some inconsistencies between the
specification and the implementation. Differing be-
tween non-equivalent alive mutants from equivalent
mutants is done manually.

3 Methodology

An overview of our method is given in Figure 2. It is
divided into five phases.
Design and Conformance Testing is based on our
previous work on design and validation of WSCs
(Rauf et al., 2014), where we presented an approach
to design web services and their behavioral interfaces
in UML. We transformed the design models from
UML to UTA for verification and testing the imple-
mentation of a WSC.

The participating web services and the user behav-
ior are modeled as distinct timed automata. The user
behavior supports non-deterministic choices, as well
as timing criteria.



Figure 2: Our approach of Specification Mutation Testing

The model is verified according to the criteria and
timing constraints that are given in the requirements
of the WSC. The verification is done using TCTL. For
instance, we ensure that the model is deadlock-free
and all states of the system are reachable meaning that
the model can reach all test goals. These verification
rules ensure that the model is usable for online testing.

With TRON, an online testing session is estab-
lished and the conformance of the implementation is
checked. External errors in IUT or in the model are
fixed.
Mutation Generation: Mutation operators for TA
have been formally defined and presented by two
studies in the literature (Aboutrab et al., 2012; Aicher-
ing et al., 2013) and are shown in Table 1.

By summarizing Table 1, the following mutations
can be applied to the different elements of TA.

• Guard: A guard over clock variables can be mu-
tated in three ways: by widening, restricting, or
shifting the time value. If the guard contains other
variables than the clock variables, it can be mu-
tated by negating the predicate.

• Invariant: An invariant can be changed by shifting
it to a greater or smaller value. E.g., add/subtract
value 1 to/from the value of the invariant.

• Action: Name of I/O actions can be changed to
other defined actions. Also, changing their source
and target locations will manipulate the behavior
of the model and so can be used as a mutant.

• Location: A location can be made a sink location,
which means that it accepts all other actions. It
simulates a trap condition, where all actions in the
process are accepted in the same location. Re-
moving a location and adding a new location are
other mutations that can be applied in TA.

Table 1: Mutation operators of timed-automata

(Aboutrab et al., 2012) (Aichering et al., 2013)
Restricting Timing Constraints (RTC) Change guard
Widening Timing Constraints (WTC)

Shifting Timing constraints (STC)
- Change invariant

Resetting a Clock (RC) Invert reset
Not-Resetting a Clock (NRC)

Exchanging Input Actions (EIA) Change action
Exchanging Output Action (EOA)

Transferring Destination Locations (TDL) Change Target
- Change source
- Negate guard
- Sink location

We have restrict some of the operators in such
a way that they are suitable for online testing with
TRON. As we mentioned earlier, the IUT and its envi-
ronment (user, or other systems) are specified in sepa-
rate automata and they communicate by synchroniza-
tion of input/output transitions (actions). All transi-
tions between the IUT and its environment are ob-
servable by TRON. Based on the type of the input
or output, TRON controls which action can be exe-
cuted at a time. The mutation operators for transitions
without synchronizations (or internal transitions) will
not be observed by TRON. Therefore, we restrict the
mutation operators to only be applied to observable
synchronizations.

Additionally, we adapt the mutation operators to
be used for testing web services. For instance, for
each HTTP request message to a web service, we
have a corresponding HTTP response message and
they are modeled as a pair of input/output actions.
The requests are defined as input actions coming from
the user (or the environment). One mutation option
would be to change the name of the input actions,
which mutates the sequence of the HTTP request
messages. However, defining mutation for the HTTP
response messages (i.e, output actions) cannot help in
mutation analysis since the IUT generates them and
we can only observe them. For instance, for a booking
request, the WSC either accepts or rejects it and both
of these responses cannot be mutated in the model-



level. Therefore, we limit the mutation operators to
change the name of input actions only.

Finally, we do not change the direction of the syn-
chronizations (i.e, ”?” to ”!”) since, in our modeling
approach, the requests from the users are modeled as
input actions (”?”). Changing the inputs into output
actions means that the requests should be changed
into responses and it would not allow test generation
at all.

Below we present a list of operators that we se-
lected from Table 1 for our methodology.

1. Change Name of Input action (CNI) replaces
the name of an input action (denoted by ”?”) with
the name of other actions. Thus, the expected se-
quence of the inputs to the implementation will be
different.

2. Change Target (CT) changes the target of an ac-
tion to other location. This operator can break the
flow of test inputs and violate the state of the IUT.
Both input and output actions can be mutated by
this operator.

3. Change Source (CS) changes the source location
of an action to other locations. Similar to CT, this
operator gives a different I/O sequence.

4. Change Guard (CG) changes the clock constants
in guards by a random value. It is effective for
mutating the condition of enabling an action.

5. Negate Guard (NG) negates guards, which may
result in omitting some paths of the test model.

6. Change Invariant (CI) shifts the values of invari-
ant conditions to a different range, extending or
restricting the constraints of the model. It can
cause actions fire earlier (or later) that the ex-
pected time.

7. Invert Reset (IR) deletes the resetting of the
clock and moves it to one action before or after. It
means that the resetting is flipped one clock ear-
lier or later.

Figure 3 shows the generated mutants of a model
and sample mutants using the above operators. In our
approach, we only apply first order mutation. That is,
a mutated model contains only one mutated segment
based on a single operator.

Select Valid Mutants: In our approach, we en-
force that every time a mutated model is generated,
we create a corresponding reachability rule to check
whether it is a valid mutant for online testing or not.

In UPPAAL, the reachability property is defined
for locations, thus, when an action is mutated, we de-
fine the reachability property for the target location
of that action. For instance, in Figure 3(b), the in-
put action a? is mutated into c?, hence, the reacha-

bility for this mutation should be defined for its tar-
get location (i.e, l). For example, in Figure 3(b),
we have E � l, which verifies that the mutation can
be executed. An alternative to the reachability rule
would be to define a trap variable (Gargantini and
Heitmeyer, 1999) and set its initial value to false. For
the mutated action, then, the variable will be updated
to true, and so the reachability can be achieved by
checking if the variable eventually will be set to true
(E � trap == true). One can use trap variables to
ensure that the mutation part of the model will be
reached during the test execution as well. In the case
that the minimum repetitive execution of mutation is
needed the boolean trap variable should be replaced
by an integer counter variable count and the reach-
ability condition with E � count >= const. Those
models that pass the verification process are consid-
ered as valid mutants and can be executed against the
IUT.

Having verification rules offers two main advan-
tages. First, it reduces the number of mutants used for
testing by eliminating false negatives which cause se-
mantic and syntactic errors. Secondly, it avoids hav-
ing traps in the model, which may increase the size of
the state space.

Mutation Testing: Each valid mutant model is
executed in a testing session with UPPAAL TRON.
The verdict of an online testing session with TRON
can be passed, failed, or inconclusive. In TRON, an
inconclusive verdict indicates that either the observed
output from the IUT is not valid, or there is an unac-
ceptable delay in sending inputs. We consider that the
mutants that generate inconclusive test cases, exhibit
different behavior than the original model and thus
they are considered as killed. If the IUT passes the
test, then two different scenarios are possible: either
the mutant is an equivalent model to the original one
(i.e, equivalent mutant), or not equivalent, but there is
a defect in the implementation that allows mutated in-
puts (i.e, non-equivalent mutant). We defer automatic
equivalence detection for future work. When execut-
ing the mutants we assume implicitly that these test
runs are exhaustive w.r.t. the mutation, i.e. all muta-
tions injected are also covered by these test runs.

Evaluation: The last phase of our methodology
is to evaluate the result by reasoning about the unex-
pected behaviors that the IUT shows during testing.
The non-equivalent mutants generate different invalid
test inputs, thus, these test inputs are manually eval-
uated to find the correlations between them and the
actual faulty behaviors.

Tool Support: We implemented the selected mu-
tation operators as a tool in order to generate the mu-
tants automatically. The tool uses UPPAAL TA XML



(a) The original model (b) CNI: Change the name of
input action

(c) CT: Change Target (d) CS: Change Source

(e) CG: Change Guard (f) NG: Negate Guard (g) CI: Change Invariant (h) IR: Invert Reset
Figure 3: A model with examples of mutants generated by the selected mutation operators.

format as input. From a given model, the tool gener-
ates mutants based with the selected mutation opera-
tors. In addition, it adds reachability and deadlock-
freeness rules to the mutants and verifies them with
the verifyta tool, which is a command-line verifica-
tion tool for UPPAAL models.

4 Experiment

We exemplify our approach using the case study pre-
sented in (Rauf et al., 2014). In this section, first, we
review the case study, and then we apply the specifi-
cation mutation method.

4.1 Case Study

For evaluation, we used a WSC that is implemented in
REpresentational State Transfer (REST) (Richardson
and Ruby, 2008) architectural style. The composition
of web services is based on a central service which
orchestrates other services. This service synchronizes
the execution of different methods on the web ser-
vices participating in the composition and satisfies the
specifications. The central web service (i.e, the com-
position service) can invoke other services while ex-
hibits timed behaviors in a RESTful architecture.

The WSC offers a Hotel Booking System (HBS),
including a Card service, a Hotel service, and a Book-
ing service. This case study is specified, implemented
and verified in our previous work in details in (Rauf
et al., 2014). The Card service deals with payments
and refunds for booking requests, whereas the Hotel
service keeps track of the details of booking records
such as name, the number of days and type of room,
also giving access to the hotel manager for accept-
ing or declining the booking requests. The Booking
service is responsible for communications with cus-
tomers, the Hotel, and the Card services. From the

specification of HBS, we define the following scenar-
ios:

Booking: A customer can search for a room in a
hotel by accessing the booking service. He books the
room (if it is available) and that booking is reserved
by the Booking service for 24 hours.

Payment: If the user does not pay within 24 hours
then the booking will be automatically canceled. If
the booking is paid, then the Booking service invokes
Card service and waits for the payment confirmation.

Hotel Confirmation: When the payment is con-
firmed, Booking service invokes the Hotel service to
confirm the booking of the room. The Hotel service
can confirm and assign a room for the customer, or it
can reject the request.

Refund: If the Hotel service does not respond
within 1 day, rejects the request, or does not con-
firm at all, the booking is canceled and the user is
refunded.

Check-in: If the Hotel service confirms, then a
booking is made with the hotel. The user now can
check in to the hotel.

Hotel payment release: The payment is not re-
leased to the hotel until the user checks in. When
the user checks in, the Booking service releases the
money to the hotel and the booking is marked by the
hotel as paid.

4.2 Model

From the above descriptions, we have specified the
system as a UTA model which consists of four au-
tomata: three for the web services and one for the
environment. Figure 4 shows the models of the case
study and the interactions between the services and
the environment. In this experiment, we mutate only
the Booking service that is larger and handles the
communications among other services and users. The
Booking service model consists of 33 locations, 39
actions, 4 guards, and 4 clock invariants.



Table 2: Result of mutation testing

Name Generated Valid Killed Alive

CNI 180 28 24 3
CT 567 314 242 72
CS 567 38 6 32
CG 12 6 6 0
NG 4 1 1 0
CI 12 4 4 0
IR 4 2 2 0

Total 1346 393 285 107

After verifying the model, we developed an
adapter for translating the model-level inputs into
HTTP requests which are sent to the IUT, and then,
we generated tests using UPPAAL TRON. The use
of online MBT proved beneficial as our implemen-
tation under test exhibits non-deterministic behavior.
For instance, in the scenario of Hotel Confirmation,
there are three possible cases from the hotel: con-
firmation, rejection, or no response. Any of these
choices are given the same chance to be executed with
non-deterministic modeling.

4.3 Generating valid mutants

Table 2 shows the numbers of mutants generated from
each mutation operators. Since the Booking service
represents the composition of different web services
as well as communicating to the user, it is a good can-
didate to be mutated. The mutation generator pro-
vided 1346 mutants, from which 393 of mutants were
valid (i.e, passed the verification rules). The total time
for generation and validation of all mutants took 258
seconds in a 4 cores machine running the Ubuntu 14.4
Server operating system. As the numbers show, hav-
ing verification in the early stage of testing would help
in removing non-relevant mutants and hence the to-
tal time of the test execution will be considerably re-
duced.

As it can be seen in Table 2, a majority of 314
valid mutants are generated by the CT operator, in
contrast with 38 valid mutants provided by the CS and
28 from the CNI. The other mutation operators have
a small share of valid mutants.

4.4 Mutation Testing

We set the test session for executing tests 3 min-
utes for each mutant model covering all actions in
the model ensuring that the mutated element was also
covered at runtime. It roughly took 7 hours to com-
plete running all valid mutants. The time was suf-
ficient for covering all valid mutations of interest.

Therefore, it was postulated that if no failure is de-
tected during this time, and the test is passed, then the
mutant is alive.

5 Results

We check whether the alive mutants were able to show
any fault in the behavior of the web services and
which of the mutation operators generates more ef-
fective mutations in online testing.

We also present two formulas for the efficiency
of mutation operators showing how many of the alive
mutants address faults. We need, therefore, to sep-
arate the equivalent mutants from the alive mutants.
The analysis is based on the reasoning why the mu-
tated inputs could not be detected by the IUT.

Automatically detecting all equivalent mutants is
an impossible task since they are undecidable (i.e,
there is no possible solution to confirm that a mutant
has equivalent behavior to its original program). Al-
though there are several approaches to the detection
of equivalent mutants, it still requires human effort.
We manually distinguished the equivalent mutants by
checking whether the mutants change the sequence of
the test scenarios and how it affects the functionality
of the IUT. It is done by checking if all the test sce-
narios can be covered by the mutants and where is the
location of the mutation in the model.

It is worth noting that not all of the non-equivalent
mutants cause violations in the functionality of the
IUT. For example, in the model of Booking ser-
vice, changing the target location of the action
post hotelChk to the location a does not cause an in-
valid test scenario. Despite the fact that such mutant
does not cover all test scenarios, it will pass the test.
The reasoning behind this is that from the initial loca-
tion, a, any booking requests will be considered as
a new booking request and will be a new booking
record. Therefore, such non-equivalent mutants do
not violate the functionality of the Booking service.

Since in the robustness testing the goal is to detect
unexpected behaviors of the IUT, having more alive
mutants indicates that the corresponding operators are
more effective. Hence, we define the following for-
mulas for analyzing the mutation operators:

Mutation Efficiency: For each mutation opera-
tor, we calculate how many mutants are alive. We
calculate the efficiency of each mutation operator in
generating alive mutants:

MEi =
Ai

Vi
, (1)

where A is the number of alive mutants, V is the
number of valid mutants of operation i.



(a)

(b) (c) (d)
Figure 4: The model of HBS: (a) Booking service, (b) Card service, (c) Hotel service and (d) Environment

Mutation Fault Detection: After analyzing alive
mutants and removing the equivalent mutants, we
check which non-equivalent mutant corresponds to a
fault. For each mutant that was able to show a fault
in the IUT, we score the corresponding operator. For
each operator, we measure the mutation fault detec-
tion with following formula:

MFDi =
NEi

Ti−Ei
, (2)

where NE is the number of non-equivalent mutants
that reveal hidden faults, T is the number of total mu-
tants and E is the number of equivalent mutants.

The primary result shows that the total alive muta-
tions belong to three operators: CT, CS, and CNI with
72, 32 and 3 mutants respectively. The CT operator is
a good candidate for mutation testing since it gener-
ates the highest number of alive mutants. It can be
debated that changing the order of the test inputs may
cause changing the state of the IUT and hence, the
IUT may reach to an unknown state (i.e, unexpected
condition). Moreover, as it can be observed from Fig-
ure 5 that the proportions for the total number of alive
and killed mutants for each individual operator show
that the mutation operators CT and CNI were the most
suitable operators for our case study.

By using Formula 1, we calculated the efficiency
of the operators CT, CS and CNI, which result in

Figure 5: The proportion of alive and killed mutants for
each mutation operator

22.9%, 84.2% and 10.7%, respectively (Table 3). This
means that the CS operator is more effective in suc-
cessfully generating alive mutations.

Table 3: Mutation efficiency and Mutation fault detection
of the mutation operators

mutation efficiency fault detection
CT 22.9% 62.5%
CS 84.2% 8,3%
CNI 10.7% 0

Analysis of the result shows that there are some
faults in the implementation of the case study that



were not detected during the conformance testing. We
found the following problems in the behavior of the
implementation:

• Ten different mutants revealed the same fault in
the Hotel Confirmation scenario. For example,
one faulty scenario is: from a single booking, it
is possible to send the confirmation request more
than once. Nine of these mutants were generated
by the CT operator and one by the CS operator.

• Seventeen mutants showed that there is a fault in
the payment scenario of the IUT. After payment
confirmation from Card service, a new payment
for the same booking can be made. Also, for a
single booking, there could be several payments.
Seven of these mutants are generated by the CT
operator and the rest 10 are from the CS operator.

• Thirteen mutants made faulty changes in the re-
fund scenario, which could not be detected in the
original testing. Four of them belong to the CT
and 9 are from the CS.

From 40 different mutants, 3 hidden faults are
revealed in the implementation.

Half of the mutants that revealed faults were from
the CT operator and half were from the CS. We used
Formula 2 to measure fault detection capability of
each mutation operator. The result of the calculation
is shown in Table 3 as well, showing that CT gets the
best score in revealing faults.

Table 3 illustrates information on how the muta-
tion operators are able to show some faults in the case
study. The result in the first column shows how many
alive mutants have remained after the mutation testing
without having further information about the equiva-
lent mutants.

Here, it seems that CS is a better operator than the
others. However, after removing the equivalent mu-
tants and calculating the fault detection ability of each
operator, CT provides a better percentage. The second
column in the table shows the result. All of the alive
mutants generated by CNI were found equivalent and
hence CNI is ranked 0 in fault detection.

6 Discussion

Some improvements can reduce the test execution
time while increasing the probability of finding faults.
For instance, both CS and CT were able to reveal
all three faults and since both of them have gener-
ated large numbers of mutants, selecting one of them
can considerably reduce test generation and execution
times. The result of mutation testing indicates that

an intelligent choice of the mutation operators can at-
tain high mutation efficiency scores while reducing
the time of testing.

Another improvement could be done in the pro-
cess of fault detection. Redundant work is done on
detecting the same faults. This extra effort can be re-
duced by categorizing the alive mutants in such a way
that all mutations of a certain location or action in the
model will be in a category. As soon as any of the
mutants in a category detects a fault, then the rest of
the mutants on that group can be eliminated from the
fault detection analysis. The idea behind this is that
the locations and actions in a model represent actual
states of the system under test and if there is a state
which contains a fault, then any mutant from that state
may be able to reveal that fault. However, more ex-
periments are needed to show the correctness of this
mutation reduction technique.

More extensive studies are needed in order to in-
vestigate how the specification mutation can be ap-
plied in larger case studies preferably industrial-sized
web services. Besides, more experiment on larger
scales would be helpful in finding whether there is
any correlation between certain mutation operators
and the real faults in design and implementation of
web services.

It should be noted that the presented approach for
robustness testing does not specifically designed for
composite of web services, but any individual service
can also be tested. We selected the WSC since it in-
cludes more communications and timing behaviors.

The main downside of model-based mutation test-
ing comes from MBT: the process of design models
from the specification, verifying them and writing the
test adapter (to translate model-level test inputs into
acceptable test script for the IUT and vice versa) is
time consuming. We have reduced the design and ver-
ification time by reusing the same models from the
previous research. The mutation testing does not add
any overhead into MBT. The mutation generator tool
automatically generates correct and valid mutations
and thus, it reduces the mutant generation time.

7 Threats To Validity

There are three main threats related to our study. One
is related to the mutation operators. Despite the fact
that we have followed the systematically and formally
defined mutation operators and implemented them in
our study, there might be some more effective muta-
tion operators or combinations of operators that we
have missed. We argue that the current number of
mutation operators provides a large number of mu-



tants which can provide faulty test inputs which are
close to the accepted inputs.

Another threat is that although the test model is
designed and validated very carefully and the IUT is
well-tested, there might be some mistakes in design-
ing the test model. However, the probability of such
mistakes is low since we have applied conformance
testing and fixed the bugs prior to mutation analysis.

Judgmental errors may have happened during the
classification between equivalent and non-equivalent
mutants. For comparing the mutation models and the
original one, we checked the alive mutants and ap-
plied formal verification rules.

8 Related Work

A comprehensive analysis is done on all available mu-
tation testing method presenting the current state of
the art in this field and the open challenges (Jia and
Harman, 2011) .

Lee and Offutt (Lee and Offutt, 2001) introduced
an Interaction specification Model which formalize
the interactions among Web components. They de-
fined a set of mutation operators for XML data model
in order to mutate the inputs of the Web components.
Li and Miller (Li et al., 2009) presented mutation
testing methods using XML schema to create invalid
inputs. Mutation testing is extended to XML-based
specification languages for Web services. Lee et al.
presented an ontology based mutation operators on
OWL-S, which is an XML-based language for spec-
ifying semantics on Web services(Lee et al., 2008).
They mutate semantics of the specifications of their
case study such as data mutation, condition mutation,
etc. Wang and Huang presented a mutation testing ap-
proach based on OWL-S to validate the requirements
of Web services (Wang and Huang, 2008). Also,
Dominguez et al. presented a mutation generator tool
for WS-BPEL.

We discuss those that are similar to our approach.
Work has been done on using model checking tech-
niques for validation and verification of WSC. There
are two studies that review the literature on testing
Web services (Rusli et al., 2011), (Bozkurt and other,
2010). Starting from specification languages for mod-
eling Web services, researchers perform simulation,
verification and test generation using model checking
tools. Most of the works use model checking for spec-
ification and verification and only a group of them use
the models for the test generation as well. We discuss
those that are similar to our approach. Using TA mod-
els for mutation testing has been mostly studied on a
real-time and embedded system. In (Aboutrab et al.,

2012) and (Aichering et al., 2013) mutation operators
for TA are presented. Aboutrab et al. proposed a set of
mutation operators for timed automata to empirically
compare priority-based testing with other testing ap-
proaches (Aboutrab et al., 2012). However, in their
approach, the generation of mutations is done manu-
ally.

Aichernig at al. presented model-based mutation
testing real-time system using UPPAAL (Aichering
et al., 2013). The mutation operators that are defined
in their work more detailed and some of them are im-
plemented as a mutation on bounded model-checking
and incremental SMT solving. They showed that us-
ing mutations for timed automata has potential on de-
bugging and revealing the unexpected behavior of the
IUT.

We applied/modified the mutation operators of TA
presented by these studies for testing the robustness of
WSC. Similar to (Aichering et al., 2013), we applied
mutations on non-deterministic models, however, in
their work, they use only the UTA model of the IUT
and do not consider the environment. In our approach,
however, each mutant is a closed model communicat-
ing with its environment as well as other systems. We
check deadlockfreeness and reachability in order to
reduce the number of invalid mutants. Also, we use
different verification and test generation processes.

There are some works that target UTA as the spec-
ification language for Web services. In most of the
works, the authors transformed the specification that
is defined in their selected languages into UTA and
then they investigated their research. For instance,
in (Rauf et al., 2014), the specification of a WSC is
defined initially in the form of UML and then trans-
formed into UTA for an online testing purpose. In
(Cambronero et al., 2011), Cambronero et al. ver-
ify web services by the UPPAAL tool for validation
and verification of their described system that is trans-
formed from WS-CDL into a network of TA. In (Dıaz
et al., 2007), Diaz et al. also provide a translation
from WS-BPEL to UTA. Time properties are speci-
fied in WS-BPEL and translated to UTA. However,
requirements are not traced explicitly, while verifica-
tion and testing are not discussed.

9 Conclusions and Future Work

Due to the increasing popularity of combining differ-
ent Web services as a new Web service, robustness
of such systems gained attention in the recent years.
We have presented a model-based mutation testing
approach for Web service compositions using the UP-
PAAL TA.



Our method starts with the design model that is
specified as UPPAAL TA, verified UPPAAL TRON ap-
plied for conformance testing thereafter.

We used our mutation generator tool which im-
plements a set of mutation operators applied on the
test model for the purpose of online testing. In or-
der to reduce the number of trivial invalid models and
also increase the efficiency of testing, we defined a
set of verification rules for each mutant. We verified
whether the generated mutants are deadlockfree and
if the mutation part of each mutant is reachable. If
both of these criteria are satisfied, then we select the
mutant as a valid mutant. We used UPPAAL TRON
for executing all of the mutation models against the
system under test.

We presented our approach with an experimental
study on Hotel Booking System as a case study. The
Web services are implemented in REST architectural
style and with timing constraints. Our hotel booking
case study has been designed and validated with UP-
PAAL test model and also the testing evaluated with a
series of mutation in the source code of the case study.

The results showed that from a total 1346 gener-
ated mutants, 393 were found to be valid mutants that
were usable for testing. After running the test, 40 of
the mutants were found to identify 3 hidden faults in
the implementation of the IUT. The experiment indi-
cates that our approach of specification mutation test-
ing was effective to reveal inconsistency between the
specification and the implementation under test.

The primary results of this study showed that our
method in robustness testing a valid approach in im-
proving the quality of web service implementations,
by detecting faults not detected by the traditional
MBT process.

Our experiments also showed that some of the ex-
isting mutation operators for time automata are more
efficient than the others at finding faults.

There are some research directions that certainly
improve the current approach. The next work will be
running more experiments, on different case studies in
different application domains. More experiments help
us to gain more information about mutation operators
and correlations between the type of the case study
and the common faults.

Another improvement will be to investigate how
to detect equivalent mutants. Automation of this pro-
cess of the approach reduces the errors and increases
the scalability of the target applications.

Moreover, we plan to apply mutation selection and
mutation reduction techniques to increase the proba-
bility of fault detection. Defining new mutation op-
erators, categorizing the mutants, etc., will be investi-
gated in our future work.

Acknowledgments
We would like to thank prof. Andreas Zeller from
University of Saarland, Germany for his valuable
comments and anonymous reviewers for their useful
suggestions.

REFERENCES

Aboutrab, M. et al. (2012). Specification mutation analysis
for validating timed testing approaches based on
timed automata. In 36th Annual IEEE Computer
Software and Applications Conference, COMPSAC
2012, Izmir, Turkey, July 16-20, 2012, pages 660–669.

Aichering, B. et al. (2013). Time for MutantsModel-Based
Mutation Testing with Timed Automata. In Tests and
Proofs, pages 20–38. Springer.

Alur, R. et al. (1990). Model-checking for real-time
systems. In Logic in Computer Science, 1990.
LICS’90, Proceedings., Fifth Annual IEEE
Symposium on e, pages 414–425. IEEE.

Beharmann, G. et al. (2004). A tutorial on uppaal. In
Formal methods for the design of real-time systems,
pages 200–236. Springer.

Belli, F. et al. (2016). Model-based mutation
testingapproach and case studies. Science of
Computer Programming, 120:25 – 48.

Bozkurt, M. and other (2010). Testing web services: A
survey. Department of Computer Science, King’s
College London, Tech. Rep. TR-10-01.

Budd, T. A. and Gopal, A. S. (1985). Program testing by
specification mutation. Computer Languages,
10(1):63 – 73.

Cambronero, M. E. et al. (2011). Validation and
verification of web services choreographies by using
timed automata. Journal of Logic and Algebraic
Programming, 80(1):25–49.

Dıaz, G. et al. (2007). Model checking techniques applied
to the design of web services. CLEI Electronic
Journal, 10(2).

Gargantini, A. and Heitmeyer, C. (1999). Using model
checking to generate tests from requirements
specifications. In Software EngineeringESEC/FSE99,
pages 146–162. Springer.

Hessel, A. et al. (2008). Testing Real-time Systems Using
UPPAAL. In Hierons, R. M., Bowen, J. P., and
Harman, M., editors, Formal Methods and Testing,
pages 77–117. Springer-Verlag, Berlin, Heidelberg.

Jia, Y. and Harman, M. (2011). An analysis and survey of
the development of mutation testing. Software
Engineering, IEEE Transactions on, 37(5):649–678.

Larsen, K. et al. (2005a). Testing real-time embedded
software using UPPAAL-TRON: an industrial case
study. In Proceedings of the 5th ACM international
conference on Embedded software, pages 299–306.
ACM.

Larsen, K., Mikucionis, M., and Nielsen, B. (2005b).
Online testing of real-time systems using uppaal. In
Grabowski, J. and Nielsen, B., editors, Formal
Approaches to Software Testing, volume 3395 of



Lecture Notes in Computer Science, pages 79–94.
Springer Berlin Heidelberg.

Lee, S. et al. (2008). Automatic Mutation Testing and
Simulation on OWL-S Specified Web Services. In
Simulation Symposium, 2008. ANSS 2008. 41st
Annual, pages 149–156.

Lee, S. C. and Offutt, J. (2001). Generating test cases for
XML-based Web component interactions using
mutation analysis. In Software Reliability
Engineering, 2001. ISSRE 2001. Proceedings. 12th
International Symposium on, pages 200–209.

Li, J.-h., Dai, G.-x., and Li, H.-h. (2009). Mutation
analysis for testing finite state machines. In
Electronic Commerce and Security, 2009. ISECS’09.
Second International Symposium on, volume 1, pages
620–624. IEEE.

Rauf, I. et al. (2014). An Integrated Approach for
Designing and Validating REST Web Service
Compositions. In Monfort, V. and Krempels, K.-H.,
editors, 10th International Conference on Web
Information Systems and Technologies, volume 1,
page 104115. SCITEPRESS Digital Library.

Richardson, L. and Ruby, S. (2008). RESTful web services.
O’Reilly.

Rusli, H. M. et al. (2011). Testing Web services
composition: a mapping study. Communications of
the IBIMA, 2007:34–48.

Sheng, Q. et al. (2014). Web services composition: A
decades overview . Information Sciences, 280:218 –
238.

Wang, R. and Huang, N. (2008). Requirement
Model-Based Mutation Testing for Web Service. In
Next Generation Web Services Practices, 2008.
NWESP ’08. 4th International Conference on, pages
71–76.


