
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Power Proportional Characteristics of an Energy
Manager for Web Clusters

Simon Holmbacka, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 FIN-20520 Turku
firstname.lastname@abo.fi

Abstract—Energy consumption is a major issue in data centers
operating 24 hours a day, 7 days a week. The power dissipated
by a web cluster is not proportional to the numbers of incoming
requests if only DVFS (Dynamic Voltage Frequency Scaling) is
used. This is because of the nonlinear power efficiency of DVFS,
the large load fluctuation in web services and the typical CPU
utilization rates of a server.

This paper presents a system level controller making a cluster
of low-power servers power proportional by managing the
resources on the platform. Our controller uses sleep states to
switch on or off CPUs in order to continuously match the current
workload with the system capacity. Methods from control theory
are used to drive the CPUs from and into sleep states. The power
proportional characteristics of the proposed energy manager are
studied for different workload patterns. Results from system
simulation show that power proportionality is obtainable but
only with appropriate parameters set on the controller.

I. INTRODUCTION

Energy efficiency and power density are key issues for data
centers. These factors do not only affect the operational costs
and ecological footprint, but have also an important impact on
the possibility to construct or expend data centers.

The Efficient Servers project [1] evaluated the increase of
electric power consumption of servers in Western Europe at
37% between 2003 and 2006 [2]. In 2007 the energy consumed
in data centers in Western Europe was 56 TWh and is projected
to increase to over 100 TWh per year by 2020 [3].

In current servers, there is a mismatch between the energy-
efficiency characteristics and the behavior of server class
workloads as their most common operating mode corresponds
to the lowest energy-efficiency region [4]. When using DVFS
as power management technique, an energy efficient server
still consumes about half of its energy while idling.

With an average of 10 to 50 percent CPU utilization for
servers [5] and the large load fluctuation found in typical
web services [6], the use of slower but more energy-efficient
cores could match the workload more efficiently with a much
finer granularity than server-grade cores. A cluster of mobile
processors can provide the same computational power as
server-grade processors, but with a lower power density. The
usage of mobile processors also aims at obtaining cheaper
server facilities by minimizing the need of active cooling
infrastructure.

Because switching on and off a CPU is orders of magnitude
slower than changing its voltage and frequency, a cluster of

such low-power CPUs needs an energy manager on system
level i.e. a component controlling the whole cluster as one
entity and continuously matching the current workload with
the whole cluster capacity.

This paper analyses for different workload patterns the pro-
portional characteristics of an energy manager that uses sleep
states to dynamically adjust the system capacity according
to the workload so that minimal performance penalty and
maximum reduction in energy consumption is obtained.

II. RELATED WORK

Previous work has been done in the area of using sleep
states to reduce the energy consumption of mobile processors.
The authors in [7] are proposing a mixture of high-end Xeon
servers combined with low-end mobile processors in order to
achieve a fine granularity of system capacity in relation to the
workload. All processing elements in the system uses sleep
states to shut down the CPUs during low workload and thus
reduce the energy consumption. Once the system recognizes
an increase in workload, the system activates the processing el-
ements in accordance with their different capacities and wake-
up times. To determine the power proportionality, experiments
were conducted on two different types of workload patterns,
which results concluded in a power proportional system.

In our approach, the power management system uses control
theory as basis for the capacity adaption. We argue that the
use of the PID controller could, with correctly set parameters,
create a near optimal adaption of system capacity to the
workload. Moreover, we intend to use a cluster consisting only
of low-end mobile processors to gain finer power granularity
of the whole system.

The authors in [8] present a sleep state based power manager
for server grade CPUs together with PSUs (Power Supply
Units) in a so called RAILS-configuration (Redundant Array
for Inexpensive Load Sharing). Smaller low-power PSUs are
used instead of one powerful, since a RAILS-configuration
will make the PSUs operate in their most energy efficient sweet
spot. As the power need increases more PSUs are enabled to
provide the sufficient power needed. Similarly to [7] the CPU
cores are switched on and off according to the workload to
give a better power proportionality of the system. The method
of anticipating the workload curve was not mentioned, but an
average of 74 % energy reduction was achievable according

to the authors [8]. The power proportionality was determined
based on the wake-up time for the core, and would in best
case result in a linear function.

We have used the idea from both of the previous works
together with the implementation of a PID controller [9] to
adjust the capacity of the system. By using a larger number of
low power CPUs we argue that – by having a finer granularity
– we could achieve a higher energy reduction while keeping
the power proportionality constant and obtaining a sufficient
performance.

III. POWER PROPORTIONAL WEB CLUSTER

A. System Level Power Management

We created a power manager which adjusts the system
capacity dynamically in order to save energy. The manager
uses sleep states to switch on and off cores according to the
current need and according to the anticipated future workload.
The simulated cluster uses ARM Cortex-A8 processors used
in the BeagleBoard and its wake-up time was measured
by experiments to roughly 800 ms. By using the measured
capacity of a Cortex-A8 the energy consumption for a many-
core cluster was simulated. The basic processing element in
this paper is referred to as a core, since embedded systems
with multi-core configurations have recently been available.

1) Overview: The outline of the framework is shown in
Figure 1. The framework is based on input in form of requests
made to the service. The framework shows the output based
on data from a PID-controller and a feedback loop, which
sends information to the compare-block regarding the needed
capacity of the system.

Fig. 1: Structure of the simulation framework

2) System capacity: System capacity is measured as the
number of requests per second the system as a whole is able to
handle. The compare block reads the workload with a certain
sample rate and divides this number with the current capacity
of the system. The ratio of this division determines the QoS
(Quality of Service) output. When the capacity monitor in
the compare-block notices a higher workload than the system
is able to handle, it sends the ratio between the workload
and the capacity to the PID controller in form of an error
value. Similarly when the capacity of the system exceeds the
workload, the monitor sends a negative error value to the
controller which in turn switches off CPU cores.

Since switching on and off CPU cores is not instantaneous,
the framework uses a delay to postpone the control signal
to the workload comparator. For this function, the simulation
framework implements a unit-delay block with a configurable

delay length. This simulates the actual delay introduced in the
change of CPU state.

The framework uses one static core. This core will con-
stantly be active and is used to instantaneously handle the
small amount of requests that are made between request peaks.
The number of static cores is also configurable.

3) QoS value: A trade-off to energy consumption is the
performance and response time of the system. By lowering the
capacity of the system the performance will drop – this leads
occasionally to an increased response time for certain requests.
Quality of Service is the measurement on how well the system
performs compared to a pre-defined value. Our simulations
show a drop in QoS as soon as a request is delayed more
than the selected deadline. The amount of delayed requests
compared to non-delayed requests results in the QoS value. If
every request is handled before their deadlines the QoS will be
100 %, if half of the requests are handled before the deadline
the QoS will be 50 % etc.

4) PID controller: The controller block in Figure 1 in-
cludes a PID controller which, based on methods from control
theory, adjusts the capacity of the system. The obtained
difference between y and r is called the control error e, which
is the a priori result from the capacity comparison in the
previous block. The output y of the PID controller partly shows
the amount of cores needed to achieve a sufficient performance
and partly generates feedback data to the comparison block
in the next time frame. The aim of the feedback loop is to
minimize the control error and to thereby achieve equilibrium
in the system.

The behavior of the PID controller is determined by setting
P , I and D values in the controller. The value of P determines
how fast the controller reacts on a change in the reference
value r. The value I , which is the inverse time constant of the
controller, determines the integral effect of the control error.
The derivative part, which is adjusted by the parameter D,
predicts the future input based on the previous input.

5) Final energy consumption: The system shows the
power output as a multiple of the amount of active cores and
their power dissipation. The cores are assumed to run on the
highest possible clock frequency once activated, and retain
this clock frequency until they are shut down. The final energy
consumption is the sum over the power dissipation for all time
frames in the simulation.

B. Power Proportionality

While the power manager shows a promising result in
energy reduction, we need to investigate how well it scales in
a growing web cluster. To be able to apply the power manager
into a large cluster the proportionality of the workload com-
pared to the power dissipated must be constant. This means
that if the workload increases by a certain factor, the power
dissipation should also increase with the same factor.

To measure the proportionality we created different work-
load patterns against which the power dissipation was com-
pared. The behavior of the system was simulated by inserting
the workload patterns into the simulation framework.

IV. SIMULATION DATA

Our simulations will be based partly on specially generated
request patterns and partly on real web server data, which
allows for a comparison of power proportionality in different
situations. The first simulations are executed against trivial
cases to evaluate and clearly illustrate the theory. Later the
real web server data will show the obtained proportionality in
a real-world scenario.

A. Request patterns
1) Linear cone: The first pattern to investigate energy

proportionality is generated by requests made according to a
linear cone as seen in Figure 2. Requests are made with certain
increments and a selected step size. The increment determines
how much the requests increase for each step, the length of
which is selected by a step size.

For the energy to be proportional to the requests, the
power dissipation for all time frames should increase linearly
according to the workload curve. A linear increase in the
power dissipation would scale the energy consumption well
in a large web cluster.

Fig. 2: Linear workload pattern

2) Exponentially increasing cone: The exponentially in-
creasing cone in Figure 3 is created by incrementing the steps
multiplied by a certain constant. The energy proportionality of
an exponentially increasing pattern should be followed by a
similar pattern in the power dissipation. By investigating dif-
ferent patterns, we will be able to determine the proportionality
characteristics of the power management system.

Fig. 3: Exponential workload pattern

3) Web server requests: We also used requests made to
a Finnish web space provider [10] to compare the results of
power proportionality in a real-world scenario. The request
samples were obtained from 1 Nov. 2010 and simulated for
30 minutes and shown in Figure 4. The simulation data is
freely available from [11].

B. PID-parameters

The values of the PID-parameters P , I and D determines
how the controller should react to its input signal. The pa-
rameters were chosen based on a heuristic method, and tuned
until desired result was achieved. The simulation framework
supports currently only static PID-parameters, but could even-
tually be further developed to handle dynamic values. The
value of the delay after the PID-block was chosen, based on
conducted experiments, to 1000 ms in order to ensure the
necessary delay of the wake-up time, which was measured
to 800 ms. A sample time of 250 ms was selected as time
frame for updating the output from the controller.

C. BeagleBoard power dissipation

To obtain values for the simulation framework and be able to
run a proof-of-concept simulation, the power dissipation of one
BeagleBoard revision C3 low-power platform was measured.
The BeagleBoard is equipped with one ARM Cortex-A8
processor-based TI-OMAP3530 chip that does not require
any forced cooling system or heat sinks. The system ran
Ångström Linux kernel version 2.6.32 and was controlled
through a remote serial console. The operating performance
points (OPPs) of the TI-OMAP3530 chip were used to dy-
namically scale the clock frequency and voltage of the ARM
subsystem. The OPPs were accessed through the Linux ACPI.
To avoid unwanted energy consumption, the display subsystem
of the TI-OMAP3530 was disabled. The BeagleBoard includes
a resistor, which provides a way to measure the current
consumption used by the board. The voltage drop across the
resistor was measured for each OPP and the corresponding
power was calculated. The obtained power values of the
system running at respective voltage and clock frequency are
displayed in Table I. To ensure that the load would remain
constant during the measurements, the processor was stressed
to 100 % utilization using a simple program that recursively
counts Fibonacci numbers. The highest OPP (720 MHz) was
used in the simulation framework to represent the power
dissipation for the active core.

TABLE I: Measured power dissipation of the BeagleBoard

Frequency [MHz] 720 600 550 500 250 125
Voltage [V] 1.35 1.35 1.27 1.20 1.06 0.985
Power [W] 1.40 1.15 1.05 1.00 0.65 0.55

D. BeagleBoard load capacity

The system capacity is dependent on both the number of
CPU cores in use and their capacity. We needed to determine
the capacity of a BeagleBoard in order to run a realistic
simulation.

Experiments were therefore conducted, which results de-
fined the system capacity of one BeagleBoard. The test tool
in use was Autobench [12] which generates requests to an
Apache [13] server running on the BeagleBoard. The number
of requests per second generated by Autobench started from a

Fig. 4: Workload sample from [10] 1. November 2010

selected number and increased by specified increments. When
the number of requests per second start to exceed the capacity
of the host, delay-errors will start to occur as the selected
deadlines for the requests are not met. The requests from
Autobench are made to a selected file on the Apache server
running on the BeagleBoard. Since a larger file will require
more time to process, the capacity of the server is dependent
on the size of the requested file. Our experiments show that
a file size of 248 KB with a deadline of 1000 ms will result
in the capacity of 5 requests per second – this number was
used in the simulations. Related experiments in [7] result also
in the capacity of 5 requests per second for the BeagleBoard
which, as stated, would compare to a file size of 248 KB.

The file size was constant for each simulation with a maxi-
mum amount of 10 or 20 cores available. Using these numbers,
the cluster would have a theoretical maximum capacity of 50
or 100 requests per second.

V. SIMULATION RESULTS

The framework for simulation was set-up according to the
results from the experiments presented in the previous section.
The simulations were run in three phases: using a linear cone,
an exponential cone and real web server data.

A. Linear cone

The first simulation used the workload pattern of a linear
cone. The step size of the cone determines how fast the request
rate is climbing. A longer step size means that request rate
will stay constant for a longer time. The step size for the first
simulation was set to 5 seconds per step. Results from the first
simulation is shown in Figure 5, which displays three graphs.
The first graph (1) shows the power dissipation compared to
the request rate. The second graph (2) shows the amount of
cores switched on in the current time frame, and the last graph
(3) shows the quality of service as a function of time.

The amount of cores in Figure 5 (2) shows to be spiking
each time the step increases. This peak is a result of the
delay (wake-up time) the cores introduce when switching from
sleep state to active state. Because of the delay, the system
will not react instantaneously to the increase in request rate
(workload). As soon as the system notices the drop in QoS it
needs to compensate for the delayed requests by switching on
additional cores. After the system has processed the delayed
requests, the need for the additional cores does not exist any
more and they are shut off. This phenomenon occurs every
time the step increases until a stable request rate is established.

Fig. 5: Simulation of linear cone pattern

The power dissipation follows the amount of CPU cores
since a CPU core is, in this model, either fully on or off.
Similar peaks occurs therefore also in the power dissipation
curve in Figure 5 (1) as the system compensates for the
delayed requests.

Figure 5 (3) shows that the QoS value drops each time the
step increases. This model, which strives to simulate a realistic
case, cannot fully eliminate the QoS drop because of the delay
of waking up cores. A strategy to reduce the QoS drop is to
make the PID controller more QoS conservative by adjusting
the parameters – this, however, also results in increased energy
consumption.

Conclusions about the power proportionality can be drawn

(a) Simulation with initial parameters (b) Simulation with improved parameters

Fig. 6: Simulation of exponential pattern with two different sets of parameters

based on the curve from Figure 5 (1). Aside from the fluctua-
tion peaks when the steps increase, the power dissipation curve
follows the workload in a linear fashion. By applying a low-
pass filter on the power curve, we obtained the mean values
for the fluctuating graph. The proportionality factor between
power and workload is shown in Table II.

TABLE II: Measurement of power proportionality obtained
from Figure 5 (1)

Time [s] 100 150 200 250 300 350 400
Req/sec 20 30 40 50 40 30 20
Power [W] 5.51 8.32 11.12 13.76 11.48 8.63 5.77
Prop. [Req/J] 3.63 3.60 3.60 3.63 3.48 3.47 3.47

Table II shows seven values derived from Figure 5 (1). The
last row shows the final proportionality factor which is the
ratio between the Req/sec and power, and thus uses the unit
Requests/J. From the last row in the table we can see that
the values of the proportionality does not fluctuate much –
in fact the largest fluctuation, shown in Table II, results in a
difference of 5 %.

B. Exponential cone

Secondly the framework was set-up with the same param-
eters as in the previous case, but with a different workload
pattern. The second pattern was an exponentially growing
request curve as shown in Figure 3. The workload used in
this simulation has, in contrast to the previous simulation, a
maximum value of 100 req/s to more clearly illustrate the

behavior of the exponentially increasing pattern. To cope with
100 req/s we allow the system to use 20 cores instead of 10.

Figure 6a shows the result from the simulation. By using
the same PID-parameters the controller fails to establish an
effective output signal used for switching on and off the cores.
The amount of cores in Figure 6a (2) shows to be insufficient
as the curve increases. As the curve exponentially decreases,
the control error remains high because of integrating property
of the controller. The result is a slowly diminishing output
which leads to wasted energy.

Because this simulation did not show a power propor-
tional behavior we needed to alter the PID-parameters on
the controller. After establishing a new set of parameters by
experiments we run the simulation again. The new set of
parameters achieved, with the same workload, better power
proportionality as shown in Figure 6b. Table III shows both
power dissipation and the power proportionality for both
graphs in Figure 6. As seen in the table, case b (row 6) will
show better proportionality than case a (row 4) because the
power curve follows the workload more precisely.

TABLE III: Measurement of power proportionality obtained
from Figure 6 (1)

Time [s] 15 25 35 45 55 65 75
Req/sec 40 60 80 100 80 60 40
Power 6a 4.20 7.70 15.75 27.65 26.95 20.30 15.4
Prop. 6a 3.65 4.08 3.76 3.38 1.79 1.22 0.69
Power 6b 4.20 7.70 15.40 28.00 18.55 11.90 8.40
Prop. 6b 3.65 3.82 3.61 3.34 2.60 2.08 1.55

(a) Simulation with exponential parameters (b) Simulation with linear parameters

Fig. 7: Simulation of exponential pattern with two different sets of parameters

C. Web server data
The final simulation used the request log from a web

server as workload. The PID-parameters for this simulation
was chosen according to the previous simulation (exponential
cone), but since the workload shows a maximum value of 50
req/s we allowed only 10 cores to be active simultaneously.
The results from the simulation is shown in Figure 7a. The
PID-parameters used for the exponential cone turned out to be
unsuitable for controlling the workload from the web server,
since the power dissipation will remain relatively constant and
thus result in a poor energy management.

To achieve a better power proportionality we adjusted the
PID-parameters according to the simulation with the linear
cone. The results from this simulation is pictured in Figure
7b. By interpreting the curves in Figure 7 (1) we can see that
the power proportionality of the system is highly dependent
on the controller settings. The use of CPU cores pictured in
Figure 7b (2) matches the workload better than the previous
simulation. By using the new PID-parameters we achieved a
better power proportionality as seen in Figure 7b (1) compared
to the previous simulation showed in Figure 7a (1). The QoS
was not included in Figure 7b and 7a since the numbers of
cores remained high during the whole simulation and thus not
resulted in any substantial QoS fluctuations.

To further improve the power proportionality factor we
tuned the PID-parameters for this third case. The mentioned
PID-parameters were selected to match the spiky workload ob-
tained in a real-world scenario seen in Figure 4. A simulation
using these parameters results in a greater energy reduction
than the two previous simulations – this while keeping an
acceptable QoS. The result from the last simulation is shown

in Figure 9.
To calculate the power proportionality from Figures 7 and 9

we needed to time shift the power curve to accommodate for
the delay introduced by the wake-up mechanism. Furthermore,
we chose certain points in time where interesting measurement
would take place. Table IV views the power proportionality for
all three cases, with the power curve shifted one second to the
left. This number displays the proportionality factor, meaning
that a lower value is obtained when the system is using much
energy [J] to serve few requests.

TABLE IV: Measurement of power proportionality obtained
from Figure 7 (1) and 9 (1)

Time [s] 617 635 654 680 697 752 765
Req/sec 6 14 10 1 10 50 1
Prop(lin) 7b 1.07 3.43 0.89 0.17 2.45 3.57 0.07
Prop(exp) 7a 0.80 1.87 1.23 0.13 1.26 3.57 0.09
Prop(real) 9 2.54 1.31 1.18 0.66 1.30 3.57 0.61

Prop(lin) and Prop(exp) in Table IV represents the power
proportionality of the first two simulations on real web server
data. As seen in the table the fluctuations are large and close
to zero in the last column. A value close to zero means that
the power output of the system is much larger than the amount
requests made to the system, i.e. the system is wasting much
energy. The 7:th column (at time 752 s) shows equal values
for all three cases. This happens due to the fact that the system
is slightly overloaded, which happens if 50 or more requests
are made during one second.

The results in Prop(real) show occasionally drops in pro-
portionality such as at times 680 s and 765 s. This drop occurs

Fig. 8: Measurement of proportionality

Fig. 9: Simulation of web server pattern

because of the static CPU core that will run even though the
system only needs to process one request. Implementation of
DVFS would in these cases be useful since the granularity of
the power scaling would increase. Furthermore, in Prop(real)
at times 635 s, 654 s and 697 s the power proportionality
decreases even though the request rate is not minimal. This
phenomenon is a temporal response from the system during a

workload peak. The system compensates for delayed requests
by temporary rising the capacity. Over time these workload
peaks would not account substantially for the power propor-
tionality of the system.

To illustrate the different proportionality factors in the three
different cases, the drawn graph displays the whole time range
from 600 s to 800 s (Figure 8). Furthermore, a low pass filter
was used to filter the highly fluctuating output signal to better
illustrate the average proportionality factor by using different
PID parameters. The figure clearly shows that correct PID
parameters will result in a higher proportionality factor, and
thus less energy waste. The proportionality factor for a system
without any power manager (all cores statically on) was also
displayed in order to better compare the power proportionality
of the manager.

D. Simulation summary

By observing the results from the three different simula-
tions: Linear cone, exponential cone and web server data,
we can state that power proportionality could be achieved
by setting the appropriate PID control parameters for the
workload in question. The outcome from using the power
manager is a system with higher power proportionality, which
means that most of the CPU power is actually used for real
work rather than waiting for work to arrive.

The PID-controller reacts differently depending on the input
of the controller, which means that the settings for one
environment not necessarily support another environment. A
run-time update of the PID variables would mean that the
system should automatically accommodate the PID-parameters
for not only the workload, but also the workload pattern.
Another solution would be a model that reflects an a priori
workload with sufficient precision. This model could use static
PID parameters as long as the workload follows the model.

VI. CONCLUSIONS

A energy manager for a many-core web cluster was cre-
ated in order for the system to show power proportional
characteristics when serving alternating amount of work. The

power manager matches the system capacity, every time frame,
according to the workload by using a PID-controller.

This paper has investigated the power proportionality char-
acteristics of the power manager by simulations performed on
determined workload patterns. The results from the simula-
tions were used to determine the relationship between power
dissipation and workload for selected sample points.

The simulations were divided up into three different work-
load patterns. These three patterns were individually simulated
and their respective results were compared. The simulations
show that power proportionality is achievable, but only with
the correct parameters set on the controller. The controller
parameters determine how the controller reacts on changes in
the input signal.

In the most trivial case we used a linear cone as the
workload pattern. The results from the controller showed a non
fluctuating and constant relationship between the workload
and the total power dissipation of the system. The second
simulation used an exponentially increasing workload pattern
which, with the same controller parameters, did not reach
a sufficient proportionality. The parameters on the controller
were adjusted, after which a better result was obtained. Lastly
real data from a web server was used as workload pattern.
The result showed that the controller parameters from neither
of the two previous cases would give a power proportional
system. The controller parameters were therefore adjusted to
match the spiky nature of web server requests, which resulted
in an increased power proportionality.

The parameters of the PID-controller need, as a conclusion,
to match the workload pattern for the controller to be able to
match the capacity of the system to the workload. Incorrect
parameters will either result in poor QoS or unnecessary
energy waste. The parameters need therefore a model from
which the workload pattern is derived, or to dynamically
change during run time. Based on these assumptions, our
simulations show that the proportionality factor of a many-
core system that uses a sleep state based power management
is achievable.

VII. FUTURE WORK

As concluded, future research is needed to determine if
the system can reach power proportionality facing a general
workload pattern. In order to adapt the system to such a
pattern, the PID controller must adjust its control parameters
during run-time. The run-time mechanism must therefore
both analyze the previous workload pattern and anticipate
the future workload pattern in order to make adjustment of
the parameters. By recording the history of workload, CPU
time, performance etc. the system could create certain models
against which the parameter settings are set. After changes
in the input variables occur, the models changes and thereby
requires different controller settings.

Furthermore the power proportionality and energy reduction
need to be compared to a system with both the current power
manager and DVFS for each CPU core. The CPUs could
thereby scale down their frequencies, and power dissipation

(Table I) in accordance with the workload and thus increase
the granularity of the system capacity further. Because scaling
the frequencies is by orders of magnitude faster than switching
on and off cores, the switching delay would not increase
substantially.

REFERENCES

[1] “Efficient servers, a project conducted within the eu-programme
intelligent energy europe.” [Online]. Available: http://www.efficient-
server.eu

[2] B. Schäppi, F. Bellosa, B. Przywara, T. Bogner, S. Weeren, and
A. Anglade, “Energy efficient servers in europe. energy consumption,
saving potentials, market barriers and measures. part 1: Energy consump-
tion and saving potentials,” The Efficient Servers Consortium, Tech.
Rep., November 2007.

[3] “Code of conduct on data centres energy efficiency, version 2.0,”
European Commission. Institute for Energy, Renewable Energies Unit,
Tech. Rep., November 2009.

[4] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” Computer, vol. 40, pp. 33–37, December 2007. [Online].
Available: http://portal.acm.org/citation.cfm?id=1339817.1339894

[5] L. Barroso and U. Holzle, “The case for energy-proportional computing,”
Computer, vol. 40, no. 12, pp. 33 –37, 2007.

[6] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload anal-
ysis,” Vrije Universiteit, Amsterdam, The Netherlands, Tech. Rep. IR-
CS-041, Sepember 2007 (revised: June 2008).

[7] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and
R. H. Katz, “Napsac: design and implementation of a power-
proportional web cluster,” in Proceedings of the first ACM SIGCOMM
workshop on Green networking, ser. Green Networking ’10. New
York, NY, USA: ACM, 2010, pp. 15–22. [Online]. Available:
http://doi.acm.org/10.1145/1851290.1851294

[8] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” SIGPLAN Not., vol. 44, pp. 205–216, March 2009.
[Online]. Available: http://doi.acm.org/10.1145/1508284.1508269

[9] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback Control of
Computing Systems. Wiley and sons inc., 2004.

[10] K. Ab, “Kulturhuset,” January 2011. [Online]. Available:
http://kulturhuset.fi/start/

[11] Kulturhuset, “Request log november 2010 kulturhuset.” [Online].
Available: https://research.it.abo.fi/projects/cloud/data/Request log kul
turhuset nov2010.zip

[12] J. T. J. Midgley, “Autobench,” Xenoclast, May 2004. [Online].
Available: http://www.xenoclast.org/autobench/

[13] T. A. S. Foundation, “Apache,” 2010. [Online]. Available:
http://www.apache.org/

