
Three concepts for light-weight communication

in multiplayer games

Jouni Smed and Harri Hakonen

Department of Information Technology, FI-20014 University of Turku, Finland
jouni.smed@utu.fi, harri.hakonen@utu.fi

Abstract. We introduce three game design concepts which, at the same
time, allow interaction among multiple players but do not require as
large networking resources as real-time interaction. These concepts can
be used, for example, in mobile platforms where the communication re-
sources are limited.

1 Introduction

Achieving real-time response is still a major hurdle for mobile platforms, because
of their limited processing power, memory capacity, display capabilities, and
communication channels. Especially, the resources for handling the network com-
munication – bandwidth, latency, and the node’s processing power – impose re-
strictions on real-time communication, which the application cannot overcome
and which must be considered in the game design [1, Chap. 8]. Although we
can wait and hope for improvements on the underlying technology, this article
takes a more proactive view and introduces game design concepts which use
light-weight communication.

Real-time communication is not the only method to allow multiple players to
participate in a game simultaneously. For example, the oldest form of non-real-
time multiplaying, dating back from the 1970s, is a high-score list which provides
an after-game place for the players to meet and compete with their results. It is
still a viable form of interaction, and the competition can be distributed so that
the participants provide their results which are then compiled to form the final
standings [2].

The three concepts presented in this paper are examples of decision-making in
operational, tactical and strategic level [1, Chap. 6]. They correspond to the time
span and abstractness of the decisions: operational decisions are concrete and
frequently issued commands, tactical decisions comprise instructions aimed at a
given situation, and strategic decisions focus on long-term planning. We line out
the requirements that each concept imposes to the light-weight communication
so that the game remains enjoyable for everyone to play.

2 Operational level: Short active turns

The simplest way to achieve interaction is to serialize the game events so that
each player has a turn when to make decisions. Thus, in a turn-based game the



4

2

p3

p

transmission ttransmissiontransmission

p1

p render turn 2

replay...

replay and filler render turn 2 filler render turn 3

render turn 3replay and fillerrender turn 1

render turn 1 filler render turn 2

render turn 3fillerfillerrender turn 1

active turn 3

active turn 2

active turn 1

Fig. 1. Each player has successively a short active turn followed by passive turns, where
the other players make their attempts.

players have active turns followed by passive turns where they are observing
the game progress. If the player’s decisions are carried out immediately, this
active turn cannot be too long so that all the players have an equal chance
to interact and the waiting times remain reasonable. Whereas the active turns
matter the most to the player, we should smooth out their difference to the
passive ones. This means that the game design should make the players also find
the compulsory passive turns interesting and captivating.

Figure 1 illustrates how the game-play works: Each turn has a predefined
length. When the active player is making an attempt, the passive players can
view statistics, prepare for their turn, or customize the presentation of the game
content (e.g. the type of the shown filler material). When the active player has
completed her attempt, she can watch a replay or post-attempt animation or get
comments from the coach. In the meanwhile, the relevant data is transferred to
the other players, who can then render it. There is no need for a server but the
communication use peer-to-peer architecture. However, joining requires a way
to handle the participation management so that the players can connect one
another.

The main requirement for such a game design is that the player’s operational
decisions are made within short time intervals (i.e. active turns). Natural can-
didates for this kind of a game are certain fast-paced and attempt-based sports
events such as javelin, long jump, ski jump, or darts. Such games also retain the
excitement in the passive turns, because it is interesting to watch and anticipate
other players’ attempts. Moreover, this makes it easy to generate relevant filler
material (e.g. statistics or slow motion replays) to be shown during the passive
turns.

3 Tactical level: Semi-autonomous avatars

Instead of operational commands, we can raise the abstraction level to tactical
commands, which means that they are not so time-sensitive. This demonstrates
the idea of compensating communication with computation. Let us elaborate
by using a simple shooter as an example. Rather than giving commands like
‘move forward’, ‘turn left’ or ‘shoot’, which require prompt communication, the



p1

p2

p3

a2 : guard
a1 : attack

a3 : flee

Fig. 2. Players p1, p2 and p3 issue tactical instructions to the corresponding avatars
a1, a2 and a3.

avatars can be semi-autonomous, to whom the players give tactical instructions
like ‘attack’, ‘flee’ or ‘guard’ (see Fig. 2). The avatars then carry out these tactics
the best they can. However, their response is not immediate and the outcome
can be something else than the player expected. This resembles the characters of
The Sims [3], which have a limited free will to carry out the player’s commands.

Semi-autonomous avatars provide a way to realize light-weight communica-
tion in client–server architecture. The players (i.e. clients) send tactical com-
mands to the server, which updates the situation and returns the game events.
High latency can be compensated by slowing down the pace of the game or by
gathering the commands of a certain period and issuing them simultaneously
like the SMS television games [4]. Because the computational burden lies now
in the server, we can even allow the players to code the operational level logic
themselves like in Core War [5] or AIsHockey [6].

To summarize, this concept requires that the game design has a clear separa-
tion between tactical and operational level. In order to have intelligent avatars
the game world should be non-complex (e.g. a limited arena) or the set of actions
in the tactical level should be limited. For example, team sports games provide
natural command interfaces that accept tactical commands like ‘attack on the
right side’, ‘defence go forward’, or ‘increase pressure’.

4 Strategic level: Interaction via proxies

The game-play on the strategic level does not require that the participating
players are present at the same time. The players can set proxies that later
on interact with other players on their behalf, and, conversely, they encounter
proxies set by other players. For example, the bone files of NetHack [7] allow
the player to interact with the ghost of another player, who has died earlier
on that level. The ghost acts then as a proxy for the deceased player, but that
player himself do not interact the active player. In addition to fully-autonomous
avatars, the proxies can be game entities (e.g. mechanistic objects or gizmos)
and they can even include programmable parts.

As an example let us introduce a novel game called Entrappers (see Fig. 3).
The game comprises levels generated and stored in a server. When a player
enters a level, she gets either a computer-generated or previously stored level.
A stored level can contain traps set by previous players (i.e. the traps acts as
their proxies). The player is alone in the level and only when she exits, the level
– containing the possible modifications and new traps she has set – is stored



{ }

c, p2{ }

c}{

c{ }

c, p1 , p2{ }

c{ }

c, p1{ }

c, p2{ }

c, p1{ }

c{ }

c{ }

c{ }

c{ }

c{ }

c, p2{ }

c, p1{ }

start
p2

p1

p2

p1
p1

p2

p1

p2

c

Fig. 3. The columns represent level alternatives for a player. The arrows indicate the
routes already taken by players p1 and p2. Inside each level are traps set by computer
(c) or the players.

back to the server. The player is awarded immediately for clearing the level and
indirectly over time when somebody else falls into a trap set by her.

This concept requires that the game design allows unrestricted play time for
the players (i.e. they can join and leave whenever they want and the rewards
are collected over time). Moreover, the game-play lacks immediate human inte-
raction, which also restricts the game design. However, from these restrictions
follow that we can implement a light-weight communication that allows to or-
ganize games with massively multiple players.

5 Concluding remarks

Although we cannot escape technical limitations, we can change the resource
requirements by altering the game design cleverly. By considering the different
decision-making levels we described concepts that can steer the game design so
that we can combine the need for multiplayer support with light-weight commu-
nication. Future work is needed to evaluate what kind of games these concepts
allow to develop and what kinds of multiplayer gaming needs they can fulfil.

References

1. Smed, J., Hakonen, H.: Algorithms and Networking for Computer Games. John
Wiley & Sons, Chichester, UK (2006)

2. Könönen, V.: Ski Jump International v3. (2006) 〈http://www.nomasi.com/sj3/〉.
3. Maxis: The Sims. Electronic Arts (2000) 〈http://www.maxis.com/〉.
4. Seppänen, A.: Regional case study: Finland. In: Game Developer Conference

Mobile 2003 Proceedings, San Jose, CA (2003)
〈http://www.gamasutra.com/features/gdcarchive/2003M/Seppanen Antti.ppt〉.

5. Dewdney, A.K.: Computer recreations: In the game called Core War hostile
programs engage in a battle of bits. Scientific American 250(5) (1984) 14–22

6. Smed, J., Kaukoranta, T., Hakonen, H.: AIsHockey—a platform for studying
synthetic players. In Sing, L.W., Man, W.H., Wai, W., eds.: Proceedings of the
2nd International Conference on Application and Development of Computer
Games, Hong Kong SAR, China (2003) 183–188

7. DevTeam: NetHack 3.4.3. (2006) 〈http://www.nethack.org/〉.


