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ABSTRACT

Collusion is covert co-operation between participants of a
game. It poses serious technical, game design, and com-
munal problems to multiplayer games that do not allow the
players to share knowledge or resources with other players.
In this paper, we review different types of collusion and intro-
duce two measures for collusion detection. We also propose
a model and a simple game, implemented in a testbench, for
studying collusion detection.

INTRODUCTION

When the rules of a game forbid the players to co-operate,
any attempt of covert co-operation is called collusion. The
players who are colluding (i.e., whose goal is to win together
or to help one another to win) are called colluders. Collusion
poses a major threat to games that assume that the players
aim at individual goals individually, because many types of
collusion are impossible to prevent in real time. Even de-
tecting collusion can require discerning and understanding
the player’s motivation – which is often an impossible task
for human beings, too. For this reason, collusion is usually
detected only afterwards by studying the behaviour of the
players and recognizing characteristic patterns that indicate
forbidden co-operation.

Apart from games suspectible to collusion such as poker
[2, 8, 10] and bridge [11], collusion have been addressed
also in the context of tournaments [3] and multiple choice
examinations [1]. In our previous work [7] we introduced a
classification for different types of collusion, which we will
present in the next section. We argued that different types
of attacks have been lumped together under the same col-
lective title “collusion” and that they have been commonly
dismissed as unsolvable in the literature. We showed that al-
though there are collusion types that are indeed impossible
or very hard to detect, there are also cases where automatic
recognition is possible. In this paper, we take one step further
and present a model and a simple game with which collusion
detection methods can be tested and evaluated. Our motiva-
tion is that only when we understand how to detect collusion,
we can proceed further to its prevention.

The plan of this paper is as follows: We begin by pre-
senting classifications for collusion. They line out the types
of collusion and give us the terminology that we will use
throughout this paper. After that, we look at the problem
statement of collusion detection. It gives us measures upon
which the models and testbench game presented next will
rely. Finally, we will conclude the paper with a discussion

on how the model presented in this paper helps the research
and what are the steps for future work.

CLASSIFYING COLLUSION

When the players of a game decide to collude, they make a
agreement on the terms of collusion [7]. This agreement has
four components:

Consent How do the players agree on collusion?

• Express collusion: The colluders make an explicit
hidden agreement on co-operation before or dur-
ing the game.

• Tacit collusion: The colluders have made no
agreement but act towards a mutually beneficial
goal (e.g., try to force the weakest player out of
the game).

Scope What areas of the game the collusion affects?

• Total collusion: The colluders co-operate on all
areas of the game.

• Partial collusion: The colluders co-operate only
on certain areas and compete on others (e.g., shar-
ing resource pools but competing elsewhere).

Duration When does the collusion begin and end?

• Enduring: Collusion agreement lasts for the dura-
tion of the game.

• Opportunistic: Collusion agreements are formed,
disbanded, and altered continuously.

Content What is being exchanged, traded, or donated in the
collusion?

• Knowledge: The colluders share expertise (e.g.,
inside information on the game mechanics), in-
game information (e.g., the colluders inform one
another the whereabouts of the non-colluding
players) or stance (e.g., the colluders agree on
playing “softly” against one another).

• Resources: The colluders share in-game resources
(e.g., donating digital assets to one another) or
extra-game resources (e.g., a sweatshop is playing
a character which will be sold later for real-world
money).
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Figure 1: Players and participants are the partakers of a
game. The relationship is usually assumed to be one-to-one,
but one human participant can control two or more players, a
player can be controlled by a computer program (i.e., a bot),
or two or more participants (e.g., a sweatshop).

This classification is not sufficient for on-line computer
games, because we must also discern the roles of the par-
takers – players and participants – of the game [7]. A player
in a game can be controlled by one or more participants, and
a participant can control one or more players in a game (see
Figure 1). This means that there are two types of collusion:
(i) collusion among the players which happens inside the
game, and (ii) collusion among the participants which hap-
pens outside the game. To detect player collusion, we have
to analyse whether the players’ behaviour diverges from what
is reasonably expectable. To detect participant collusion, we
have to analyse the participants behind the players to detect
whether they are colluding.

This gives a fine-grained classification of collusion types:

Participant identity collusion How a single player is per-
ceived to participate in a game?

• Player controller collusion: Many participants are
controlling one player (e.g. two players control-
ling the same character alternatively).

• Self-collusion: One participant is controlling
many players (e.g. one participant controls many
player in a poker table).

Inter-player collusion How the participants are affecting
the game?

• Spectator collusion: Co-colluder provides a differ-
ent type of information (e.g., ghost scouting, post-
game information).

• Assistant collusion: Co-colluder plays (possibly
sacrificingly) to assist the other to win (e.g., as a
sidekick, passive scout, or spy).

• Association collusion: Colluders achieve individ-
ual goals through co-operation.

Game instance collusion How factors outside the game in-
stance affect the game?
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Figure 2: Collusion is detected when the observed results
using a measure m deviate significantly from the expected
results re. Suspicion arises at the moment ts when the results
are getting either too “good” and cross the threshold rg or
they are getting too “bad” and cross the threshold rb.

• Multigame collusion: Players of different game
instances collude (e.g., studying the game prop-
erties, finding suitable server, fixing tournament
match results).

• Insider collusion: The co-colluder is a game ad-
ministrator or game developer that reveals or mod-
ifies the workings of the game instance.

Because collusion prevention requires that collusion gets first
detected, let us next take a closer look at what is required
from collusion detection.

COLLUSION DETECTION

When comparing collusion detection methods, we should ob-
serve the following two properties:

Accuracy How justified is the suspicion raised by the detec-
tion method?

Swiftness How early does the suspicion raise?

Naturally, accuracy is important so that normal behaviour
does not set off an alarm and cause uncalled for inspection
or unjust punishment. Swiftness is usually related to accu-
racy so that the less accurate the detection is, the swifter the
suspicion is detected.

Let us try to interpret these properties in a somewhat more
formal – but simple – manner (see Figure 2). Suppose that
our detection is based on applying some numeric function
m upon the participants P of the game and some collected
game data D. Let Q ⊆ P and rg is some chosen threshold
value of the best possible play. If m(Q,D) > rg, we decide
that the players in the set Q are colluding. In this framework
the questions to be asked are:

Accuracy How is the value of m related to the probability
that Q really contains colluders?

Swiftness How much data D is needed before rg is ex-
ceeded?

Ideally, we would like to have a measure that indicates as
early as possible when players are colluding or when their
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Figure 3: The pay-off of collusion per colluder increases un-
til the optimum number of colluders is reached, after which
it approaches asymptotically fairplay pay-off.

behaviour is showing suspicious traits. Should the detection
happen before collusion actually gives any notable gain for
the colluders, we have managed to prevent it altogether. How
then to find such methods? From an intuitive point of view,
any abnormal behaviour in a game should raise a suspicion.
This is the case especially when some of the players get too
good (i.e., exceeding the threshold rg) or too bad (i.e., going
under the threshold rb) results in comparison to their play-
ing skills (the latter would indicate a case of assistant col-
lusion). Function m could then indicate the (absolute) dif-
ference between the expected behaviour (e.g., wins in a card
game) against the observed one.

How to select Q then? Instead of inspecting all |℘(P)|−
|P| different colluder sets, we can limit |Q| to a certain range,
which depends on the collusion pay-off of the game. Figure 3
illustrates the pay-off of collusion with respect to the number
of colluders. As the number of colluders increases, the total
amount of pay-off also increases. However, when the pay-
off is divided among the colluders, there exists an optimum
where the pay-off per colluder is the greatest. For example,
robbing is more effective when the gang of robbers is big, but
a big gang of robbers has to focus on big heists to provide
everyone with a big share of the loot. When we are detecting
colluders, |Q| can be limited near to this optimum. For the
game design this means that it is possible to discourage large-
scale collusion by pushing down the peak of the curve. For
example, if robbing is allowed in the game but a part of the
loot gets damaged (or otherwise loses its value), the optimum
size of a gang of robbers gets smaller.

Next, let us limit ourselves to inter-player collusion, where
the players of the game co-operate by exchanging in-game
resources or information. This type of collusion is what is
“normally” understood as collusion, where we can assume
players and participants have one-to-one relationship. For
a review of methods proposed for preventing other types of
collusion, see [7].

INTER-PLAYER COLLUSION

If the content of the collusion agreement is an in-game re-
source, it is possible to detect by analysing the game session
logs [2]. Detecting shared knowledge, however, is more diffi-
cult, because we can only observe the decisions made by the
players in order to discern the intention behind the decision-
making. To analyse this kind of collusion, we present a sim-
ple game, Pakuhaku, in the next section, but before that we

need to consider two attributes of a game.
The first attribute divides games into perfect information

games (such as chess), where the players can always ac-
cess the whole game situation, and hidden information games
(such as poker), where the players can access only a part of
the game situation [6, §4]. Naturally, hidden information is
worth colluding, because it gives the colluders benefit over
the other players. But collusion is beneficial even in a per-
fect information game, because the decision-making process
can always be seen as “hidden” information.

The second attribute is based on the properties of the game
world, which can be continuous or discrete. If the central at-
tributes of the game world are continuous, there usually is
a well-defined metric to compute the distance between two
game world locations. Since players try to dominate some
geometric sub-area of the game world, the winnings of the
game are related to the scope of the dominated area. Collu-
sion can allow the players to govern a larger area than they
would obtain by individual effort alone. If the game world
consists of a set of discrete locations, the colluders can try
to increase their joint probability of winning in the game by
maximizing the subset of states they dominate.

When we consider the measuring and estimating collusion
in some game environment, we could start by collecting real-
world data for the purposes of analysis. However, it would be
hard to ascertain what has been the driving force behind the
human players at a given time. Another approach is to use
synthetic players [5] some of which have been programmed
to collaborate. Clearly, it is easier to create a large amount of
test data with known co-operative properties with the latter
approach, and we believe that it is the more fruitful one in
this early phase of this research. The results obtained for
artificial data should naturally be later evaluated and verified
using real examples.

The idea behind our approach is:

(i) Generate game data with different number of players,
colluders, game types, and collusion strategies.

(ii) Devise detection methods.

(iii) Run the detection method against the data to get results.

(iv) Compare accuracy: How many (if any) of the colluders
got detected.

(v) Compare swiftness: How quickly the colluders were
detected.

Naturally, this creates a competition surroundings where cre-
ating colluding synthetic players fights against devising de-
tection methods.

In this paper, we limit ourselves to step (i). The subse-
quent steps will naturally be the focus of the our future work.
Moreover, we intend to provide ready-to-use test data (akin
to the Calgary Corpus [9]) for anyone interested in devel-
oping and testing their collusion detection methods as well
as the possibility to fine-tune the synthetic players and de-
velop new game types using our testbench system, Pakuhaku,
which we will describe next.



Figure 4: Screenshot from Pakuhaku with fog-of-war. The
black players are colluding by dividing the game world into
non-overlapping interest domains, while grey players search
pills individually.

TESTBENCH FOR COLLUSION DETECTION

The basis for our testbench, Pakuhaku (see Figure 4), is
the classical computer game Pac-Man [4]. We have omit-
ted many features of the original game – such as the maze,
ghosts, and power-up cherries – but we allow multiple play-
ers to take part in the game. Moreover, we have parame-
terized the number of directions the players can take (which
ranges from three to infinite) and the area visible to the play-
ers can be limited by a fog-of-war. The goal of the game
is simple: eat as many pills scattered in the game world as
possible.

At each turn, each player makes a decision on the direc-
tion where to go. This decision is based on knowledge about
the game world, which can be perfect (i.e., not limited by the
fog-of-war) or hidden (i.e. limited to immediate surround-
ings by the fog-of-war). The system provides a communica-
tion channel, where the colluders can exchange one message
in each turn. The communication can be used to assist, re-
strict and guide the co-colluders.

The game type can be one of the following:

• Preset game world: A given number of pills are posi-
tioned in the game world. The game ends when all the
pills have been eaten.

– Evenly distributed pills: The pills are positioned
into rows and columns.

– Randomly distributed pills: This pills are posi-
tioned randomly from a given distribution.

• Regenerating game world: Pills are repositioned to
game world after they have been eaten. The game ends
when the leader has eaten a given number of pills.

– Dispenser competition: The game world has only
one pill, which is dropped into a random position
whenever it gets eaten.

Table 1: Results from 1,000 games with 100 randomly dis-
tributed pills and a fog-of-war. Of the five players A and B
collude whereas C, D and E play fair. (a) The colluders share
only knowledge of their whereabouts. (b) The colluders di-
vide the playfield into interest domains. (c) Player A plays
normally whereas player B tries to hamper the other players
by following and eating pills in front of them.

test player min max mean variance
A 6 41 20.38 34.88
B 5 44 20.14 35.85

(a) C 5 42 19.91 36.77
D 3 41 19.87 33.74
E 5 41 19.69 34.34
A 3 50 21.89 44.31
B 5 47 20.20 39.36

(b) C 3 40 19.40 34.21
D 6 38 19.43 32.92
E 4 40 19.07 35.42
A 4 48 24.17 43.76
B 2 37 13.65 27.41

(c) C 3 47 21.19 56.95
D 1 46 20.76 62.21
E 1 55 20.23 58.99

– Triple competition: A variation of the dispenser
competition, where three pills are dropped ran-
domly in a line somewhere in the game world.

The Pakuhaku system runs on the Java platform. The testruns
can be done in a batch mode, where the system creates log
data for further analysis (see Table 1 for a simple statistical
analysis of the log), or the actions can be observed on screen.
The player logic (including colluders and non-colluders) is
freely programmable. The system can also be extended to
include new game types.

DISCUSSION

Let us first consider collusion and the effect of the fog-of-
war. If we have a perfect information game (i.e., no fog-
of-war), colluders do not get any benefit by informing about
the position of the game entities. Instead, they can agree on
dividing the game world into non-overlapping interest do-
mains (e.g., as a Voronoi diagram) so that each colluder eats
the pills within the respective interest domain (see Figure 4).
While non-colluders potentially target all available pills, thus
competing with other non-colluders as well as with colluders,
the colluders focus only to the subset that belongs to them
and avoid competition with other colluders.

If the game has hidden information (i.e., the fog-of-war
limits the visible area), the colluders get advantage by shar-
ing the positions of the entities visible to them. This benefit
is not as great in preset game worlds as in the changing ones.
For example, in the triple competition, if the colluders know
the position of two pills, the possible locations of the third
pill are limited to a single line.

To present an example how collusion can be detected, let
us consider the dispenser competition without the fog-of-
war: Let the game area size be A and the number of players



p. Normal players would most likely try to balance between
the following strategies:

• Patrol in the middle of the game field to minimize the
average direction to a random location.

• Try to find an area that can be dominated and which is
larger than A/p (i.e., an area where there are not many
other players around).

In either case, whenever a pill drops, the player starts rush-
ing to it. Note that if all players follow the same strategy,
they have equal chances of winning (1/p). If both strategies
are followed by some players, the latter strategy is the more
profitable one.

Let there be q collusion participants, who divide the game
field into q disjoint interest domains. If all non-colluders are
patrolling in the middle, the colluders quite likely get most
if not all the pills. Even in the latter case, the even distri-
bution of colluders makes all areas of the game field equally
uninviting to normal players, so their decisions will be more
or less random.

CONCLUDING REMARKS

Collusion cannot be prevented, but some of its forms can be
detected and punished afterwards. Therefore, the counter-
measures are effective only if we can detect collusion accu-
rately and swiftly. In this article, we focused on inter-player
collusion and presented a simple game where collusion de-
tection methods can be tested. The testbench creates game
data that can be used to evaluate collusion detection methods.
This paves the way to the future work, which will focus on
designing detection methods, analysing them formally and
improving them experimentally.
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