
CRITICAL POINTS IN ASSESSING LEARNING PERFORMANCE VIA
CROSS-VALIDATION

Hanna Suominen, Tapio Pahikkala, Tapio Salakoski

Turku Centre for Computer Science (TUCS) and
University of Turku, Department of Information Technology

20014 University of Turku, FINLAND
firstname.lastname@utu.fi

ABSTRACT

Quality assessment of learning methods is essential when
adapting them to different tasks, introducing new algo-
rithms, developing the existing ones, or tracking the learn-
ing improvements over time. Obtaining realistic results
is, however, complicated. In this paper, we clarify this by
addressing performance evaluation measure and method
selection, with a main focus on combining the AUC mea-
sure with the cross-validation method. We conclude that
it is crucial to choose both the measure and method that
reflect the evaluation aspects, learning task and data in
question. Furthermore, the evaluation setting must cor-
respond to the intended use environment and the test set
has to be completely independent from the creation of the
learner. Finally, special caution is needed when forming
the cross-validation folds.

1. INTRODUCTION

In supervised learning, a machine is taught with a set of
training data instances with preferred outputs to perform
a specific task. By a task, we mean the prediction of an
output for an unseen data instance. For example, the aim
in automatedclassificationis to build a system, which as-
signs for each input instance according to their content the
class or classes to which it belongs based on absorbing in-
formation from previously observed instance-class pairs.
An inherent question is how well the learning method per-
forms in its task from the output quality perspective. An-
swering this is essential, for example, when adapting a
learner to a given task, introducing a new algorithm, de-
veloping existing systems further or tracking the learning
improvements over time.

Performance evaluationcan be divided into three
step process [Spärck Jones and Galliers, 1996, pp. 19–
20], [Hirschman and Thompson, 1997] (Figure 1): The
first step is to define the aspect, orcriterion, of the system
performance to be assessed. At the second one, a suitable
performance evaluationmeasureis selected to reflect the
criterion of interest. The third step is to specify amethod
to determine the value of the measure illustrating the sys-
tem performance typically in a numerical form.

Let us consider again classification as an example
learning problem. Now, classification speed and qual-

ity are possible criteria. Further, a measure reflecting the
quality of the classification could focus on the number of
correctly classified instances and the method to define the
measure value to ask a human expert to classify a set of
data, divide the set into two parts, train the classifier with
the first half, use the resulting system to classify the sec-
ond half, and compare the output to the expert’s opinions.

Even though performance evaluation may sound easy,
there are, however, many pitfalls on the way. On the one
hand, details of performance evaluation, such as estab-
lished measures, are to a large extent textbook knowledge.
But on the other hand, quality assessment problems are
very complicated and inherent to a learning task in ques-
tion. In practice, a great number of published papers to-
day suffer from serious defects in the evaluation of system
performance.

In this paper, we address the measure and method
steps of performance assessment by using the output qual-
ity as a criterion. As we have now specified the first evalu-
ation step, we will later use the termperformanceto refer
to this aspect. Our goal is to provide helpful guidelines
to avoid pitfalls in performance evaluation by explaining
the essence of selecting a measure appropriate for the task
and data as well as a method taking into account both the
measure and data. To concretize discussion, we focus on
classification even though a majority of general principles
covered can be applied to other learning tasks as well.

We begin with the measure step of assessing the qual-
ity of learners in Section 2. We illustrate the key ques-
tions required to judge by considering classification as an
example learning task. We describe several established
classification measures and discuss their similarities, dif-
ferences, strengths and drawbacks. We start with simple,
intuitive and easy-to-interpret measures based on compar-
ing the numbers of correctly and incorrectly classified in-
stances. Through these examples, we notice the essence of
taking class sizes, class distributions and dependences be-
tween different measures into account when selecting the
measure. Step by step, we proceed to established mea-
sures that are commonly considered to depict more reli-
ably classification performance. An additional aspect of
the section is generalizing the measures from the basic
case of identifying instances belonging to a given class
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Figure 1. Steps of learning performance evaluation by [Spärck Jones and Galliers, 1996, pp. 19–20] and
[Hirschman and Thompson, 1997].

to more complex learning tasks.
We then continue in Sections 3 and 4 with the method

step by refining it into sequential method selection and
implementation stages. Section 3 is about the method se-
lection step: We explain techniques to compute the perfor-
mance of a given learner in terms of the chosen measure
and discuss their relationships to each other. After recall-
ing the basic principles of supervised learners, we portray
the importance of assessing performance with data inde-
pendent from the learning process. But, on the other hand,
evaluation data must be representative and in line with the
amount of available data.

Section 4 focuses on the step, when performance eval-
uation method is implemented, and it contains the main
contribution of this paper. We discuss ways to follow in
practice the crucial principles of having a realistic test set-
ting and test set completely independent from the creation
of the learner. Firstly, we demonstrate dependences in
the data, which complicate performance evaluation. Sec-
ondly, we explain approaches to reflect the special char-
acteristics of the data, performance measure and learning
task at the method step. Thirdly, we concretize this by
considering a particular measure and method.

We conclude the study in Section 5 by summarizing
the content of the paper in five general principles. We
also update Figure 1 to correspond to the refined perfor-
mance evaluation process and supplement it with the cri-
teria, measures, methods, and implementation aspects dis-
cussed.

2. PERFORMANCE EVALUATION MEASURES

We next clarify the perspectives needed to judge,
when selecting a performance measure and interpret-
ing its values. As performance measures depend on
a learning task and numerous performance measures
exists, we consider classification as an illustrative ex-
ample. (See, e.g., [Spärck Jones and Galliers, 1996,

Suominen et al., 2008] for a broader discussion about per-
formance evaluation measures for various learning tasks.)
The measures considered evaluate the learning ability nu-
merically by comparing system output to agold standard
(akareference standard), which defines the correct output.

To lay groundwork for deeper aspects and discussion,
we start with easy-to-interpret measures and their draw-
backs in Section 2.1. In Section 2.2, we focus with fur-
ther detail on a particularly prevalent performance mea-
sure called thearea under receiver operating character-
istic curve(AUC). In both sections, we begin withbinary
classification, where the task is to decide for each input in-
stance whether or not it belongs to a given class. Then, we
explain how the measures can be extended to more gen-
eral learning tasks. Section 2.3 summarizes the aspects of
classification measure selection discussed.

2.1. Accuracy, Precision, Recall and Related Mea-
sures

Perhaps the most intuitive classification performance eval-
uation measures are the proportions of correctly and incor-
rectly identified instances, that is, the classificationaccu-
racyanderror. Their values are between zero and one, but
with accuracy, one means the best performance whereas
with error, being one minus accuracy, zero corresponds to
the optimum. However, these simple measures may give
misleading results: When the classes are strongly of an
unequal size, accuracy and error may give considerably
over-optimistic or pessimistic results.

As an example, in a binary classification task, where
95% of the instances belong to the class (positive in-
stances), a classifier that always assigns an instance to
the class will have 5% error. This misleadingly suggests
that the classifier is good. Similar problems often occur in
tasks, where the gold standard is defined by using a Lik-
ert scale opinion poll, because it is relatively common that
the answers to a given claim pool to one option.



Another problematic situation is that the proportion of
instances left correctly outside the class (true negatives,
TN ), is excessively large when compared to the numbers
of true positives(TP ), false positives(FP ) andfalse nega-
tives(FN ). In addition, the number of true negatives may
even be unknown, as in applying classification to identify
web documents relevant to a query given to a web search
engine.

Precision, recall and many other classification mea-
sures based on these are independent of true negatives
and hence also applicable when the number of true nega-
tives is unknown or excessively large. Precision is defined
as the proportion of correctly classified positive instances
from all positive instances in the system output. Recall
is the proportion of correctly identified positive instances
from all instances that should have been identified as pos-
itive. Both these measures get values between zero and
one, higher values indicating the better the performance.

There is a tradeoff between precision and recall, and
therefore one must consider the two measures together if
choosing to use them in performance evaluation. A pitfall
is to, for example, maximize recall without taking preci-
sion into account simultaneously, because a perfect recall
can be trivially accomplished by classifying all instances
as positives. More generally a system can increase recall
at the cost of decreased precision by assigning more in-
stances to the class, and vice versa.

It is often desirable to have only one value that char-
acterizes performance, and for precisionpP and recallpR,
this is popularly done by taking their weighted harmonic
mean

pF(Y, f(X), α) =
1

α 1
pP

+ (1− α) 1
pR

(1)

=
pP pR

αpR + (1− α)pP
,

where f specifies the classifier andf(X) =
(f(x1), . . . , f(xm))T is its output for an input se-
quenceX = (x1, . . . , xm). Y = (y1, . . . , ym)T is the
respective gold standard andα ∈ [0, 1] a factor determin-
ing the weighting of precision and recall. The values of
(1) are between zero and one, higher values indicating the
better the performance.

The most common choice in (1) is to weight precision
and recall evenly, that is, to selectα = 0.5 giving

pF1(Y, f(X)) =
2pPpR

pP + pR
=

2TP

2TP + FP + FN
.

This is known asF1, F measureor balanced F score.
We now extend the previous measures to more general

tasks ofmulti-class classification, where there are mul-
tiple classes and each instance belongs to one of them,
and tomulti-label classification, where each instance can
belong to several classes at the same time. With multi-
class classification, this is straightforward: an instance is
correctly classified if it belongs to the same class both
in the system output and gold standard. As above, ac-
curacy (resp. error) is the proportion of correctly (resp.

incorrectly) identified instances to the total number of in-
stances. Precision and recall must be, however, be defined
separately for each class. With respect to a certain classi,
an instance is false positive if it is assigned to this class in
the system output but not in the gold standard. Similarly,
it is false negative if it belongs to the classi in the gold
standard but not in the system output. Now, precision and
recall can be defined separately for each class as above.
We denote them aspPi andpRi , respectively. Generaliza-
tion for multi-label classification is similar, as it can be
decomposed into distinct binary classification problems,
except accuracy and error must also be computed sepa-
rately for each class.

If we want to measure the overall performance with
one measure in the multi-class or label case,micro or
macro-averagingcan be used. For example, ifNC is the
number of classes andpFi , i ∈ {1, . . . , NC}, are the val-
ues of (1) calculated separately for each class by usingpPi

andpRi
, the macro-averaged variant of (1) is the average

of pF1 , . . . andpFNC
. Further, the micro-averaged variant

of (1) is defined by replacingpP andpR with their micro-
averaged forms

pPmicro(Y, f(X)) =
∑NC

i=1 TPi∑NC

i=1 (TPi + FPi)
,

pRmicro(Y, f(X)) =
∑NC

i=1 TPi∑NC

i=1 (TPi + FNi)
,

whereTPi, FPi andFNi are the class-specificTP , FP
andFN , respectively.

Macro and micro-averaged variants of (1) reflect, by
definition, different performance aspects. The former em-
phasizes the significance of performing well in all classes,
including also those with relatively rare occurrence fre-
quency. The latter weights each code assignment decision
equally resulting the dominance of the performance in the
common classes.

2.2. AUC

The measures defined in Section 2.1 are sensitive to the
relative number of positive and negative instances. This
class distribution dependence can be problematic if, for
example, the distributions of the gold standard and real
data differ. AUC is a measure invariant to class distri-
bution (see, e.g., [Fawcett and Flach, 2005]), and for this
reason, its use has been recommended instead, or in addi-
tion to, F (see, e.g., [Airola et al., 2008] in the task of ex-
tracting protein-protein interactions). On the other hand,
unlike precision, recall and F, it incorporates the num-
ber of true negatives. Further, unlike previously discussed
measures, AUC can be applied in preference learning and
ranking tasks as well, because only the pairwise order
of the instances with respect to the classification topic,
that is, information defining which of the two instances
is larger, is needed. For these reasons AUC has gained a
substantial popularity in machine learning community.

We define AUC for binary classification in a proba-



bilistic fashion as follows:

pAUC(Y, f(X))

=

∑
yi=+1,yj=−1 δ(f(xi) > f(xj))

y+y−
, (2)

wherey+ andy− are the numbers of positive (yi = +1)
and negative (yi = −1) examples in the gold standard and

δ(b) =
{

1 if b = TRUE
0 if b = FALSE

The interpretation of formula (2) is that AUC is equiva-
lent to theWilcoxon-Mann-Whitney statistic, which is the
probability that, given a randomly chosen positive exam-
ple and a randomly chosen negative example, the classifier
will correctly distinguish them [Cortes and Mohri, 2004].

As being a probabilistic measure, the values of AUC
are between zero and one, larger values indicating bet-
ter performance. When interpreting the values, one must
notice that the AUC value of 0.5 denotes random perfor-
mance and one perfect performance. This means that in
order to outperform the random baseline, the learner must
achieve AUC value larger than 0.5.

Alternatively, AUC can be obtained in a traditional
way by computing thereceiver operating characteristic
(ROC) curve and then calculating the area under the curve.
From this definition, we can easily see the relation to pre-
cision, recall and F: To define the ROC curve, let us con-
sider the binary classification problem again. Instead of
assuming the system output to be a positive or a negative
label for each input instance, as we have done previously,
many classification algorithms produce real-value output.
The magnitude of the output value reflects the classifica-
tion confidence; the largest positive values are assigned to
instances that are most strongly positive, and the largest
negative values to the most strongly negative instances.
In order to compare a real-value output to a binary gold
standard, it must, however, be divided into positive and
negative instances. This can be done by simply defin-
ing a threshold valueθ, which divides the real-value in-
terval into two parts so that instances withf(xi) ≤ θ
are classified as negatives and withf(xi) > θ as posi-
tives. The ROC curve refers to plotting the recall (aka
true positive rate) at certain levels of thefalse positive
rate FP/(FP + TN) obtained by varying the values of
θ from the minimum threshold value (i.e., the one result-
ing all instances to be positives) to the maximum (i.e., the
one resulting all instances to be negatives). In addition to
one value characterizing performance (i.e., the area under
the curve (AUC) here), the ROC curve provides supple-
mentary information about the relationship between recall
and false positive rate: analyzing the curve from left to
right corresponds to trading off false positives for false
negatives.

A straightforward generalization of the Wilcoxon-
Mann-Whitney statistic for ranking tasks is given, for ex-
ample, by [Fung et al., 2006]. There, the labels of the data
points are not necessarily binary, but they can be ordi-
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Figure 2. A schematic diagram of the discussed classifi-
cation performance measures.

nal classes or even real valued. In this case, the perfor-
mance measure corresponds to the probability that, given
randomly chosen two examples with different labels, the
learning method will correctly predict which of them has
a larger label value. Because of this, the measure is, in
fact, closely related to the Kendall’sτ correlation coeffi-
cient [Kendall, 1970]. For further discussion about AUC
and its extension to tasks with multiple classes that are
not necessarily ordinal, we refer to [Hand and Till, 2001,
Lachiche and Flach, 2003, Lachiche et al., 2006].

2.3. Summary

The section discussed critical points in performance mea-
sures with a focus on classification tasks. To summarize,
the appropriate choice of a performance measure depends
on both the task and data in question. The measures de-
scribed in Sections 2.1 and 2.2 portray the differing as-
pects of various well-established measures and the critical
decisions related to measure selection (Figure 2). How-
ever, many alternative measures exist and new ones are
introduced all the time. Hence, it is essential to review the
prevailing practices in similar type of tasks.

3. PERFORMANCE EVALUATION METHOD
SELECTION

In this section, we first recall in Section 3.1 the concept
of supervised learning. Then, we proceed in Sections 3.2–
3.5 to describing four techniques that can be chosen at the
method step to specify the performance of a given learner
(e.g., classifier) in terms of the chosen measure: resubsti-
tution, hold-out, cross-validation, and bootstrap. Section
3.6 summarizes the method selection discussion.

3.1. Supervised Learning

A supervised learneris a machine that is taught with a set
of training data instances with preferred outputs to per-



form a specific task. By a task, we mean the prediction of
an output for an unseen data instance. Formally, let again

X = (x1, . . . , xm) ∈ (Xm)T

be a sequence of inputs and

Y = (y1, . . . , ym)T ∈ Rm

a sequence of outputs, whereX , called the input space, is
the set of possible inputs. Here,(Xm)T denotes the sets
of row vectors of sizem whose elements belong to the set
X while Rm denotes the set of real valued column vectors
of sizem. Further, let

S = ((x1, y1), . . . , (xm, ym))T ∈ (X × R)m

be atraining setof m training examples, where(X ×R)m

denotes the set of all possible training sets of sizem. No-
tice that while we callS a training set, we consider it as
an ordered sequence of data instances.

Training can be considered as a process of select-
ing a function among a set of candidates that best per-
forms the task in question. Following the notation of
[Herbrich, 2002], we formalize the training algorithm as
follows: An algorithmA, that selects the function given
the training setS, can be considered as a mapping

A :
⋃

m∈N
(X × R)m → H, S 7→ f,

whereH ⊆ RX , called the hypothesis space, is a set of
functions among which the algorithm selects an appropri-
ate hypothesisf ∈ H. With RX = {f | X → R} and⋃

m∈N(X×R)m we denote the set of all functions fromX
to R and the set of all possible training sets, respectively.

Learning algorithms have often parameters that must
be selected before the learners are trained. For example,
regularized kernel methods usually have a so-called reg-
ularization parameter that controls the trade-off between
the empirical error and the complexity of the learned func-
tion. Moreover, the kernel function determining the space
of functions that the method is able to learn has typically
also parameters to be selected. We do not usually know
in advance which values of the parameters provide us the
best performance for unseen data. We can fix the val-
ues of these parameters by evaluating performance with
a spectrum of various values, and choosing the one best
one. This supervised learning phase is known asvalida-
tion or model selection. For doing this validation, we have
to have not only a measure but also a method to specify its
value. In addition, the methods are needed to evaluate the
final performance. This phase is calledtestingor model
assessment.

3.2. Resubstitution

Techniques that evaluate the performance of the learner on
the training set are calledresubstitutionmethods. More
formally, if we adopt the same notation as previously, the
resubstitution performanceof f is

p(Y, f(X)), (3)

where,p is a function defining the performance evaluation
measure. For classification tasks, for example, F measure
or AUC can be chosen.

The resubstitution performance does not reliably pre-
dict the true performance of the learner on new data; the
performance estimates are bound to be over-optimistic
when same data is used both for training and testing.
This does not, however, mean that it would not be use-
ful to apply resubstitution too. For example, if the learner
performs on the training set weakly, it is likely have
an even weaker performance on unseen data. Again, if
the performance on the training set is very high, prob-
lems related to over-fitting may be confronted in new
data. Further, if the size of the training set is especially
small, the resubstitution estimate may have smaller vari-
ance than the other less optimistically biased performance
estimation methods, such as cross-validation or bootstrap
(see [Braga-Neto and Dougherty, 2004] for a more thor-
ough discussion about performance estimation in a small-
sample setting). We will discuss these methods below. In
summary, for reliable performance evaluation, it is essen-
tial that the data used for training, validation and testing
are completely independent of each other in order to avoid
over-optimistic bias.

3.3. Hold-out

One of the most popular ways to estimate the performance
of the learner on an unseen data is to use ahold-outesti-
mation technique. By hold-out, we mean that a part of the
available data is set aside to form a hold-out set for perfor-
mance estimation. This method can be used both with and
without the validation phase, but hold-out set must always
be independent of the data used at the previous phases. To
simplify the notation, we next consider only a situation
without validation.

Let
E = {1, . . . ,m}

be an index set, where the indices refer to training exam-
ples. Moreover, let

H ⊆ E

denote a set of indices referring to the examples in the
training set that belong to thehold-out set, and let

H = {1, . . . ,m} \H = E \H

be the set indexing the rest of the training examples. Fur-
ther, let

XH ∈ (X |H|)T,

YH ∈ R|H|, and

SH ∈ (X × R)|H|

denote, respectively, the sequence containing only the in-
puts, outputs, and training examples that are indexed by
H. With this notation,SH is the hold-out set. Further, let

fH = A(SH)



denote a learner that is trained using only the training ex-
amplesSH , whereSH is defined analogously toSH . By
overloading our notation,

fH(XH) ∈ R|H|

is a vector consisting of the output values for the hold-out
examplesXH that are predicted byfH . The outcome of

p(YH , fH(XH)), (4)

wherep is a performance measure, of a learnerfH on the
hold-out setSH is called thehold-out performance. In
practice, it is common to hold one-third of the data out for
testing and use the remaining two-thirds for training, and
if validation is needed the training data is divided further
equally between training and validation.

The problem in the basic hold-out technique is that
the sets selected for testing and training may not be repre-
sentative samples of the underlying problem. Instratified
hold-out, the training and test sets are constituted from
the full data set so that each class is properly represented
in both sets. Another approach to secure the representa-
tive samples is to repeat the training and testing phases
several times with different random divisions of the full
dataset into training and test sets. In thisrepeated hold-out
technique, the overall value of the performance measure is
derived by averaging the values of (4) of the different iter-
ations, and we next focus on it more carefully.

3.4. Cross-validation

From the idea in repeated hold-out, we can derive a per-
formance evaluation technique known asN -fold cross-
validation. Here, the data is first partitioned intoN ap-
proximately equal folds. The folds are usually mutually
exclusive. Then, each fold in turn is used for testing while
the reminder is used for training (note that we again con-
sider the simpler case without a validation phase). The
N -fold cross-validation performance evaluation estimate
is the average of the hold out estimates obtained withN
cross-validation folds.

Note, however, that the cross-validation folds do not
necessarily have to form a partition of the data set. In-
stead, we can perform cross-validation also by repeatedly
selecting a random hold-out set of a certain size so that
the hold-out sets in different cross-validation rounds may
overlap with each other.

We now present formalizations for the cross-
validation methods. InN -fold cross-validation, we have
a sequence of hold-out setsH1, . . . ,HN , whereN ∈ N
and Hj ⊆ E. The overall performance is obtained by
averaging (4) over the hold-out sets:

1
N

N∑
j=1

p(YHj , fHj
(XHj )). (5)

The N -fold cross-validation performance estimates,
of course, depend on the numberN of the folds, since
the smaller is their size, the closer the learner trained with

the rest of the data set should be to the learner trained
with the whole data set. The estimates are also depen-
dent on the sequence of hold-out sets used. There are, in
fact,

(
m

m/N

)
possibilities to choose a hold-out setH of size

|H| = m/N out ofm examples and the performance dif-
ferences between the different possibilities may be large.

If the amount of available computational resources
is sufficiently large or if the used learning method
has efficient computational shortcuts for cross-validation
such as certain types of nearest neighbor classifiers
[Mullin and Sukthankar, 2000], one can perform so-called
complete cross-validation[Kohavi, 1995] in which each
of the

(
m

m/N

)
hold-out splits are used at a time. Formally,

(
m

m/N

)−1 ∑
H⊂E

p(YH , fH(XH)). (6)

A widely used and analyzed special case ofN -fold
cross-validation, in whichN = m, and hence|H| = 1,
is so-calledleave-one-out cross-validation. By definition,
leave-one-out cross-validation is also complete, since it
uses every possible hold-out split of size one. A thorough
review of the use of leave-one-out cross-validation in ma-
chine learning is made by [Elisseeff and Pontil, 2003].

We also note that some performance measures, F mea-
sure for example, may have to be evaluated with pre-
dictions originating from different cross-validation folds.
This is the case especially if the amount of examples in
each fold is too small for the measure to provide sensible
results. For example, it does not make sense to compute
F measure or AUC for one example only, and hence the
measures cannot be evaluated using (5) together with the
leave-one-out cross-validation. To formalize this, we first
define a function

κ : {1, . . . ,m} → 2{1,...,m}, i 7→ H,

where2{1,...,m} denotes the powerset of{1, . . . ,m}, that
maps each example indexi to the setH consisting of
the indices of other training examples that belong into the
same cross-validation fold as theith example. Note that
κ is well-defined only if the cross-validation folds do not
overlap with each other. Further, let

F = (f
κ(1)

(x1), . . . , fκ(m)
(xm))T.

Then, instead of using (5), the cross-validation perfor-
mance can also be evaluated through

p(Y, F )

However, this approach, sometimes called themicro-
average, may have some problems. We discuss these is-
sues in the context of AUC in Section 4.3.

In order to assure that the hold-out splits in cross-
validation estimates represent the underlying problem,
stratification can also be used in forming the cross-
validation folds. This results in a technique known as
stratified cross-validation.



Cross-validation techniques are, in practice, the most
often used ones to measure classification performance.
In particular, (stratified) ten-fold cross-validation and
ten times ten-fold cross-validation have been recom-
mended [Kohavi, 1995]. Also the leave-one-out cross-
validation is an attractive and prevalent technique; by fol-
lowing this method, the greatest possible amount of data
is used for training in each step and random sampling
to divide the data for training and testing is unnecessary.
Further, leave-one-out cross-validation is known to be an
almost unbiased estimator of the learning performance.
However, the variance of leave-one-out cross-validation
may be larger than that ofN -fold cross-validation. This
was experimentally demonstrated in [Kohavi, 1995], and
the parameter selection method recommended there was
ten-fold cross-validation repeated ten times with different
fold partitions. We refer to the previous reference too for
further discussion on the statistical properties of the cross-
validation estimators.

The computational cost can be seen as a limitation for
cross-validation techniques in general, and in particular
for the leave-one-out form. If the learner has to be
retrained each time a hold-out estimate is computed,
the calculation of the average performance may be too
expensive from a computational point of view. This is
especially true when repetition with different partitions
or leave-one-out cross-validation is used. Fortunately,
with some learning algorithms, the training exam-
ples in the hold-out set can be efficiently “unlearned”
and the retraining does not have to be performed.
This is the case, for example, with the basic regular-
ized least-squares learners (see, e.g., [Zhang, 1993,
Pahikkala et al., 2006, Rifkin and Lippert, 2007,
An et al., 2007, Pahikkala, 2008]). In addition,
we have also shown that similar types of efficient
cross-validation algorithms can also be constructed
for the AUC maximizing regularized least-squares
[Pahikkala et al., 2008a, Pahikkala et al., 2008b]
and for the label ranking regularized least-squares
[Pahikkala et al., 2007a, Pahikkala et al., 2007b].

3.5. Bootstrap

In bootstrap, a training set is formed by sampling the
dataset with replacement. That is, the training set may
contain multiplicated instances. Let us assume that a data
set ofm examples is sampledm times to give the train-
ing data set, and the examples of the original data set that
are not selected for training are used for testing. Now, the
probability of any given example not being chosen afterm
samples is(1 − 1

m )m ≈ e−1 ≈ 0.368 and consequently,
the expected number of distinct instances from the origi-
nal dataset appearing in the test set is0.632m. Hence, this
technique is called0.632 bootstrap.

The 0.632 bootstrap performance off is counted
by unifying the performance for the bootstrap samplei
with the resubstitution performance in a following man-
ner [Efron, 1983]: LetpBSi be the performance for the
bootstrap samplei that is counted analogously to equation

(4) but the indexes of the variablesx and y are chosen
according to the test set in question. Similarly, resubsti-
tution performance for the samplei, pRSi , is defined by
using the equation (3). Given the numberN of bootstrap
samples, the 0.632 bootstrap performance is

1
N

N∑
i=1

(
0.632pBSi + 0.368pRSi

)
.

The advantages of bootstrap are especially tangible for
very small data sets. This was demonstrated, for example,
in a comparative study [Braga-Neto and Dougherty, 2004]
using both synthetic and real breast-cancer patient data:
When compared to cross-validation error estimation,
bootstrap was better method in terms of variance, but at
the cost of computational demands and often increased
bias, albeit much less than with resubstitution.

The smaller variance but the higher bias of the
bootstrap error estimator has been proved more generally
for example, in [Efron, 1983, Davison and Hall, 1992]).
However, the 0.632 bootstrap has also shown to
give an over-optimistic performance estimate when
the classifier is a perfect memorizer and the data
set is completely random [Kohavi, 1995]. To ad-
dress these challenges, a so-called0.632+ boot-
strap method has been introduced [Efron, 1997].
As [Ambroise and McLachlan, 2002] explain, the 0.632+
version weightspBSi more in situations with rela-
tively large over-fitting measured by the difference
pBSi − pRSi . Hence, they recommend using it in cases,
where the learner is likely to be over-fitted.

3.6. Summary

The focus of the section was on alternative learning per-
formance evaluation methods, and Figure 3 illustrates as-
sociations between the discussed approaches. We empha-
sized the importance of having completely independent,
but representative training, validation and test sets. Fur-
thermore, we concluded that cross-validation techniques,
specifically ten-fold, ten times ten-fold and leave-one-out
forms, are particularly suitable methods for classification
tasks. With very small data sets, bootstrap is an attractive
alternative.

4. PERFORMANCE EVALUATION METHOD
IMPLEMENTATION

After selecting a performance method, follows an imple-
mentation step, when the value for a given measure and
system is computed in practice. This step contains many
fundamental and critical decisions: For reliable perfor-
mance evaluation, the test set has to be completely in-
dependent from the creation of the learner, and test set-
tings must correspond to the situation, where the classifier
will be actually used. For example, if a machine learning
system is tested with a material somehow dependent on
the training or validation data, or in significantly differ-
ent from the real input, the calculated performance level
will not describe the true quality. However, it is not easy
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Figure 3. A schematic diagram of the discussed performance evaluation methods for supervised learners.

in practice to notice all data dependences that have to be
taken into account when holding out data.

We next concretize the crucial principles of having a
realistic test setting and no information leak between the
phases of training, validation and testing. We begin by
giving intuitive examples about dependence-related dif-
ficulties in Section 4.1. The examples are based on our
previous experiences with text classification tasks, and
the difficulties they portray may occur especially when
evaluating classification performance with real-world data
sets. We continue in Section 4.2 with techniques to avoid
the problems caused by the dependences by reflecting
the learning task in question when forming the cross-
validation folds. Section 4.3 considers the trickiness of
taking special characteristics of the data, learning task and
measure into account in the cross-validation folds by fo-
cusing on measuring AUC during cross-validation. Fi-
nally, Section 4.4 synthesizes the lessons learnt.

4.1. Dependences in the Data

In classification performance evaluation, the aim is to as-
sess the quality of class predictions on unseen data. Con-
sequently, it is crucial that information from training does
not leak into the hold-out set. With text classification,
we see at least three types of task-specific semantic de-
pendences that must be taken into account when dividing
data into training and hold-out sets:author, community

andtime.

The aim in text classification is to categorize the doc-
uments based on the similarity of their content, and typi-
cally the dividing factor should not be the author, the com-
munity in which the text was written nor its writing time:
Because of the individual differences in writing style, the
author has a great impact on the written text, and as a re-
sult, texts written by the same person are very likely to
be more similar than those written by two different peo-
ple. Similarly, texts reflect the surrounding community
and time, when it was written.

For example, every hospital ward has their own style
of writing patient records due to documentation prac-
tices, jargon and abbreviations developed during time, and
hence if multiple reports about the same patient case were
written, those with authors from the same ward would
probably be more similar than those written by people
from different wards. Further, because, for example, treat-
ments, medicines, hospital equipments etcetera change in
time, also the language changes. Therefore, in a task
of separating the documents of cardiology patients from
those of fracture patients, problems may occur, if the doc-
ument collection contains documents from a long time in-
terval; reports written at the same time about different pa-
tient types may be more alike than those about the same
patient type but written at different times.

Because of the author related dependences, one should



consider in performance evaluation whether it is neces-
sary to avoid assigning texts written by the same author
to training and test sets. This kind of avoidance may be
needed, for example, in context sensitive spelling error de-
tection because it does not happen in practice that a classi-
fier performing the task is trained and used with instances
originating from the same document. Another kind of de-
pendence was present in [Suominen et al., 2006], where
we studied automated identification of notes about a given
topic in the domain of intensive care patient records. We
did not use text about the same patient both for training
and testing, because otherwise we could have got an over-
optimistic impression about the performance; notes about
the same patient both in training and testing can be seen
as a potential information leak, as data about one patient
is likely to be very homogeneous. Hence, it is easier for a
learner to recognize notes relevant to a given topic if both
sets contain data about same patients. Similarly, if a clas-
sifier will be used in many organizations and it is trained
with data originating from all these places, its tested per-
formance will be over-optimistic. Finally, our guideline
for time-dependence is to test the performance regularly
and re-train the classifier if necessary.

As an example of taking data dependences into ac-
count at the method step of performance evaluation, we
focus on the study [Sætre et al., 2007]. The authors dis-
cuss differences between two commonly used alternatives
of doing ten-fold cross-validation using a corpus contain-
ing information about protein-protein interactions. The
first approach is to divide the data examples into ten
groups before doing any analysis of the data, and the sec-
ond one is to perform pre-processing and feature extrac-
tion parts of the analysis on the whole corpus only after
that divide data into cross-validation folds. The previously
mentioned reference shows evidence of a serious informa-
tion leak from training to testing in the latter approach be-
cause it gave substantially better impression of the system
performance than the former alternative.

Another study emphasizing unreliability of perfor-
mance evaluation if it contains steps not in line with
cross-validation is [Simon et al., 2003]. The authors’ ex-
periments are related to genetics and include measuring
miss-classifications when using two types of leave-one-
out cross-validation: one, where the left-out instance is
removed before any processing and the other, where data
is analyzed and pre-processed before the removal. As ex-
pected, the results underscore better reliability of the for-
mer approach. Authors also stress validation on indepen-
dent data, which is large enough to demonstrate statisti-
cally learning performance.

As our general guideline, dependences and their han-
dling in performance evaluation must be analyzed for
each data set and task separately. Usually the proce-
dure is similar to previous examples: One must define
a unit, such as one author, patient, organization, or time
interval, and avoid breaking these units when forming
the hold-out sets. This hold-out strategy is known as
leave-cluster-out, and when used in a cross-validation

way, leave-cluster-out cross-validation, in which a whole
dependence clusterof examples is held out in each
cross-validation round, it has been empirically shown
to be more suitable method than leave-one-out cross-
validation [Pahikkala et al., 2006]. The key question is,
however, which of many dependences present at the same
time should be taken into account. A possible solution
is to try to avoid as many of them as possible at the
same time, or to replicate leave-cluster-out performance
evaluation one dependence in turn and in this way assure
that the system works in an acceptable level with all de-
pendences. We will next address leave-cluster-out cross-
validation with greater depth.

4.2. Reflecting the Learning Task in Cross-validation
Folds

In [Pahikkala et al., 2006], we made an experiment in
which we demonstrated the “clustered training set effect”
by comparing the leave-one-out cross-validation perfor-
mance of a trained regularized least-squares to a leave-
cluster-out cross-validation performance so that each fold
in the leave-cluster-out cross-validation consists of the
training examples that form a cluster in the training set.
The problem we considered was dependency parse rank-
ing of sentences extracted from biomedical texts.

In the experiment, we obtained a training data set
by generating a set of parse candidates for one hun-
dred sentences. Each sentence had a known “correct”
parse that a parser is supposed to output for the sen-
tence. For each candidate parse, we calculated a score
value indicating how close to the correct parse it is (see
[Tsivtsivadze et al., 2005] for a more thorough description
of the experimental setting).

The task of the learning machine was, for each of the
one hundred sentences, to rank its candidate parses in the
order of their score values. For this purpose, we trained
a regularized least-squares regressor using all of the gen-
erated parses and their score values as training data. The
ranking performance was measured for each sentence us-
ing Kendall’sτ correlation coefficient, which can be con-
sidered as generalization of the AUC performance mea-
sures for more than two ordinal classes. The coefficient
was, of course, calculated for each sentence separately,
since we were not interested of the mutual order of the
parses originating from different sentences. The overall
performance for the whole data set was obtained by taking
the average of the correlation coefficients of the sentences
in the data set.

Due to the feature representation of the parses (see
[Tsivtsivadze et al., 2005]), two parses originating from a
same sentence have almost always larger mutual similar-
ity than two parses originating from different sentences,
and hence the data set consisting of the parses is heavily
clustered according to the sentences the parses were gen-
erated from. Therefore, the clustered structure of the data
had a strong effect on the performance estimates obtained
by cross-validation, because data instances that are in the
same cluster as a held out instance have a dominant effect
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Figure 4. The ranking performance of the regular-
ized least-squares algorithm computed with leave-one-out
cross-validation (dashed line) and leave-cluster-out cross-
validation (solid line) [Pahikkala et al., 2006]. The x-axis
denotes the value of the regularization parameter in a loga-
rithmic scale. The y-axis is the ranking performance mea-
sured withτ correlation coefficient.

on the predicted output of the held out instance. This does
not, however, model the real world, since a parse ranker is
usually not trained with parses originating from the sen-
tence from which the new parse with an unknown score
value is originated. The problem can be solved by per-
forming the cross-validation on the sentence level so that
all the parses generated from a sentence would always be
either in the training set or in the test set.

We compared the performance estimates given by
both leave-one-out cross-validation and leave-cluster-out
cross-validation in which the fold partition was formed
according to the sentences so that no parses originating
from the same sentence ended up into the same cross-
validation fold. Regularized least-squares has a regular-
ization parameter that controls the trade-off between the
training error and the complexity of the learned prediction
function. We also made a grid search for the value of the
regularization parameter to test the performances of the
two cross-validation approaches also in model selection.
The tested grid points were2−15, 2−14, . . . , 214.

The results of the comparison are illustrated in Fig-
ure 4. From the figure, we observe that the performance
difference between the leave-one-out and leave-cluster-
out cross-validation is, with the lower values of the reg-
ularization parameter corresponding to the least regular-
ized cases, over0.3 correlation points. Thus, leave-one-
out cross-validation clearly overestimates the ranking per-
formance, especially with the smaller values of the regu-
larization parameter. Increasing the regularization seems
to correct this over-optimistic bias to some extent but the
large values of the regularization parameter may not be
optimal for the learning task. Indeed, this was confirmed
when we tested the ranking performance of regularized
least-squares with one hundred test sentences unseen to

the regularized least-squares. The test performance was
very closely following the performance of leave-cluster-
out cross-validation for every tested value of the regular-
ization parameter, and hence the optimal parameter val-
ues were found around24, while the leave-one-out cross-
validation preferred very low values.

4.3. Measuring AUC during Cross-validation

When aiming for a maximal AUC with biological data
as considered by [Parker et al., 2007], a common prac-
tice for performance evaluation is to use a ten-fold cross-
validation. The following two techniques for obtaining a
single AUC value when performing cross-validation were
considered by [Bradley, 1997]:

In pooling, the predictions made for the data instances
in each cross-validation round are pooled into a one set
and one AUC score common to all folds is calculated
from it. When leave-one-out cross-validation is used, this
is the only way to obtain the AUC score. The assump-
tion made when the pooling approach is used is that each
of the classifiers produced on each of the cross-validation
rounds comes from the same population. This assumption
may make sense when using performance measures such
as classification accuracy, but it is more dubious when
computing AUC, since some of the positive-negative pairs
are constructed using data instances from different folds.
Indeed, [Parker et al., 2007] show that this assumption is
generally not valid for cross-validation and can lead to
large pessimistic biases.

An alternative approach,averaging, is to calculate the
AUC score separately for each cross-validation fold and
average them to obtain one common estimate for the clas-
sification performance in cross-validation. However, the
number of positive-negative example pairs used in com-
puting the AUC scores may be too small to get reliable
scores if the overall number of examples used in the cross-
validation process is too small or if the number of cross-
validation folds is too large. Further problems of the aver-
aging approach are discussed by [Parker et al., 2007].

There is a clear fundamental similarity between these
two cross-validation approaches and micro and macro-
averaging discussed in Section 2.1. Note, however, that
the purpose is different: before measuring the overall per-
formance with one measure in the presence of multiple
classes or labels was addressed, whereas in this section
the aim is to construct one value representing performance
over all cross-validation rounds.

To formalize pooling and averaging, recall that

κ : {1, . . . ,m} → 2{1,...,m}, i 7→ H,

where2{1,...,m} denotes the powerset of{1, . . . ,m}, is
a function that maps each example indexi to the setH
consisting of the indices of other training examples that
belong into the same cross-validation fold as theith exam-
ple. Note thatκ is well-defined only if the cross-validation
folds do not overlap. This is the case with both pool-
ing and averaging. Formally, the pooling approach can



be written as

1
y+y−

∑
yi=+1,yj=−1

δ(f
κ(i)

(xi) > f
κ(j)

(xj)). (7)

In (7), the sum is taken over every possible positive-
negative pair of training examples. However,κ(i) 6= κ(j)
for most of the pairs, and hence the pooling estimate can
be biased. The averaging estimate can be written as

1
N

N∑
j=1

pAUC(YHj
, fHj

(XHj
)), (8)

Here, thepAUC estimate for the individual folds is not bi-
ased in the way it is in the pooling approach. However,
only a small subset of the positive-negative pairs of train-
ing examples are taken to account.

So-called leave-pair-out cross-validationwas con-
sidered by [Cortes et al., 2007] in context of mag-
nitude preserving ranking algorithms and by us in
[Pahikkala et al., 2008a]. Here, we propose its use for
AUC calculation, since it avoids many of the pitfalls as-
sociated to the pooling and averaging techniques. Anal-
ogously to leave-one-out cross-validation or complete
cross-validation (6), each possible positive-negative pair
of training instances is left out of at a time from the train-
ing set. In fact, leave-pair-out cross-validation can be con-
sidered as a stratified complete cross-validation with hold-
out sets of size two, since each of the folds has the same
amount of positive and negative examples. Formally, the
AUC performance is calculated with leave-pair-out cross-
validation as

1
y+y−

∑
yi=+1,yj=−1

δ(f{i,j}(xi) > f{i,j}(xj)),

wheref{i,j} denotes a classifier trained without theith
andjth training example. Being an extreme form of aver-
aging where each positive-negative pair of training exam-
ples forms an individual hold-out set, this approach is nat-
ural when AUC is used as a performance measure, since
it guarantees the maximal use of available training data.
Further, the leave-pair-out cross-validation estimate, taken
over a training set ofm examples, is an unbiased estimate
of the true error over a sample ofm − 2 examples (for a
proof, see [Cortes et al., 2007]).

Similarly to other types of complete cross-validation,
a naive implementation of leave-pair-out cross-validation
would require training a number of models that is
quadratic with respect to the number of training in-
stances. However, for certain learning algorithms,
such as regularized least-squares [Pahikkala et al., 2006,
Pahikkala, 2008, An et al., 2007] or AUC maximiz-
ing regularized least-squares [Pahikkala et al., 2008b,
Pahikkala et al., 2008a], using techniques based on ma-
trix calculus the closed form solution of regularized least-
squares can be manipulated to derive efficient algorithms
for leave-pair-out cross-validation.

MOTIVATION METHOD

Data dependences

Single AUC for

the whole cross-

validation process

Leave-cluster-out

Pooling

Averaging

Leave-pair-out

Figure 5. A schematic diagram of the discussed methods
to take the preceding evaluation process into account at
the method implementation step and their motivation.

4.4. Summary

In this section, we have addressed the step following
method selection, that is, implementing the method for
a given measure and learner. In addition to having in-
dependent and representative training, validation and test
sets, the setting must be realistic. Fulfilling these prin-
ciples in practice is, however, challenging and requires
special caution. We explained a method to overcome
data dependence-related difficulties (Figure 5). The de-
pendences we considered in text classification tasks en-
compass author, community and time. Moreover, we de-
scribed techniques to compute a single performance eval-
uation measure value for the whole cross-validation pro-
cess which are particularly useful when the combination
of AUC and leave-one-out cross-validation have been cho-
sen.

In short, at the performance evaluation method imple-
mentation step it is essential to reflect the entire preceding
evaluation process starting from the characteristics of the
learning task and ending with the specifics of the chosen
performance evaluation method. Instead of a divide and
conquer methodology, implementation should be based on
the analysis of the process in its entirety.

5. CONCLUSION

In this paper, we considered the measure and method se-
lection steps of learning performance evaluation, with a
main focus on combining AUC with cross-validation. Our
goal was to provide helpful guidelines in order to obtain
realistic assessment results.

We summarize the study with five general principles:

1. It is crucial to choose both the measure and method
that reflects the evaluation aspects, learning task and
data in question.

2. Testing must be completely independent from the
creation of the learner. This can be assured by not
having an information leak between training, vali-
dation and test sets.

3. Measure and method steps are intertwined. There-
fore, the specifics of the measure should affect
cross-validation folds.
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Figure 6. Steps and aspects of learning performance evaluation.

4. Data dependences may complicate performance
evaluation. Their handling must be analyzed for
each data set and task separately, but we encourage
using leave-cluster-out cross-validation.

5. The evaluation setting must correspond to the en-
vironment. This has to be taken into consideration
when forming the cross-validation folds.

We illustrate the principles in Figure 6 as the steps and
aspects of learning performance evaluation: The first item
is included as the stone base of the performance evaluation
cone or pyramid.Foldsat the method implementation step
portray on the one hand the distinct phases of training, val-
idation and testing (i.e., the second item) and on the other
hand taking the specifics of the learning task into account
when forming cross-validation folds (i.e., the items three,
four, and five). The third item clarifies the dependent steps
of choosing the measure, selecting the method and imple-
menting it, that is, the top layer of the cone. The mutual
dependence arrow connecting all the cone layers reflects
the fourth item. This arrow connecting also the stone base
with performance evaluation steps takes the fifth item into
account.

Figure 6 is a refinement of the model discussed
in [Spärck Jones and Galliers, 1996, pp. 19–20] and
[Hirschman and Thompson, 1997] (Figure 1). The differ-
ence is in the base and top layers: we have added the stone
base presenting the learning task, divided the method step
at the ceiling level into the phases of selection and imple-
mentation, as well as concretized the mutual dependence
of the steps as an arrow connecting all the layers. Our pri-
mary message is that all the steps are dependent of each
other, and hence the previous steps has to be carefully con-
sidered in the process of performance evaluation.
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