
A Practical Application of UPPAAL and DTRON
for Runtime Verification

Dragos Truscan∗, Tanwir Ahmad∗, Faezeh Siavashi∗, Pekka Tuuttila†
∗ Åbo Akademi University, Turku, Finland

† Nokia Networks, Oulu, Finland

Abstract—We present our experience in applying runtime
verification to a real-time system using UPPAAL timed automata
and a set of related tools. We discuss the benefits and limitations,
and propose a concrete solution to address the latter. Using the
resulting solution we are able to run quick validation cycles as
well as more thorough ones depending on the scope of validation.
Finally, we show that our solution was able to detect faults which
were not detected by more traditional testing techniques.

I. INTRODUCTION

In many situations, real-time systems are deployed in un-

predictable environments, where the behavior of the systems is

nondeterministic and proving its correctness depends on cer-

tain assumptions of the environment which are only available

at runtime [1]. In addition, some faults only manifest when

the system is deployed in production environments or when

the system runs for longer periods of time [2].

Runtime verification (RV) is the process of verifying that

certain properties of the system hold in certain states reached

during the execution of the specification. It combines both for-
mal specifications and testing to validate a system. Properties

of a given system can be identified by a formal language and

automatically translated to a monitor [3] which checks their

correctness against the implementation. As the verification

result, the monitor assigns a verdict that shows whether

the implementation satisfies the properties or not. Thus, the

runtime verification task deals with the observed executions

of the implementation.

Verification techniques such as online testing executes finite

test traces within a limited time and may not detect these kinds

of anomalies. Furthermore, in some cases the actual real-time

system is not accessible or it is expensive to be run every time.

Thus, one solution is to monitor previous executions of the

systems using the execution logs as replacement of the actual

implementation under test (IUT). Monitoring is a continuous

real-time process of detecting anomalies in the behavior of the

systems [4]. An adapter is used as an interface between the

model-level events and the system-level inputs/outputs.

In this paper, we present a runtime verification approach

which uses UPPAAL timed automata (UPTA) [5] to specify

the behavior of the IUT and of its environment. The properties

of the model are checked via a set of verification rules in

UPPAAL. The Distributed TRON (DTRON) [6] online testing

tool is used as a monitor to compare the observed behavior

of the IUT with the expected input/output traces created from

the model. In our case, the behavior of the system is captured

from its execution logs due to the fact that we want to validate

it in its real environment and, as it will be discussed later, to

be able to speed up the validation process using offline logs. In

addition, we discuss different implementation challenges and

solutions, and how the proposed solution is used for verifying

the correct execution of the IUT in its real environment.

The rest of the paper proceeds as follows: Section II briefly

discusses the work related to runtime verification and monitor-

ing techniques. Section III briefly introduces UPPAAL timed

automata, and the UPPAAL and DTRON tools. In Section IV,

an overview of our monitoring approach and tool chain is

given. Section V shows how our approach has been applied

on a concrete system, while Section VI evaluates the approach

and discusses different encountered challenges. Section VII

concludes the paper.

II. RELATED WORK

There is a large body of work on runtime verification,

monitoring and testing for real-time systems. A comprehensive

study can be found in [7]. In the following, we only consider

those works which have similar approaches to ours.

Chupilko et al. focus on using a method for runtime

verification of reactive systems [3]. They generate a monitor

with timed automata to verify the correctness of the im-

plementation. The implementation is developed in hardware
description languages (HDLs), the monitor is implemented

in a C++ library and co-executes the specifications as inputs

and verifies the expected outputs. The difference between this

approach and ours is that their monitor is a program, whereas

we use a model to specify and monitor the IUT.

Zhao and Rammig presented a model-based runtime ver-

ification method that explores the system model before the

current state of system execution is known and so that the

property violations are detected before they occur [8]. This

pre-checking technique reduces the number of states to be

explored. They claimed that the flexibility of monitoring is

higher because their method explores before and after a given

state, based on information gathered during the testing phase.

Tan et al. proposed a framework for generating test cases

and monitoring hybrid systems simulated using the CHARON

language for both design-level and implementation-level val-

idation [9]. They provided a model of the monitor as a

composition to the main test model. Each system condition

is translated as a separate automaton and the automata are

synchronized with each other. Our approach does not need to

2015 IEEE/ACM 2nd International Workshop on Software Engineering Research and Industrial Practice

978-1-4673-7085-1/15 $31.00 © 2015 IEEE

DOI 10.1109/SERIP.2015.15

39

generate a monitoring automata, since we use the DTRON tool

as a monitor.

Salva and Cao discussed an approach to combine two mon-

itoring methods, runtime verification and passive testing (an

approach to passively observe the reactions of the IUT to test

inputs) to check the conformance of web service compositions

in the Cloud [10]. Monitoring models are generated to check

whether an implementation conforms to its specification and

meets the safety properties. They used ioSTS (input output

Symbolic Transition System) models to automatically generate

a monitor. The work dealt with deterministic specifications and

thus it is not feasible for random behavior of real-time systems,

which is needed in our case.

The most similar work was done by Larsen et al. They

proposed a testing framework based on the TRON tool for

online black-box testing of real-time embedded systems [11].

They showed that the tool is very efficient in terms of error

detection and execution performance. The difference to our

work is that their approach is targeted at online model-based

testing, whereas we target runtime monitoring using log files.

III. BACKGROUND

In this section we briefly explain the basic concepts of timed

automata, conformance monitoring tools and frameworks.

A. UPPAAL Timed Automata

UPPAAL is a model-checker tool for modeling, simulation

and verification of real-time systems using an extended version

of timed automata called UPPAAL timed automata (UPTA)

[5]. An UPTA model is a network of timed automata with

locations, edges, synchronization channels (denoted as ! for

emitting and ? for receiving synchronizations, respectively),

integer, boolean, and clock variables. Edges can be constrained

by predicates (over clocks or variables) known as guards,

which define when the corresponding edge can be enabled. A

location can be restricted over clock invariants, which specify

how long the system can stay in a given location. On the edges,

variables can be updated to new values, whereas clocks may

be reset. If there is more than one enabled edge at a time,

then one of them will be randomly selected. This means that

UPPAAL supports non-deterministic modeling, which gives

more freedom to design systems, especially in systems with

random discrete events [12].

An UPTA model is composed of one or more processes
(automata), which communicate via channel synchronizations

and shared variables. Each process can have local clocks and

variables, as well as access to shared variables. Processes are

defined as templates from which they are instantiated.

B. DTRON

UPPAAL TRON is an input/output conformance testing tool

for testing real-time systems [11]. A UPTA model typically

consists of a system partition and of an environment partition.

TRON utilizes the environment model to generate test inputs

via randomized choice of input. It sends test inputs to an

adapter, which is an interface between TRON and the IUT.

Fig. 1. Monitoring approach

The adapter receives the inputs and converts them to a format

that is compatible with the IUT. It also transforms the outputs

of the IUT to model-level output actions. Thus, the I/O

conformance of the behavior of the IUT is observed by TRON.

The feasibility of applying TRON for testing is shown in some

practical case studies [13]–[15].

Distributed TRON (DTRON) [6] is an extension tool based

on TRON which is capable of simulating and monitoring

timed systems in a distributed fashion. This means that several

DTRON instances and IUT adapters can be used in the same

testing configuration. DTRON and its adapter are loosely

coupled using a multicast network, called Spread [16], to ex-

change abstract messages with the adapter(s) or other DTRON

instances. The observable channel synchronizations in a UPTA

model are prefixed by o and i , depending if they correspond

to outputs or to inputs of the IUT.

IV. MONITORING APPROACH

In our approach, different artifacts are derived from the

given requirement specifications of the IUT and are used to

monitor its behavior as illustrated in Figure 1. The approach

is divided into two main stages:

Modeling: The system is specified as an UPTA model

from the given requirements and specification documents.

The model is partitioned into system and environment. Each

partition can be composed of several processes.

Monitoring: We use the DTRON tool to monitor the

functionality of the IUT against the UPTA model at runtime.

The tool connects to the IUT via the Spread network and the

adapter, and observes the output messages send by the adapter.

We use a set of mappings to associate model fragments

stemming from requirements with entries of the log file. The

information is extracted using regular expressions. The result

of mapping will be read by the adapter and converted into

output messages sent to the UPTA model. Whenever a message

is received by DTRON a synchronization of the prefixed

channels occurs.

During a monitoring session, the DTRON tool produces an

abstract report. In case DTRON detects unexpected behavior,

40

the report elaborates the reasons for the occurrence of the

anomaly, and details the current state of the model. Further,

the adapter generates a concrete report which provides more

detailed information about the monitoring session than abstract

report, by providing information about the output messages

and their originating log entries. Besides, the report may

display the values of different parameters or computed values

based on the information from the log, which is otherwise

not available at model level. A final verdict of the monitoring

session is expressed at the end of the report.

Coverage tracking: In order to be able to provide in-

formation on which parts of the model have been covered

by a given monitoring session or which acceptance criteria

have been validated, the coverage level is reported live via the

Coverage Tracker tool.

V. THE TEMPERATURE CONTROL SYSTEM

We applied the proposed approach to a real-time Tempera-
ture Control System (TCS), which controls the temperature

of a host device. The host device contains several sensors

(between 20 and 40) and fans, both being installed in different

physical locations. The TCS has access to the values of the

sensors and can control the speed of the fans via a Hardware
Abstraction Layer (HAL). As shown in Figure 2, the TCS

consists of two components: Temperature Monitor (TM), for

reading the temperature values, and Fan Speed Calculator
(FSC), for calculating the target fan speed. The main task of

TCS is to maintain the temperature of the host within certain

bounds based on a predefined temperature profile.

Fig. 2. The overview of Temperature Control System

The startup procedure of the TCS has two phases. First,

the available temperature sensors and fans are detected and

registered. Subsequently, TCS starts listening for temperature

and fan speed readings from the HAL at regular time intervals,

computes the target fan speed and communicates it back to

HAL. The sensors are organized into three groups, each group

having its own sensor polling time interval. Similarly, fans are

also organized in a group and are controlled at once.

Whenever a temperature update for any sensor group in the

system is received, the average temperature of the host system

(i.e., avg temp) is calculated as the average value of all

sensors in the system, after performing error compensation and

eliminating faulty values (i.e., with high deviation) from the

pool of temperature values. Similarly, FSC computes regularly

the target fan speed value (target speed) to be sent to HAL for

updating the fan speed. The value is based on the avg temp,

the current fan speed, previously computed target fan speed

and the selected temperature control profile.

The host system of TCS continuously provides a detailed

log of the status and message exchange of all its components,

including the communication between TCS and HAL. The log

file can be either prerecorded and downloaded from the host

system, or it can be fetched on-the-fly during monitoring. In

the latter case, a dedicated tool is used to regularly stream

the log from the host system to the computer running the

monitoring tool chain.

A. Modeling

The UPTA model of TCS is created from requirements and

associated specification documents. TM and FSC are modeled

as IUT, whereas HAL is modeled as environment. In our

example, the sensor groups have identical behavior, except

they have different polling intervals and number of sensors.

The UPTA model comprises five UPTA processes: three for

different temperature sensor groups, one for a fan group and

one for the environment. However, since the processes of all

temperature sensor groups are virtually identical, we show

only one of them.

All observable channel synchronizations are labeled with o
prefix, specifying that all the channels in question are output

from the IUT. The direction of the communication between

the IUT and its environment is differentiated based on the

direction of the channel synchronization: the ! symbol and the

? symbol for sending and receiving from the environment.For

example, when the IUT sends a request to the environment

process, the synchronization is modeled as o S1 req! in the

IUT model; when a response is received from the environment

by a IUT process it is modeled as a receiving channel synchro-

nization o S1 res?. For each sensor and fan group, we declare

a boolean variable which shows whether the corresponding

group is registered and, respectively, polling. These variables

are used in defining reachability verification rules.

In our modeling process, we had to take several design

decisions, related to the complexity of the UPTA model.

Decision 1: Defer complex mathematical computations
to the adapter. Ideally, the calculation of the average

temperature and of the target fan speed should be done in

the UPTA model. However, due to the following factors, we

decided to defer it to the adapter:

• the calculation of average temperature and target fan

speed require floating-point arithmetic operations which

are not supported by UPPAAL;

• due to the large number of variables involved in the

computation and to the fact that even if bounded their

values span large intervals, the computation easily results

in a state space explosion in UPPAAL which manifest in

the test system running out of memory.

Decision 2: Model all temperature indications in a
group with only one channel synchronization. At the

implementation level, HAL communicates the temperature

readings of each sensor in a given group as distinct messages

41

in a non-deterministic order. Modeling a similar behavior in

UPTA will increase the model complexity, as it will require

one channel synchronization for each sensor in a group. Thus,

we model the temperature readings of a sensor group as one

single message. We defer to the adapter the task of collecting

and validating temperature and fan speed readings.

1) Temperature Sensor process: The process for the tem-

perature sensor group 1 is shown in Figure 3. Initially, TCS

sends the request to initiate the registration (o S1 req!) of

sensor group 1 and waits for a response message (o S1 res?)

from the environment (HAL). The response message will al-

ways be accompanied by a preliminary temperature indication

(o S1 ind) for each sensor in the group.

Following a successful registration (S1 reg = true), the

sensor will enter in the polling mode (S1Poll = true) where

the temperature of the sensor group will be indicated every

polling interval (S1 poll Int). The average temperature will

be calculated in the adapter and not sent to the tester any

longer, as it will be discussed later on.

Fig. 3. TM model for sensor group S1

2) Fan process: The behavior of the fans (Figure 4)

is similar to the one of the sensors: on startup,

the maximum fan speed is requested from HAL

(o fan1 max speed req!) followed by a confirmation

response (o fan1 max speed res?). Subsequently, FCS

checks if it is able to control the fans by setting their speed

to a specific value (o fan1 speed req!) and waits for a

confirmation that the fan speed request has been received

(o fan1 speed res!). Immediately after, the HAL reports

the current fan speed for the group (o fan1 speed ind?).

When the procedure is completed, the fan registration is

considered complete (FANreg = true) and the fan enters

the polling mode (FANPoll = true).

Further, FSC calculates the target fan speed every polling

cycle based on the previous target fan speed, the current fan

speed, and the current average temperature. The reason for this

is that a fan cannot always accelerate or decelerate its speed

to the new target speed instantly or within one polling cycle,

but it requires a certain amount of time or several polling

cycles to achieve the new target speed. Similarly in the Fan

process, every time the fan speed indication is received, the

target fan speed is calculated (in our case in the adapter) and

communicated to HAL via the (o fan1 speed req!). This

cycle repeats every polling interval.

3) Environment model: The environment model (Figure 5)

is a canonical model containing all the counterparts of the

channel synchronizations in the TCS processes. Any synchro-

Fig. 4. FSC model: fan speed controller

nization can occur at any moment, if the state of the UPTA

model allows it.

Fig. 5. Environment model

When generating traces from UPPAAL models with tools

like TRON and DTRON, the environment model is usually

the one driving the trace generation. In our case, since we

only observe the behaviour of the IUT, the execution of the

UPTA model will be driven by the output messages sent by

the adapter according to the log file.

B. Monitoring

Monitoring of the TCS has three goals: a) verify that

different messages in the system are delivered in the proper

order and that they satisfy the real-time constraints, b) check

that the TCS is able to keep the host system within the

specified temperature limits and, c) check that TCS is able to

control the fans according to the specified temperature profile.

In our test setup, the first goal is addressed by the DTRON

tool which verifies that the order of the messages and their

timings conform to the one specified in the UPTA model.

Due to the limitations of UPPAAL, discussed previously, the

other two tasks are accomplished by the adapter (see Figure 1).

Thus, the adapter accomplishes three functionalities:

• it parses the log file, selects the relevant log entries based

on a regular expression, and distributes the information

as abstract messages on the Spread network. In this case,

the verdict assignment is deferred to DTRON;

• it collects temperature readings and fan speed values from

the selected messages, and computes the target fan speed

and the average temperature. In addition, it verifies that

the average temperature is in the allowed range and that

the actual fan speed does not deviate from the target fan

speed beyond a given threshold;

42

• it generates an on-the-fly report including a verdict of the

monitoring session.

The deviation between the calculated target fan speed and

the actual target fan speed is calculated as follows:

Deviation = Current Fan Speed−Target Fan Speed
Target Fan Speed

× 100

Whenever this deviation exceeds a certain threshold (e.g.,

10%) it means that the TCS is not able to cope with the

requested target speed and it should be signalled as a failure.

There are two possible reasons for this kind of failure: 1) hard-

ware failure (e.g., sensors, fans, or both are malfunctioning)

and 2) system temperature increased very steeply such that the

TCS could not cool down the system within acceptable time

period.

C. Coverage tracking

As mentioned in the introduction, monitoring is a passive

form of testing. It cannot control the behavior of the IUT via

test inputs; it can only observe its behavior. However, in both

cases it is important to be able to recognize the coverage level

of the model, as a quantitative measure of how much and which
part of the system has been tested/monitored during a session.

With respect to the TCS model, we are interested in two

kinds of coverage: acceptance criteria coverage (how many

of the coverage criteria have been validated out of the total)

and edge coverage (how much of the UTPA model has been

visited). Thus, we annotate the model with additional tracking

(aka trap) variables, which do not affect the original behavior

of the UPTA model. Thus, we used two types of tracking

variables: edge variables (added automatically to each edge)

and requirements variables (added manually based on domain

knowledge). The approach has been discussed in [17].

Fig. 6. Sensor 1 group model with tracking variables

Figure 6 gives an example on how tracking variables have

been used. The i counter id variables are used for edge

coverage, whereas variables S1Poll and S1 reg monitor that

different requirements are met.

A separate UPTA process (Figure 7) is used to compute

which acceptance criteria (grouping several requirements) are

validated. For instance, when all sensor groups are registered

(S1Poll AND S2Poll AND S3Poll is True) it means that

acceptance criteria ”All sensor groups should start reporting
values after they are registered” is satisfied, which is denoted

by setting the i counter us 1 ac 2 variable to True.

A Coverage Tracker Tool [17], takes advantage of the

distributed nature of DTRON by connecting to the Spread

network and receiving periodically from DTRON (based on

Fig. 7. Model fragment observing acceptance criteria

customizable time interval) the values of the tracking variables

from the model. After each update the tool updates statistics

for all tracking variables based on the selected coverage

criteria and includes them in a Coverage Report. A sample

report is shown in Listing 1, where we have a total of four

acceptance criteria. The coverage level for acceptance criteria

is 50% since only 2 out of 4 acceptance criteria have been

validated. However, the edge coverage level is 100% for

Sensor 1 group process because all the edges in the process

were traversed at least once. Due to space reasons, we removed

the other information from the report.

Listing 1. Coverage Report

∗∗∗−−∗∗∗
T e s t s t a r t e d : 04−06−2014 1 5 : 0 3 : 4 2
Re po r t o u t p u t t ime : 04−06−2014 1 5 : 0 4 : 2 2
T e s t e r i d : 0

Summary Tab le :
Edge Coverage : 10 0 . 0 %
Accep tance c r i t e r i a Coverage : 50 .00 %

−−

D e t a i l s
−−−−−−−
Coverage D e t a i l s :
T o t a l Edge Coverage 1 00 .0 %
∗∗∗
Templa te : S1

Requ i remen t : S1 id0 1
Requ i remen t : S1 id1 1
Requ i remen t : S1 id2 1
Requ i remen t : S1 id3 1

Edge Coverage : 10 0 .0 %

T o t a l Accep tance c r i t e r i a Coverage 50 .00 %
∗∗∗
Templa te : A l l t e m p l a t e s

Requ i remen t : us 1 ac 1 0
Requ i remen t : us 1 ac 2 0
Requ i remen t : us 2 ac 1 1
Requ i remen t : us 2 ac 2 1

In the case of the TCS system, the coverage level of the

UTPA model reaches 100% rather quick, i.e., after all sensors

and fans have registered and the sensors passed through the

polling cycle at least once.

43

VI. EVALUATION AND DISCUSSION

In order to evaluate our approach, we performed two types

of validation: manual mutation of a sample log file and the

use of prerecorded production logs.

A. Mutation testing

For mutation testing purposes, we selected a log file in-

cluding events of the TCS activity for around three hours and

containing roughly 33,000 entries. In this log, we manually

applied 1-level mutations (one mutation at a time). We used

the following operands: delete an entry, duplicate an entry,

change the position of an entry, modify parameter values and

delete parameter values inside an entry. In total, we operated

25 mutations. In 92% of the cases, the mutants were detected

and killed. Two of the mutants were left alive. The first

one was swapping the entries reporting values of different

sensors within the same polling interval, which basically had

no impact neither on the message sequence in DTRON nor on

the calculated average values. A second mutant left alive was

changing the value of a temperature reading of one sensor.

However, since the value was an outlier value compared to

the other sensor values in the same group, it was removed by

the algorithm of computing the average temperature and thus,

it did not have an impact on the average temperature.

B. Production logs

In the second validation experiment, we analysed several

prerecorded production logs with length up to five hours. Two

anomalies have been detected.

• after four hours, it was detected that several sensors did not

report their readings in the specified time interval;

• the fan speed was slowly deviating from the target value

with the passage of time. After thorough investigation, we

concluded that the specification document of the IUT had

an omission in the description of how the target fan speed

calculation.

These findings are in line with the observations made in [2],

which argues that monitoring can detect failures that otherwise

remain undetected by traditional testing techniques, especially

when failures can occur at random times and are triggered by

non-deterministic environments.

C. Benefits and limitations

Our approach divides the verification tasks between DTRON

and the adapter. DTRON is used for runtime verification of the

sequence and real-time constraints, whereas the adapter val-

idates complex numerical computation which is not properly

supported by DTRON and UPPPAL. We do not see this as a

major drawback since we take advantage on the one hand, of

the real-time verification capabilities of DTRON, and on the

other hand, of the flexibly of a Python adapter in computing

different conditions and in customizing the monitoring report.

The state space explosion was one of the main problems

when trying include the computations in the model. This was

due not only to the large number of clock (5) and integer (20)

variables in the model, but also to their large ranges, e.g. [-50,

200] for sensors or [0-300] for fans. With the complete set of

variables in the model, the state space explosion will manifest

rather quickly and the tool would run out of memory.

After deferring the calculations to the adapter, the symbolic

state space of the model became manageable. For instance, the

UPTA model with three sensor processes, one fan process, and

the environment model resulted in 1005 symbolic states and

very limited memory consumption. The maximum number of

symbolic state was relatively smaller when using DTRON,

since the later only evaluates the next immediate symbolic

states that the model can transition to from the current state,

instead of evaluating the entire state space. This, in theory,

allows for even more scalability.

Our approach gives one the possibility to track the coverage

level of the model with respect to acceptance criteria and

model structure. However, tracking the coverage level does not

come for free, as introducing tracking variables and additional

processes (and clocks) in the UPTA model has an impact on

the state space.

One drawback of monitoring a system in real-time is that

the length of the monitoring session can become quite long in

order to observe relevant system reactions. The same would

apply in using prerecorded logs: the duration of the monitoring

session will be equal with the duration of the log file. This can

be an impediment in the current time-constrained continuous

integration and continuous deployment processes, as the vali-

dation of the system via monitoring would provide feed-back

too slow. To address this problem several optimizations were

performed.

1) Targeted monitoring: In on-line mode, we have scoped

the process in two parts: smoke monitoring and long-term

monitoring. The smoke monitoring is performed after each

integration cycle, when the latest version of the IUT is

started and monitored in a controlled execution environment.

The session typically lasts for 10 minutes during which the

detection and registration of the sensors and fans are detected,

they are registered and several sensor readings are received at

specified intervals. This smoke session is sufficient to validate

the acceptance criteria specified in Figure 7 and to have

all the edges covered in the model. Long-term monitoring

is performed for periods ranging from one hour to several

days with the purpose of validating if the system remains

stable and it is able to regulate the temperature according to

its specification. This implies checking that sensor readings

are still received at specified intervals and the fan speed

calculations do not deviate more than a certain value.

In case of prerecorded logs, the adapter was implemented

so that at the start of the monitoring process it takes as

parameter a time interval for which the monitoring should be

performed. During the monitoring session the adapter skips

all log entries outside the provided interval. This approach

allows us to focus the monitoring on certain interesting parts

of the log, for instance when the temperature of the envi-

ronment increased/decreased rapidly or when certain relevant

temperatures have been reached.

44

2) Time scaling: Another approach to reduce the time

needed for monitoring prerecorded logs is to speed up the

entire monitoring framework with a scaling factor, as follows:
• at adapter level - the adapter extracts messages from the

log as they arrive, enqueues and distributes them to DTRON

based on their timestamp, with microsecond accuracy. We use

the scaling factor to reduce the time interval between sending

the messages to DTRON.

• at DTRON level - to start a monitoring session with DTRON,

one has to provide a mandatory parameter called time unit
which specifies the duration of a clock tick in the UPTA model,

expressed in microseconds. For instance, a value of 1 000 000

specifies that a clock tick in the UPTA model takes one second.

We use the scaling factor the divide the time unit as well. For

a scaling factor of 10, the clock tick will take 0.1 seconds in

the UPTA model.
This approach allowed us to reduce the monitoring time

with the value of the scaling factor. For instance, with a

scaling factor of 10, we were able to process a five hour log

file in around 30 minutes and detect the same anomalies that

were discussed previously. One should note though, that the

maximum value of the scaling factor strongly depends of the

time precision of the model, of the log file, and of the real-time

capabilities of the operating system running the monitoring

tool chain.

VII. CONCLUSIONS

We have presented an application of the UPPAAL and

DTRON tools to monitoring a real-time system in a practical

setting. The behavior of the implementation under test is

specified using UPPAAL timed automata and DTRON is used

as a monitor to verify that the execution traces of the system

conform to its UPTA model. Our approach allows us not only

to check the correct real-time execution of the IUT, but also

to validate it with respect to different computed values.
An adapter is used to interface with the IUT, which in

our case is a execution log file. The adapter also takes over

parts of the monitoring tasks related to complex numerical

computations, which are not supported well by UPPAAL and

related tools.
The presented approach allows one to track system re-

quirements and acceptance criteria to the UTPA model and

to follow their coverage level. Also, traditional structural

coverage criteria, such as edge coverage, are used to report

on the model coverage level achieved by a given log.
One limitation in the modeling process was the scalability,

especially when having numerical computations. However,

the problem has been solved by delegating a part of the

functionality to the adapter.
The practical evaluation showed that our method is able to

detect errors that were not otherwise detected by traditional

testing techniques. We also showed how different optimiza-

tions of the approach were performed in order to shorten the

feed-back cycles or to focus the monitoring to relevant parts

of the log.

REFERENCES

[1] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp.
293–303, 2009.

[2] K. Okumoto and A. L. Goel, “Optimum release time for software
systems based on reliability and cost criteria,” Journal of Systems and
Software, vol. 1, no. 0, pp. 315 – 318, 1980. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0164121279900335

[3] M. M. Chupilko and A. S. Kamkin, “Runtime verification based on
executable models: On-the-fly matching of timed traces,” in MBT, ser.
EPTCS, A. K. Petrenko and H. Schlingloff, Eds., vol. 111, 2013,
pp. 67–81. [Online]. Available: http://dblp.uni-trier.de/db/series/eptcs/
eptcs111.html#abs-1303-1010

[4] D. Dvorak and B. Kuipers, “Model-based monitoring of dynamic
systems,” in Proceedings of the 11th International Joint Conference
on Artificial Intelligence - Volume 2, ser. IJCAI’89. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1989, pp. 1238–1243.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1623891.1623953

[5] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Int.
Journal on Software Tools for Technology Transfer, vol. 1, pp. 134–
152, 1997.

[6] A. Anier, J. Vain, and E. Halling, “Provably correct test generation
for online testing of timed systems,” in The 11th International Baltic
Conference on DB and IS. IOC-Press, May 2014.

[7] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of
runtime software-fault monitoring tools,” IEEE Transactions on Software
Engineering, vol. 30, no. 12, pp. 859–872, 2004.

[8] Y. Zhao and F. Rammig, “Model-based runtime verification framework,”
Electronic Notes in Theoretical Computer Science, vol. 253, no. 1,
pp. 179 – 193, 2009, proceedings of the Sixth International
Workshop on Formal Engineering approches to Software Components
and Architectures (FESCA 2009). [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1571066109003892

[9] L. Tan, J. Kim, O. Sokolsky, and I. Lee, “Model-based testing and
monitoring for hybrid embedded systems,” in Information Reuse and
Integration, 2004. IRI 2004. Proceedings of the 2004 IEEE International
Conference on. IEEE, 2004, pp. 487–492.

[10] S. Salva and T.-D. Cao, “A model-based testing approach combining
passive conformance testing and runtime verification: Application
to web service compositions deployed in clouds,” in Software
Engineering Research, Management and Applications, ser. Studies
in Computational Intelligence, R. Lee, Ed. Springer International
Publishing, 2014, vol. 496, pp. 99–116. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-00948-3 7

[11] K. G. Larsen et al., “testing real-time embedded software using uppaal-
tron: An industrial case study.”

[12] A. Hessel et al., “Testing real-time systems using uppaal,” in Formal
Methods and Testing, R. M. Hierons, J. P. Bowen, and M. Harman,
Eds. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 77–117. [Online].
Available: http://dl.acm.org/citation.cfm?id=1806209.1806212

[13] A. Anier and J. Vain, “Timed automata based provably correct robot
control,” in Electronics Conference (BEC), 2010 12th Biennial Baltic,
Oct 2010, pp. 201–204.

[14] L. de Assis Barbosa et al., “On the automatic generation of timed
automata models from isa 5.2 diagrams,” in Emerging Technologies and
Factory Automation, 2007. ETFA. IEEE Conference on, Sept 2007, pp.
406–412.

[15] C. Rutz and J. Schmaltz, “An experience report on an industrial case-
study about timed model-based testing with uppaal-tron,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on, March 2011, pp. 39–46.

[16] The Spread Toolkit. [Online]. Available: http://www.spread.org/
[17] M. Koskinen et al., “Combining model-based testing and continuous

integration,” in ICSEA 2013, The Eighth International Conference on
Software Engineering Advances, 2013, pp. 65–71.

45

