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Abstract. We propose kernels that take advantage of local correlations
in sequential data and present their application to the protein classifica-
tion problem. Our locality kernels measure protein sequence similarities
within a small window constructed around matching amino acids. The
kernels incorporate positional information of the amino acids inside the
window and allow a range of position dependent similarity evaluations.
We use these kernels with regularized least-squares algorithm (RLS) for
protein classification on the SCOP database. Our experiments demon-
strate that the locality kernels perform significantly better than the
spectrum and the mismatch kernels. When used together with RLS, per-
formance of the locality kernels is comparable with some state-of-the-art
methods of protein classification and remote homology detection.

1 Introduction

One important task in computational biology is inference of the structure and
function of the protein encoded in the genome. The similarity of protein se-
quences may imply structural and functional similarity. The task of detecting
these similarities can be formalized as a classification problem that treats pro-
teins as a set of labeled examples which are in positive class if they belong to
the same family and are in negative class otherwise.

Recently, applicability of this discriminative approach for detecting remote
protein homologies has been demonstrated by several studies. For example,
Jaakkola et al. [1] show that by combining discriminative learning algorithm
and Fisher kernel for extraction of the relevant features it is possible to achieve
a good performance in protein family recognition. Liao and Noble [2] further
improve results presented in [1] by proposing combination of pairwise sequence
similarity feature vectors with Support Vector Machines (SVM) algorithm. Their
algorithm called SVM-pairwise is performing significantly better than several
other baseline methods such as SVM-Fisher, PSI-BLAST and profile HMMs.

The methods described in [1] and [2] use an expensive step of generating
vector valued features for protein discrimination problems, which increases com-
putational time of the algorithm. The idea to use a simple kernel function that
can be efficiently computed and does not depend on any generative model or
separate preprocessing step is considered by Leslie et al. in [3]. They show that
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simple sequence based kernel functions perform surprisingly well compared to
other computationally expensive approaches.

In this study, we address the problem of protein sequence classification us-
ing the RLS algorithm with locality kernels similar to the one we proposed in
[4]. The features used by the locality kernels represent sequences contained in a
small window constructed around matching amino acids in the compared pro-
teins. The kernels make use of the range of similarity evaluations within the win-
dows, namely position insensitive matching: amino acids that match are taken
into account irrespective of their position, position sensitive matching : amino
acids that match but have different positions are penalized, strict matching: only
amino acids that match and have the same positions are taken into account. By
incorporating information about relevance of local correlations and positions of
amino acids in the sequence into the kernel function, we demonstrate signifi-
cantly better performance in protein classification on Structural Classification
of Proteins (SCOP) database [5] than that of the spectrum and the mismatch
kernels [3,6,7].

Previously, we have shown that the locality-convolution kernel [4] can be suc-
cessfully applied to parse ranking task in natural language processing. The sim-
ilarity of the data representation in cases of biological sequence and text, as well
as results obtained in this study, suggest that locality kernels can be applied
to tasks where local correlations and positional information within the sequence
might be important.

The paper is organized as follows. In Section 2, we present overview of the
RLS algorithm. In Section 3, we define notions of locality window, positional
matching, and present locality kernels. In Section 5, we evaluate the applicability
of the locality kernels for the task of protein classification and compare their
performance with the spectrum and the mismatch kernels. We conclude this
paper in Section 6.

2 Regularized Least-Squares Algorithm

Let {(x1, y1), . . . , (xt, yt)}, where xi = (x1, . . . , xn)T, xi ∈ S and yi ∈ {0, 1} be
the set of training examples. The target output value yi is a label value which
is either 0, indicating that xi does not belong to the class or 1 otherwise. The
target output value is predicted by the regularized least-squares (RLS) algorithm
[8,9]. We denote a matrix whose rows are xT

1 , . . . ,xT
t as X and a vector of output

labels as y = (y1, . . . yt)T. The RLS algorithm corresponds to solving following
optimization problem:

min
w

t∑

i=1

(yi − f(xi))2 + λ‖w‖2, (1)

where f : S → R, w ∈ R
n is a vector of parameters such that f(x) = 〈w,x〉,

and λ ∈ R+ is a regularization parameter that controls the trade-off between fit-
ting the training set accurately and finding the smallest norm for the function f .
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Rewriting (1) in matrix form and taking derivative with respect to w, we obtain

w = (XTX + λI)−1XTy, (2)

where I denotes identity matrix of dimension n × n. In (2) we must perform
matrix inverse in dimension of feature space, that is n × n. However, if the
number of features is much larger than the number of training data points, a
more efficient way is to perform inverse in the dimension of training examples. In
that case, following [9], we present (2) as a linear combination of training data
points:

w =
t∑

i=1

aixi, (3)

where
a = (K + λI)−1y (4)

and Kij = k(xi,xj) is a kernel matrix that contains the pairwise similarities of
data points computed by a kernel function k : S × S → R. Finally, we predict
an output of new data point as follows:

f(x) = 〈w,x〉 = yT(K + λI)−1k, (5)

where ki = k(xi,x). Kernel functions are similarity measures of data points in
the input space S, and they correspond to the inner product in a feature space
H to which the input space data points are mapped. The kernel functions are
defined as

k(xi,xj) = 〈Φ(xi), Φ(xj)〉,

where Φ : S → H . Next we formulate the locality kernel functions that are used
with the RLS algorithm for protein classification task.

3 Locality Kernels

There are three key properties of the locality kernels that make them applicable
to the task of remote homology detection in the proteins. Firstly, the features
used by these kernels contain amino acids that are extracted in the order of
their appearance in the protein sequence. Secondly, local correlations within the
protein sequence are taken into account by constructing a small window around
the matching amino acids. Finally, positional information of the amino acids
contained within window is used for similarity evaluation.

Let us consider proteins p,q and let p = (p1, . . . , p|p|) and q = (q1, . . . , q|q|)
be their amino acid sequences. The similarity of p and q is obtained with kernel

k(p,q) =
|p|∑

i=1

|q|∑

j=1

κ(i, j). (6)
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By defining κ in the general formulation (6), we obtain different similarity func-
tions between proteins. If we set κ(i, j) = δ(pi, qj), where

δ(x, y) =

{
0, if x �= y

1, if x = y

then (6) equals to the number of matching amino acids irrespective of their
position in two sequences.

To take into account local correlations within a sequence, we construct small
windows of length 2w + 1 around the matching amino acids. In addition we
define real valued (2w + 1) × (2w + 1) matrix P that we use in the formulation
of κ. The positional matrix P stores information about relevance of particular
position in compared windows for the similarity evaluation task (see [10] for a
related approach). Entries of P contain real valued coefficients that are defined
for all possible position pairs within two windows. Below we propose several
ways for selecting appropriate P for the task in question.

Let us consider following kernel function:

κ(i, j) = δ(pi, qj)
w∑

h,l=−w

[P ]h,lδ(pi+h, qj+l). (7)

Note that the rows and the columns of the positional matrix P are indexed
from −w to w. Furthermore, we consider amino acids as mismatched when the
indices i + h and j + l are not valid, e.g. i + h < 1 or i + h > |p|. When
we set P = A, where A is a matrix whose all elements are ones, we get κ
that counts the matching amino acids irrespective of their positions in the two
windows. As another alternative, we can construct a function that requires the
positions of matching amino acid to be exactly the same. This is obtained by
P = I, where I denotes the identity matrix. Furthermore, when P is a diagonal
matrix whose elements are weights increasing from the boundary to the center
of the window, we obtain a kernel that is related to the locality improved kernel
proposed in [11]. However, if we do not require strict position matching, but
rather penalize matches that have a different position within the windows, we
can use a positional similarity matrix whose off-diagonal elements are nonzero
and smaller than the diagonal elements. We obtain such a matrix, for example,
by

[P ]h,l = e−
(h−l)2

2θ2 , (8)

where θ ≥ 0 is a parameter. The choice of an appropriate κ is a matter closely
related to the domain of the study. In Section 5 we show that positional infor-
mation captured with (7) is useful and improves the classification performance.

When using (7) with different positional matrices in (6), we obtain the ker-
nels which we call the locality kernels. Due to the kernel closure properties and
positive semidefiniteness of matrix P , the locality kernels are indeed valid ker-
nel functions. Our kernels could be considered within more general convolution
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framework described by Haussler [12]. From this point of view, we can distin-
guish between “structures” and “different decompositions” constructed by our
kernels. Informally, we are enumerating all the substructures representing pairs
of windows built around the matching amino acids in the proteins and calculat-
ing their similarity.

4 Spectrum and Mismatch Kernels

The spectrum kernel introduced in [3] (see also [9]) is very efficient kernel for
sequence similarity estimation. It compares two sequences by counting the com-
mon contiguous subsequences of length v that are contained in both of them.
Thus, the spectrum kernel can be considered as an inner product between vectors
containing frequencies of the matching subsequences. For consistency, we present
the spectrum and the mismatch kernels within already described framework for
the locality kernels. For detailed feature map of these kernels, we refer to [7].

The spectrum kernel is obtained by using

κ(i, j) =
v−1∏

l=0

δ(pi+l, qj+l), (9)

in (6).
Leslie et al. [6] also proposed a more sensitive kernel function called the mis-

match kernel. The intuition behind this approach is that similarity between two
sequences is large if they share many similar subsequences. By restricting number
of mismatches to m between the subsequences of length v, the (v, m)-mismatch
kernel is obtained by using

κ(i, j) =

{
0, if

∑v−1
l=0 δ(pi+l, qj+l) < v − m

1, otherwise
(10)

in (6). The spectrum kernel (9) is a special case of the mismatch kernel where
m = 0. Again, we consider amino acids as mismatched in (9) and (10), when the
indices i + l and j + l are not valid, that is, i + l > |p| or j + l > |q|.

5 Experiments

The experiments to evaluate performance of RLS with the locality kernels, the
spectrum kernel, and the (v, m)-mismatch kernel are conducted on the SCOP
[5] database. The aim is to classify protein domains into SCOP-superfamilies.
We follow the experimental setup and use the dataset described in [2]. For each
family, the protein domains within the family are considered positive test exam-
ples, and protein domains outside the family but within the same superfamily
are considered as positive training examples. Negative examples are taken from
outside of the positive sequences’ fold and are randomly split into training and
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testing sets in the same ratio as positive examples. By this setup, we may simu-
late remote homology detection, because protein sequences belonging to different
families but to the same superfamily are considered to be remote homologs in
SCOP.

To measure performance of the methods, we use receiver operating charac-
teristics (ROC) scores. The ROC score is the normalized area under a curve
(AUC) that represents true positives as a function of false positives for varying
classification thresholds [13,14]. When obtaining perfect classification, the ROC
score is 1, and the random classification yields score of 0.5.

In Table 1, we present the best found parameters for the locality kernels with
different positional matrices P , the spectrum and the (v, m)-mismatch kernels.
The best found size of the window for the locality kernel is three (w = 1). The
spectrum kernel has a parameter v corresponding to the size of subsequence and
the mismatch kernel uses v and m, where m is the maximum number of allowed
mismatches. The best found parameters for the spectrum and the mismatch
kernels correspond to the ones reported in [3,6]. The RLS algorithm has the
regularization parameter λ that controls the trade-off between the minimization
of the training error and the complexity of the regression function. The results
reported below are obtained with the best found combination of the parameters
for every method.

The main results of the experiments are summarized in Figure 1. Each curve
corresponds to RLS with specific kernel function for remote homology detection.
Higher curves reflect more accurate classification performance. Each plotted data
point represents the number of the families that have ROC score higher than the
corresponding value. We observe that RLS with the position sensitive locality
kernel with positional matrix (8) performs significantly better (p < 0.05) than
RLS with the spectrum or the mismatch kernels. We evaluate statistical sig-
nificance of the performance differences using Wilcoxon signed-ranks test. The
locality kernel using positional matrix P = I and a small window slightly looses
to position sensitive locality kernel with matrix (8) in performance, whereas
position insensitive locality kernel performs worst of all. Therefore, we do not
present these results in Figure 1. We also observe that for the few families that
are classified with high scores by all kernels the mismatch kernel is the best,
however, for the rest of the families the locality kernel outperforms both the
spectrum and the mismatch kernel.

In Figures 2 and 3 we give more detailed performance comparison of the
locality, the spectrum and the mismatch kernels. Clearly, the classification

Table 1. The best found parameters used for conducting the experiments

Kernel Positional matrix Best parameters Figures

(7)
P = A w = 1

[P ]h,l = e
− (h−l)2

2θ2 w = 1, θ = 0.9 1, 2 and 3
P = I w = 1

(9) v = 3 1 and 2
(10) m = 1, v = 6 and m = 2, v = 8 1 and 3
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Fig. 1. Performance comparison of RLS with the locality (position sensitive), the spec-
trum (subsequences of length 3) and the mismatch (subsequences of length 6 and 8,
and number of mismatches 1 and 2, respectively) kernels for remote homology detec-
tion using 54 families of the SCOP database. Each data point on the curve represents
the number of the families having higher ROC score for the method.
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Fig. 2. Family-by-family performance comparison of RLS with the spectrum (subse-
quences of length 3) and the locality (position sensitive) kernels. The coordinates of
each point are ROC scores obtained for one SCOP family.
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Fig. 3. Family-by-family performance comparison of RLS with the mismatch (sub-
sequences of length 8, number of mismatches 2) and the locality (position sensitive)
kernels. The coordinates of each point are ROC scores obtained for one SCOP family.

performance when using the position sensitive locality kernel is better than that
of the spectrum and the mismatch kernels. In addition to the conducted experi-
ments, we evaluated performance of the blended spectrum kernel [9], that is all
subsequences of sizes from one to v are simultaneously compared, when mea-
suring similarities between the proteins. However, performance of the blended
spectrum kernel is not notably better than that of the spectrum kernel and its
computation requires more time.

6 Conclusions

In this study, we propose kernels that take advantage of local correlations and po-
sitional information in sequential data and present their application to the protein
classification problem. The locality kernels measure the protein similarities within
a smallwindowconstructed aroundmatching amino acids in both sequences.These
kernels make use of the range of similarity evaluations within the windows, namely
position insensitive matching, position sensitive matching, and strict matching.

We demonstrate that RLS with our locality kernels performs significantly
better than RLS with the spectrum or the mismatch kernels in recognition of
previously unseen families from the SCOP database. Throughout our experi-
ments we observe that the locality kernels incorporating positional information
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perform better than the locality kernels that are insensitive to the positions of
the amino acids within the windows containing protein subsequences. Although,
we do not conduct experiments to compare performance of RLS with the local-
ity kernels to other algorithms, by examining the results reported in [2,3,15], we
may suggest that our method performs comparably with some state-of-the-art
algorithms used for remote homology detection and protein classification. More-
over, our simple method does not require expensive step of generating vector
valued features used in algorithms such as SVM-pairwise or SVM-Fisher.

In the future we plan to cast classification problem of protein sequences as a
bipartite ranking task and we aim to obtain better classification performance by
maximizing AUC instead of minimizing least squares error.
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