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Abstract. Situations when only a limited amount of labeled data and
a large amount of unlabeled data is available to the learning algorithm
are typical for many real-world problems. In this paper, we propose a
semi-supervised preference learning algorithm that is based on the multi-
view approach. Multi-view learning algorithms operate by constructing
a predictor for each view and by choosing such prediction hypotheses
that minimize the disagreement among all of the predictors on the unla-
beled data. Our algorithm, that we call Sparse Co-RankRLS, stems from
the single-view preference learning algorithm RankRLS. It minimizes
a least-squares approximation of the ranking error and is formulated
within the co-regularization framework. The experiments demonstrate a
signi�cantly better performance of Sparse Co-RankRLS compared to the
standard RankRLS algorithm. Moreover, our semi-supervised preference
learning algorithm has a linear complexity in the number of unlabeled
data items, making it applicable to large datasets.

1 Introduction

Semi-supervised learning algorithms have gained more and more attention in
recent years as unlabeled data is typically much easier to obtain than labeled
one. Multi-view learning algorithms, such as co-training [2], split the attributes
into independent sets and an algorithm is learnt based on these di�erent �views�.
The goal of the learning process consists in �nding for every view a prediction
function (for the learning task) performing well on the labeled data of the des-
ignated view such that all prediction functions agree on the unlabeled data.
Closely related to this approach is the co-regularization framework described in
[19], where the same idea of agreement maximization between the predictors is
central. Brie�y stated, algorithms based upon this approach search for hypothe-
ses from di�erent Reproducing Kernel Hilbert Spaces [18], namely views, such
that the training error of each hypothesis on the labeled data is small and, at the
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same time, the hypotheses give similar predictions for the unlabeled data. Within
this framework, the disagreement is taken into account via a co-regularization
term. Empirical results show that the co-regularization approach works well for
classi�cation [19], regression [3], and clustering [4] tasks. Moreover, theoreti-
cal investigations demonstrate that the co-regularization approach reduces the
Rademacher complexity by an amount that depends on the �distance� between
the views [17, 20].

We consider a problem of learning a function capable of arranging data points
according to a given preference relation [8]. Training of existing kernel based
ranking algorithms such as RankSVM [10] may be infeasible when the size of
the training set is large. This is especially the case when nonlinear kernel func-
tions are used. Recently, a sparse preference learning algorithm, called Sparse
RankRLS, that can take advantage of a large amount of data in the training
process, has been proposed [22]. In this paper, we will formulate a co-regularized
version of RankRLS, called Sparse Co-RankRLS, and aim to improve the per-
formance of RankRLS by making it applicable to situations when only a small
amount of labeled data, but a large amount of unlabeled data is available.

We evaluate our algorithm on a parse ranking task [23] that is a common
problem in natural language processing. In this task, the aim is to rank a set
of parses associated with a single sentence, based on some goodness criteria. In
our experiments, we consider the case when both labeled and a large amount
of unlabeled data is available to the learning algorithm. We demonstrate that
Sparse Co-RankRLS is computationally e�cient when trained on large datasets
and the obtained results are signi�cantly better than the ones obtained with the
standard RankRLS algorithm.

2 Problem Setting

Let X be a set of instances and Y be a set of labels. The learning scenario we
consider is label ranking [6, 8], i.e., we want to predict for any instance x ∈ X
(e.g., a person) a preference relation Px ⊆ Y × Y among the set of labels Y,
where each label y ∈ Y can be thought of as an alternative (e.g. a politician in
an election). An element (y, y′) ∈ Px means that the instance x prefers the label
y compared to y′, also written as y �x y′. 3 We assume that the (true) preference
relation Px is transitive and asymmetric for each instance x ∈ X . As training
information, we are given a �nite set {(zi, si)}mi=1 of m data points, where each
data point (zi, si) = ((xi, yi), si) ∈ (X × Y) × R consists of an instance-label
tuple zi = (xi, yi) ∈ X × Y and its score si ∈ R. We say that two data points
((x, y), s) and ((x′, y′), s′) are relevant, i� x = x′. Considering two relevant data
points ((x, y), s) and ((x, y′), s′), we say that instance x prefers label y to y′, if
s > s′. If s = s′, the labels are called tied. Accordingly, we write y �x y′ if s > s′

and y ∼x y′ if s = s′.

3 As described in [8], one can distinguish between weak preference (�) and strict
preference (�), where y �x y′ ⇔ (y �x y′) ∧ (y′ �x y); furthermore, y ∼x y′ ⇔
(y �x y′) ∧ (y′ �x y).
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A label ranking function is a function f : X ×Y → R mapping each instance-
label tuple (x, y) to a real value representing the (predicted) relevance of the label
y with respect to the instance x. This induces for any instance x ∈ X a transitive
preference relation Pf,x ⊆ Y × Y with (y, y′) ∈ Pf,x ⇔ f(x, y) > f(x, y′). Ties
can be broken arbitrarily. Informally, the goal of our ranking task is to �nd a
label ranking function f : X × Y → R such that the ranking Pf,x ⊆ Y × Y
induced by the function for any instance x ∈ X is a good �prediction� for the
true (unknown) preference relation Px ⊆ Y × Y.

To be able to incorporate the relevance information, we de�ne a preference
graph which is an undirected graphG = (V,E) whose vertices are them instance-
label tuples appearing in the training set, i.e., V = {z1, . . . , zm}. Furthermore,
there exist an edge (zi, zj) ∈ E, i� zi and zj are relevant. Let W ∈ Rm×m
denote the adjacency matrix of G, i.e., [W ]i,j = 1 if (zi, zj) ∈ E and [W ]i,j = 0
otherwise. To avoid loops, we set [W ]i,i = 0 for i = 1, . . . ,m, although an

instance-label tuple is relevant to itself. Furthermore, let Z = (z1, . . . , zm)t ∈
(X × Y)m be the vector of instance-label training tuples and S = (s1, . . . , sm)t ∈
Rm the corresponding vector of scores. Given these de�nitions, our training set
is the triple T = (Z, S,W ).

Let us de�ne RZ = {f : Z → R} with Z = X × Y and let H ⊆ RZ be the
hypothesis space of possible ranking functions. To measure how well a hypothesis
f ∈ H is able to predict the preference relations Px for all instances x ∈ X , we
consider the following cost function that captures the amount of incorrectly
predicted pairs of relevant training data points:

d(f, T ) =
1
2

m∑
i,j=1

[W ]i,j
sign(si − sj)− sign

(
f(zi)− f(zj)

), (1)

where sign(·) denotes the signum function. It is well-known that the use of cost
functions like (1) leads to intractable optimization problems. Therefore, we con-
sider the following least squares approximation, which in fact regresses the dif-
ferences si − sj with f(zi)− f(zj) of relevant training data points zi and zj :

c(f, T ) =
1
2

m∑
i,j=1

[W ]i,j
(

(si − sj)− (f(zi)− f(zj))
)2

. (2)

Note that the above cost function c also takes the extent of discrepancy between
the predicted preference (f(zi)− f(zj)) and the training preference (si − sj) of
pairs of relevant training data points into account.

3 Regularized Least Squares Ranking

The co-regularized ranking algorithm presented in this paper stems from the
results developed in [11] and [22]. For completeness, we brie�y review these
results in this section.
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We aim to construct an algorithm that selects a hypothesis f from H which
minimizes (2) and which is, at the same time, not too �complex�, i.e., which
does not over�t at training phase and is therefore able to generalize to unseen
data. We consider the framework of regularized kernel methods [18], in which
H is a so-called Reproducing Kernel Hilbert Space (RKHS) de�ned by a positive
de�nite kernel function.

3.1 Regularization Framework

Let k : Z × Z → R be a positive de�nite kernel de�ned on the set Z. Then we
de�ne H as

H =
{
f ∈ RZ | f(·) =

∞∑
j=1

βjk(·, zj), βj ∈ R, zj ∈ Z, ‖f‖H <∞
}
, (3)

where ‖·‖H denotes the norm in H. Using the RKHS H as our hypothesis space,
we consider the optimization problem

A(T ) = argmin
f∈H

J(f), (4)

where J(f) = c(f, T ) + λ‖f‖2H and where λ ∈ R+ is a regularization parameter
controlling the tradeo� between the cost on the training set and the complexity
of the hypothesis. By the generalized representer theorem [18], the minimizer of
(4) has the form

f∗(·) =
m∑
i=1

aik(·, zi) (5)

with appropriate coe�cients ai ∈ R. Hence, we can focus on functions f ∈ H
having the above form. De�ning the kernel matrix K ∈ Rm×m with entries
of the form [K]i,j = k(zi, zj) and f(Z) = (f(z1), . . . , f(zm))t ∈ Rm, we can

write f(Z) = KA and ‖f‖2H = AtKA, where A = (a1, . . . , am)t ∈ Rm is a
corresponding coe�cient vector.4

3.2 RankRLS

Let L = D−W be the Laplacian matrix [5] of G, where D denotes the diagonal
matrix with elements of the form [D]i,i =

∑m
j=1 [W ]i,j . Using a slightly di�erent

notation, it is shown in [11] that the cost function (2) can be rewritten as

c(f, T ) = (S −KA)tL(S −KA). (6)

4 Unless stated otherwise, we assume that a kernel matrix K is positive de�nite, i.e.,

B
t

KB > 0 for all B ∈ Rm, B 6= 0. This can be ensured, for example, by performing
a small diagonal shift.
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Considering this representation of the cost function c, we get the following opti-
mization problem called RankRLS in [11]:

A(T ) = argmin
A∈Rm

J(A), (7)

where J(A) = (S −KA)tL(S−KA) +λAtKA. Using the fact that L is positive
semide�nite [14] and assuming that K is positive de�nite, it is easy to see that
the Hessian matrix H(J) = 2KtLK + 2λK of J is positive de�nite. Thus, J
is strictly convex and the global minimum of J can be obtained by setting the
�rst derivative d

dAJ(A) = −2KtL(S −KA) + 2λKA to zero and by solving the
resulting system of equations with respect to A. As shown in [11], the optimal
solution for (7) is

A = (KLK + λK)−1
KLS = (LK + λI)−1LS, (8)

where I denotes the identity matrix. The computational complexity of the matrix
inversion in (8) is O(m3).

Fact 1 ([11]) For �xed λ ∈ R+, the solution of the RankRLS optimization
problem (7) can be found in O(m3) time.

3.3 Sparse RankRLS

Similarly to [13] and [21], an approximation algorithm aiming at reducing the
cubic running time of the RankRLS approach is developed in [22]: The cost
function c is evaluated over all points, but only a subset of the coe�cients
a1, . . . , am is allowed to be non-zero, thus an approximation of the optimization
problem is considered. Let R = {i1, . . . , ir} ⊆ {1, . . . ,m} be a subset of indices.
Then, we only allow the coe�cients ai1 , . . . , air to be non-zero in (5), i.e., we

search for minimizers f̂ ∈ H having the form

f̂(·) =
r∑
j=1

aijk(·, zij ). (9)

By de�ning K̄ ∈ Rm×r to be the submatrix of K ∈ Rm×m that only contains the
columns indexed by R and by de�ning K̂ ∈ Rr×r to be the submatrix of K̄ only
containing the rows indexed by R, we can express f̂(Z) = (f̂(z1), . . . , f̂(zm))t ∈
Rm as f̂(Z) = K̄Â and ‖f̂‖2H = ÂtK̂Â, where Â = (ai1 , . . . , air )t ∈ Rr. Given
these notations, the approximation presented in [22], called Sparse RankRLS,
can be formulated as

A(T ) = argminbA∈Rr

Ĵ(Â), (10)

where Ĵ(Â) = (S − K̄Â)tL(S − K̄Â) + λÂtK̂Â. Setting the derivative of Ĵ to

zero and solving the resulting system of equations with respect to Â leads to

Â = (K̄tLK̄ + λK̂)−1K̄tLS. (11)

The overall training complexity of the Sparse RankRLS algorithm is O(mr2),
see [22] for more details.
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Fact 2 ([22]) For �xed λ ∈ R+, the solution of the Sparse RankRLS optimiza-
tion problem (10) can be found in O(mr2) time.

Hence, selecting r to be much smaller than m results in a signi�cant acceleration
of the training procedure. Clearly, the selection of the index set R may have an
in�uence on results obtained by the above approximation approach. Di�erent
methods for selecting R are discussed, for example, in [16]. There, it is found
that simply selecting the elements of R randomly performs no worse than more
sophisticated methods. Hereafter, we refer to the data points contained in R as
basis vectors.

3.4 Constructing Kernels with Subsets of Regressors

Considering the Sparse RankRLS algorithm, the label predictions for the training
data points can be obtained by K̄Â. Using the Woodbury matrix identity [9]

and (11) and by de�ning K̃ = 1
λK̄K̂

−1K̄t, we can reformulate this expression
as follows:

K̄Â = K̄(K̄tLK̄ + λK̂)−1K̄tLS

= K̄(
1
λ
K̂−1 − 1

λ
K̂−1K̄t(

1
λ
LK̄K̂−1K̄t + I)−1 1

λ
LK̄K̂−1)K̄tLS

= (K̃ − K̃(LK̃ + I)−1LK̃)LS
= (K̃(I − (LK̃ + I)−1LK̃)LS
= (K̃((LK̃ + I)−1(LK̃ + I)− (LK̃ + I)−1LK̃)LS
= K̃(LK̃ + I)−1(LK̃ + I − LK̃)LS
= K̃(LK̃ + I)−1LS.

Note that because L and K̃ are positive semide�nite, their product LK̃ con-
tains only nonnegative eigenvalues [1]. Hence, LK̃ + I is invertible. Further,

the last term can be rewritten as K̃(LK̃ + I)−1LS = Ǩ(LǨ + λI)−1LS, where
Ǩ = K̄K̂−1K̄t ∈ Rm×m. These derivations show that the Sparse RankRLS algo-
rithm operating with a kernel function k is essentially equivalent to the standard
RankRLS algorithm operating with a modi�ed kernel ǩ. In the following section
we will use this fact for constructing di�erent Hilbert spaces by taking di�erent
sets of basis vectors.

4 Co-Regularized Least Squares Ranking

Both the RankRLS and the Sparse RankRLS algorithm, can only use labeled
data points during the training phase. In this section, we present the algorithm
that is applicable to situations when only a small amount of labeled, but a large
amount of unlabeled data is available.
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4.1 Co-Regularization Framework

The co-regularization approach is based on the idea of constructing M hypothe-
ses from M di�erent Hilbert spaces such that the error of each function on the
labeled data is small and, at the same time, the functions give similar predictions
for the unlabeled data.

As shown in Section 3.4, the solution of the Sparse RankRLS algorithm
equals to the one obtained by the standard RankRLS algorithm with a mod-
i�ed kernel function. Hence, taking di�erent subsets of the input set leads to
di�erent Reproducing Kernel Hilbert Spaces. These RKHSs can also stem from
di�erent data point descriptions (i.e., di�erent features) and/or di�erent ker-
nel functions. In the following, we will consider M di�erent RKHSs H1, . . . ,
HM and corresponding kernel functions k1, . . . , kM with kv : Z × Z → R.
Considering our ranking task, we have a training set T = (Z, S,W ) origi-
nating from a set {(zi, si)}mi=1 of data points with scoring information, where
Z = (z1, . . . , zm)t ∈ Zm, S = (s1, . . . , sm)t ∈ Rm, and where W is the ma-
trix incorporating the relevance information. Moreover, we have a training set
T̃ = (Z̃, W̃ ) from a set {zm+i}ni=1 of data points without scoring information,

Z̃ = (zm+1, . . . , zm+n)t ∈ Zn, and an appropriate adjacency matrix W̃ . To avoid
misunderstandings with the de�nition of the label ranking task, we will use the
terms �scored� instead of �labeled� and �unscored� instead of �unlabeled�.

In the ranking task, we search for the functions f = (f1, . . . , fM ) ∈ H1× . . .×
HM minimizing

J(f) =
M∑
v=1

c(fv, T ) + λ

M∑
v=1

‖fv‖2Hv
+ ν

M∑
v,u=1

V (fv, fu, T̃ ), (12)

where λ, ν ∈ R+ are regularization parameters and where V is the loss function
measuring the disagreement between the prediction functions of the views on
the unscored data:

V (fv, fu, T̃ ) =
1
2

n∑
i,j=1

[̃W ]i,j
((
fv(zm+i)−fv(zm+j)

)
−
(
fu(zm+i)−fu(zm+j)

))2

.

Applying the representer theorem [18] in this context shows that the minimizers
f∗v ∈ Hv of (12) for v = 1, . . . ,M have the form

f∗v (·) =
m∑
i=1

a
(v)
i kv(·, zi) +

n∑
i=1

a
(v)
m+i kv(·, zm+i) (13)

with adequate coe�cients a
(v)
1 , . . . , a

(v)
m+n ∈ R.
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4.2 Sparse Co-RankRLS

Using matrix notations we can reformulate (12) as

J(A) =
M∑
v=1

(S − LvAv)tLL(S − LvAv) + λ

M∑
v=1

Av
tKvAv (14)

+ ν

M∑
v,u=1

(UvAv − UuAu)tLU (UvAv − UuAu),

where Av = (a(v)
1 , . . . , a

(v)
m+n)t ∈ Rm+n and A = (At1, . . . , A

t
M )t ∈ RM(m+n).

The matrix Lv ∈ Rm×(m+n) has entries of the form [Lv]i,j = kv(zi, zj) and the

matrix Uv ∈ Rn×(m+n) has entries of the form [Uv]i,j = kv(zm+i, zj). Stacking
both matrices up gives the matrix Kv:

Kv =
(
Lv
Uv

)
∈ R(m+n)×(m+n).

Further, LL ∈ Rm×m and LU ∈ Rn×n denote the Laplacian matrices corre-
sponding to W and W̃ , respectively. Hence, we have the following optimization
problem:

A(T, T̃ ) = argmin
A∈RM(m+n)

J(A). (15)

Although the Hilbert spaces H1, . . . , HM can stem from di�erent data point
descriptions and/or di�erent kernel functions, we consider the case when they
are obtained with di�erent subsets of the input set Z. Considering the minimizers
in (13), we only allow a subset of the coe�cients to be non-zero for each view. As
in Section 3, this corresponds to taking submatrices of the original matrices, i.e.,
for each view v we de�ne L̄v ∈ Rm×r to be the submatrix of Lv that only contains
the columns corresponding to r selected basis vectors zcv(1), . . . , zcv(r). Here, the
number cv(i) ∈ {1, . . . ,m + n} denotes the index (column) of the i-th selected
vector of view v. Accordingly, we de�ne Ūv ∈ Rn×r to be the submatrix of Uv that
only contains the columns corresponding to zcv(1), . . . , zcv(r). Finally, we de�ne

K̂v ∈ Rr×r to be the kernel matrix with elements
[
K̂v

]
i,j

= kv(zcv(i), zcv(j)).

Hence, we obtain the following optimization problem, which we call Sparse Co-
RankRLS :

A(T, T̃ ) = argminbA∈RMr

Ĵ(Â), (16)

where

Ĵ(Â) =
M∑
v=1

(
S − L̄vÂv

)t
LL
(
S − L̄vÂv

)
+ λ

M∑
v=1

ÂtvK̂vÂv (17)

+ ν

M∑
v,u=1

(
ŪvÂv − ŪuÂu

)t
LU
(
ŪvÂv − ŪuÂu

)
,
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Âv = (a(v)
cv(1), . . . , a

(v)
cv(r))

t ∈ Rr and Â = (Ât1, . . . , Â
t
M )t ∈ RMr. For ease of

notation, we consider the same number of basis vectors for each view. It should
be noted that the above co-regularization setting is valid if di�erent basis vectors
are selected for each view.

Given this matrix formulation of our optimization problem, we can follow
the framework described in [3] to �nd a closed form for the solution: Taking the

partial derivative of Ĵ(Â) with respect to Âv we get

d

dÂv
Ĵ(Â) = −2L̄tvLL(S − L̄vÂv) + 2λK̂vÂv

−4ν
M∑

u=1,u 6=v

Ū tvLU (ŪuÂu − ŪvÂv).

By de�ning Gνv = 2ν(M − 1)Ū tvLU Ūv, Gλv = λK̂v and Gv = L̄tvLLL̄v, we can
rewrite the above term as

d

dÂv
Ĵ(Â) = 2(Gv +Gνv +Gλv )Âv − 2L̄tvLLS

−4ν
M∑

u=1,u 6=v

Ū tvLU ŪuÂu.

At the optimum we have d

d bAv
Ĵ(Â) = 0 for all views, thus we get the exact

solution by solving
Ḡ1 −2νŪ t1LU Ū2 . . .

−2νŪ t2LU Ū1 Ḡ2 . . .

...
...

. . .




Â1

Â2

...

 =


L̄t1LLS

L̄t2LLS

...


with respect to Â1, . . . , ÂM , where Ḡv = Gv + Gνv + Gλv . The left-hand side
matrix is positive de�nite and therefore invertible (see Appendix). By de�ning

B =

G1 0 . . .
0 G2 . . .
...

...
. . .

 D =

Gλ1 0 . . .
0 Gλ2 . . .
...

...
. . .

E =

 L̄t1LLS
L̄t2LLS

...



C =

 Gν1 −2νŪ t1LU Ū2 . . .
−2νŪ t2LU Ū1 Gν2 . . .

...
...

. . .


we can formulate the solution of the system as follows:

Â = (B + C +D)−1E. (18)
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The computational complexity of constructing the vector E is O(Mmr). Fur-
ther, the matrices B, C, and D can be constructed in O(Mr2m), O(M2r2n),
and O(Mr2), respectively. The resulting matrix (B + C + D) ∈ RMr×Mr can
be inverted in O(M3r3). Hence, our algorithm scales linearly in the number
of unscored data items. Note that the multiplications involving the Laplacian
matrices LL and LU can be accelerated using the approach described in [22].
Assuming n ≥ m we have shown the following theorem:

Theorem 1. For �xed parameters λ, ν ∈ R+ and assuming n ≥ m, the solution
of the Sparse Co-RankRLS optimization problem (16) can be found in O(M3r3+
M2r2n) time.

4.3 E�cient Regularization Parameter Selection

When performing experiments, the recurrent matrix inversion in (18) for each
combination of the regularization parameters λ and ν could be time-consuming.
Therefore, we propose a procedure which accelerates this parameter selection
process. Writing D as D = λD́ with an appropriate (positive de�nite) matrix D́
and rewriting D́ as D́ = GGt using the Cholesky decomposition [9], we obtain

(B + C +D)−1 = (B + C + λD́)
−1

= (GG−1(B + C)(Gt)−1
Gt + λGGt)

−1

= (Gt)−1(G−1(B + C)(Gt)−1 + λI)
−1
G−1.

Further, the matrix G−1(B+C)(Gt)−1 can be eigen decomposed to V ΛV t, where
Λ is a diagonal matrix containing the eigenvalues and V is matrix composed of
the eigenvectors [9]. Hence, we get

(B + C +D)−1 = (Gt)−1(V ΛV t + λI)
−1
G−1

= (Gt)−1V (Λ+ λI)
−1
V tG−1

and the solution in (18) can be rewritten as

Â = (Gt)−1V (Λ+ λI)
−1
V tG−1E.

Thus, by �xing the parameter ν we can e�ciently search for the second reg-
ularization parameter λ. The decompositions and the inversion of G can be
calculated in O(M3r3) time, and hence, the overall training complexity is not
increased. The computational cost of calculating (Λ+λI)−1 is O(Mr), since it is
a diagonal matrix. If the matrices V tG−1E ∈ RMr×1 and (Gt)−1V ∈ RMr×Mr

are stored in memory, the subsequent training with di�erent values of λ can be
performed in O(M2r2) time.
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5 Experiments

We evaluate the performance of the Sparse Co-RankRLS algorithm on the parse
ranking task, namely the task of ranking given parses for an unseen sentence.
For this purpose, we use the BioInfer corpus [15] which consists of 1100 manually
annotated sentences. A detailed description of the parse ranking problem and
the data used in the experiments is given in [23]. Each sentence is associated with
a set of candidate parses. The manual annotation of the sentence, present in the
corpus, provides the correct parse. Further, each candidate parse is associated
with a goodness score that indicates how close to the correct parse it is. The
correct ranking of the parses associated with the same sentence is determined
by this score. While the scoring induces a total order over the whole set of
parses, the preferences between parses associated with di�erent sentences are
not considered in the parse ranking task.

Using the de�nitions presented in Section 2, we consider each sentence as
an instance and the parses generated for the sentence as the labels associated
with it. The score of an input indicates how well the parse included in the input
matches the correct parse of the sentence. We have previously demonstrated that
the RankRLS algorithm performs comparably to some state-of-the-art ranking
methods [11]. In this section, we will compare the performance of the Sparse
Co-RankRLS algorithm with that of the RankRLS algorithm.

5.1 Experimental Setup

From the 1100 sentences of the BioInfer corpus we randomly select 600 and 500
sentences for the training and �nal validation phase, respectively. To simulate
a semi-supervised setting, we consider that only 50 sentence-parse pairs in the
training set are scored, while the remaining 550 sentences do not have the scoring
information associated with them. For the evaluation of the Sparse Co-RankRLS
method we set the number M of views to 2. Further, we randomly select 20
sentences and their associated parses from the unscored data set as basis vectors
for the �rst view and repeat this procedure for the second view. According to
Section 4 we select di�erent basis vectors for each view.

Both of the algorithms have the regularization parameter λ that controls the
tradeo� between the minimization of the training error and the complexity of the
learnt function(s). In addition, the Sparse Co-RankRLS algorithm has the reg-
ularization parameter ν that controls the agreement between the predictions of
the di�erent views. As a similarity measure for parses, we use the best perform-
ing graph kernel with the appropriate parameter considered in [12]. The values
of the regularization parameters for RankRLS as well as for Sparse Co-RankRLS
are estimated during a 10-fold cross-validation procedure, with the splits being
performed on the sentence level ensuring that all parses associated with the same
sentence are present in the same fold. In the semi-supervised setting each fold
consists of one tenth of labeled and unlabeled data present in the training set.
For the cross-validation phases, we randomly select 7 parses for each sentence
to be associated with it, out of which 2 parses are used for training the model
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Standard RankRLS Sparse Co-RankRLS

0.373 0.344
Table 1. Comparison of the parse ranking performances of the standard RankRLS and
the Sparse Co-RankRLS algorithms using a normalized version of the disagreement
error (1) as performance evaluation measure.

and 5 for testing. Finally, we use 5 parses per sentence for the �nal validation
procedure.

5.2 Results

The normalized version of the disagreement error (1) is used to measure the
performance of the ranking algorithms. The error is calculated for each sentence
separately and the performance is averaged over all sentences.

The algorithms are trained on the whole parameter estimation data set with
the best found parameter values and tested with the 500 sentences reserved for
the �nal validation. The results of the validation are presented in Table 1. They
show that the Sparse Co-RankRLS algorithm notably outperforms the RankRLS
method. Here, the results of the Sparse Co-RankRLS algorithm are obtained by
averaging the predictions of the two views.

Furthermore, to test the statistical signi�cance of the performance di�erence
between the Sparse Co-RankRLS and RankRLS algorithms, we conduct the
Wilcoxon signed-ranks test [7]. The sentences reserved for the �nal validation
are considered as independent trials. We observe that the performance di�erences
are statistically signi�cant (p < 0.05).

6 Conclusions

We propose Sparse Co-RankRLS, a semi-supervised regularized least-squares al-
gorithm for learning preference relations. The computational complexity of the
algorithm is O(M3r3 + M2r2n), where n is the number of unlabeled training
examples. We formulate the algorithm within the co-regularization framework,
which aims at improving the prediction performance by minimizing the disagree-
ment of all prediction hypotheses on the unlabeled data. In our experiments, we
consider a parse ranking task and show that the Sparse Co-RankRLS algorithm
signi�cantly outperforms the standard RankRLS algorithm on this task.

Due to the fact that our semi-supervised preference learning algorithm has a
linear complexity in the number of unlabeled examples, it is primarily applicable
in cases when only a small amount of labeled but a large amount unlabeled data is
available for training. In the future, we aim to evaluate our Sparse Co-RankRLS
algorithm on various tasks where labeled data is scarce.
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Appendix

We will show that the matrix
Ḡ1 −2νŪ t1LU Ū2 . . .

−2νŪ t2LU Ū1 Ḡ2 . . .

...
...

. . .
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is positive de�nite. To prove that, we decompose the above matrix into a sum
of matrices

X1 =


Ḡ1 − 2ν(M − 1)Ū t1LU Ū1 0 . . .

0 Ḡ2 − 2ν(M − 1)Ū t2LU Ū2 . . .

...
...

. . .


and

X2 =


ν(M − 1)Ū t1LU Ū1 −νŪ t1LU Ū2 . . .

−νŪ t2LU Ū1 ν(M − 1)Ū t2LU Ū2 . . .

...
...

. . .

 .

The matrix X1 is positive de�nite as each block matrix is positive de�nite (we

require the matrix K̂v to be positive de�nite). Further, the matrix X2 is positive
semide�nite as we can write it as a sum of positive semide�nite matrices of the
form 

0 · · · 0 · · · 0 · · · 0
...

...
...

...
0 · · · νŪ tiLU Ūi · · · −νŪ tiLU Ūj · · · 0
...

...
. . .

...
...

0 · · · −νŪ tjLU Ūi · · · νŪ tjLU Ūj · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 0


= Xt

(i,j)X(i,j),

where X(i,j) =
(
0, . . . , 0,

√
νP Ūi, 0, . . . , 0,−

√
νP Ūj , 0, . . . , 0

)
. Here, the positive

semide�nite matrix LU is decomposed as LU = P tP using the Cholesky decom-
position [9].


