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Abstract. We propose a Locality-Convolution (LC) kernel in applica-
tion to dependency parse ranking. The LC kernel measures parse similar-
ities locally, within a small window constructed around each matching
feature. Inside the window it makes use of a position sensitive func-
tion to take into account the order of the feature appearance. The sim-
ilarity between two windows is calculated by computing the product of
their common attributes and the kernel value is the sum of the window
similarities. We applied the introduced kernel together with Regular-
ized Least-Squares (RLS) algorithm to a dataset containing dependency
parses obtained from a manually annotated biomedical corpus of 1100
sentences. Our experiments show that RLS with LC kernel performs bet-
ter than the baseline method. The results outline the importance of local
correlations and the order of feature appearance within the parse. Final
validation demonstrates statistically significant increase in parse ranking
performance.

1 Introduction

With availability of structured data applicable for statistical and machine learn-
ing techniques, application of kernel methods (see e.g. [1, 2]) is shown to have an
important role in Natural Language Processing (NLP). Recently, several papers
have presented and applied new kernels to NLP problems with promising results.
Collins and Duffy [3] described convolution kernels for various discrete structures,
encountered in NLP tasks, which allow high dimensional representations of these
structures in feature vectors. Suzuki et al. [4] introduced the Hierarchical Di-
rected Acyclic Graph (HDAG) kernel for structured natural language data. It was
shown that rich representation of the features through directed graphs in parse,
improves performance in various NLP applications. A statistical feature selection
approach for the above mentioned kernels was proposed in [5]. This work has been
motivated not only by rapidly developing field of the kernel methods and their
successful applications in NLP, but also by the importance of incorporating do-
main knowledge for improving the performance of the learning algorithms.

In this study, we address the problem of dependency parse ranking in the
biomedical domain. The parses are generated by the Link Grammar (LG) parser
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[6] which was applied to the Biomedical Dependency Bank (BDB) corpus1 con-
taining 1100 annotated sentences. The LG parser is a full dependency parser
based on a broad-coverage hand-written grammar. It generates all parses al-
lowed by its grammar and applies the built-in heuristics to rank the parses.
However, its ranking performance has been found to be poor when applied to
biomedical text [7].

Recently, we proposed a method for dependency parse ranking [8] that uses
Regularized Least-Squares (RLS) algorithm [9] and grammatically motivated
features. The method, called RLS ranker, worked notably better giving 0.42
correlation compared to 0.16 of the LG heuristics. In this paper, we propose a
Locality-Convolution (LC) kernel that provides a correlation of 0.46 when used in
RLS algorithm. In all experiments, we applied the F-score based parse goodness
function [8], and evaluated the ranking performance with Kendall’s correlation
coefficient τb described in [10].

The LC kernel addresses the problem of parse ranking through the follow-
ing characteristics. Firstly, it possesses the convolution property described by
Haussler [11], and operates over discrete structures. Secondly, it calculates simi-
larity between windows spanning over the closely located features. Furthermore,
it makes use of the position sensitive function, which takes into account the
positions of the features within the windows. The LC kernel function can be
considered as a specific instance of the convolution kernels and can be included
in many methods, such as the RLS algorithm that we are using in this study.

The paper is organized as follows: in Section 2, we describe the RLS algorithm;
in Section 3, we present grammatically motivated features for parse representa-
tion; in Section 4, we discuss convolution kernels, in Section 5, we define notions
of locality windows, position sensitive feature matching, and finally introduce
the LC kernel; in Section 6, we evaluate the applicability of the LC kernel to
the task of dependency parse ranking and benchmark it with respect to previous
baseline method; we conclude this paper in Section 7.

2 Regularized Least-Squares Algorithm

Let {(x1, y1), . . . , (xm, ym)}, where xi ∈ P, yi ∈ R, be the set of training exam-
ples. We consider the Regularized Least-Squares (RLS) algorithm as a special
case of the following regularization problem known as Tikhonov regularization
(for a more comprehensive description, see e.g. [9]):

min
f

m∑

i=1

l(f(xi), yi) + λ‖f‖2
K , (1)

where l is the loss function used by the learning machine, f : P → R is a function,
λ ∈ R+ is a regularization parameter, and ‖ · ‖K is a norm in a Reproducing
Kernel Hilbert Space defined by a positive definite kernel function K. Here P
can be any set, but in our problem, P is a set of parses of the sentences of
1 http://www.it.utu.fi/∼BDB
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the BDB corpus. The target output value yi is calculated by a parse goodness
function, that is, yi = f∗(xi), and is predicted with the RLS algorithm. We used
the F-score based function f∗ as defined in [8]. The second term in (1) is called
a regularizer. The loss function used with RLS for regression problems is called
least squares loss and is defined as

l(f(x), y) = (y − f(x))2.

By the Representer Theorem (see e.g. [12]), the minimizer of equation (1) has
the following form:

f(x) =
m∑

i=1

aiK(x, xi),

where ai ∈ R and K is the kernel function associated with the Reproducing
Kernel Hilbert Space mentioned above.

Kernel functions are similarity measures of data points in the input space P ,
and they correspond to the inner product in a feature space H to which the
input space data points are mapped. Formally, kernel functions are defined as

K(x, x′) = 〈Φ(x), Φ(x′)〉,
where Φ : P → H .

3 Features for Parse Representation

In the case of parse ranking problem, where parses are represented within depen-
dency structure, particular attention to the extracted features is required due to
the sparseness of the data. In [8] we proposed features that are grammatically
relevant and applicable even when relatively few training examples are available.
Grammatical features extracted from a dependency parse, contain information
about the linkage consisting of pairwise dependencies between pairs of words
(bigrams), the link types (the grammatical roles assigned to the links) and the
part-of-speech (POS) tags of the words. An example of a fully parsed sentence
is shown in Figure 1.

As in [8], we define seven feature types representing important aspects of the
parse, consisting of the following grammatical structures:

Grammatical bigram feature is defined as a pair of words connected by a
link. In the linkage example of Figure 1, the extracted grammatical bigrams are
absence—of, of—alpha-syntrophin, etc.

Absence.n of alpha-syntrophin.n leads.v to structurally aberrant.a neuromuscular.a synapses.n deficient.a in utrophin.n

A
MVp A MVpMaJs

Jp

Mp
Ss

JsE

Fig. 1. Example of parsed sentence
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Word & POS tag feature contains the word with the POS tag assigned to
the word by the LG parser. In Figure 1, the extracted word & POS features are
absence.n, alpha-syntrophin.n etc.
Link type feature represents the type of the link assigned by the LG parser. In
the example, they are Mp, Js, etc.
Word & Link type feature combines each word in the sentence with the type
of each link connected to the word, for example, absence—Mp, absence—Ss, etc.
Link length feature represents the number of words that a link in the sentence
spans. In Figure 1, the extracted features of this type are 1, 1, etc.
Link length & Link type feature combines the type of the link in the sentence
with the number of words it spans. In Figure 1, the extracted features of this
type are 1—Mp, 1—Js, etc.
Link bigram feature extracted for each word of the sentence is a combination
of two links connected to the word, ordered leftmost link first. In the example,
the link bigrams are Mp—Ss, Mp—Js, etc.

As a natural continuation of [8], we propose projecting parses into feature
sequences in order to take into account local correlations between parses. To
avoid sparsity, for each parse, we make one sequence consisting of homoge-
neous features per each type instead of a single sequence containing the fea-
tures of all types. We define these homogeneous feature sequences as follows.
Let r be the number of types, and let {t1, . . . , tr} be the set of types. In our
case, r = 7 and the corresponding feature types are described above. For ex-
ample, t1 is the grammatical bigram type consisting of all the grammatical
bigram features of the particular parse. Let us consider a parse p ∈ P , and
let pj , 1 ≤ j ≤ r, be the sequence of the features of type tj in the parse p
in the order of their appearance. For example, in the case of Figure 1, p1 =
absence—of, absence—leads, of—alpha-syntrophin, etc. The order of features is
also preserved for all other types: p3 = Mp,Ss etc. or p4 = absence—Mp,
absence—Ss, of—Mp, of—Js etc. For the basic types – POS tag, Word, Link
type, and Link length features – as well as for the complex features representing
conjunctions of the basic types, the order of appearance is determined by the
indices of the words they are related to. For example, if there exist two grammat-
ical bigrams having a common first word, the decision of the feature positions
within the sequence is based on the index of the second word.

Now we can define a mapping Φ from the parse space P to the feature space
H , Φ : P → H , representing parses through the sequences of the features as
follows: Φ(p) = (p1, . . . , pr). If we denote pj = (f tj

1 , . . . , f
tj

|pj |), we get

Φ(p) = ((f t1
1 , . . . , f t1

|p1|︸ ︷︷ ︸
p1

), . . . , (f tr
1 , . . . , f tr

|pr|︸ ︷︷ ︸
pr

)). (2)

Here, the length of the sequences pj , denoted as |pj |, as well as the individual
features f

tj

i depend on the parse p. We call the sequences pj subparses of p ∈ P .
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4 Convolution Kernels

The convolution kernels are usually built over discrete structures. They are de-
fined between the input objects by applying convolution sub-kernels for the parts
of the objects. Following [11], we briefly describe convolution kernel framework.
Let us consider x ∈ X as a composite structure such that x1, . . . , xN are its
parts, where xn belongs to the set Xn for each 1 ≤ n ≤ N , and N is a positive
integer. We consider X1, . . . , Xn as countable sets, however, they can be more
general separable metric spaces [11]. Let us denote shortly x̂ = x1, . . . , xN . Then
the relation “x1, . . . , xN are parts of x” can be expressed as a relation R on the
set X1×. . . , XN ×X such that R(x̂, x) is true if x̂ are the parts of x. Then we can
define R−1(x) = {x̂ : R(x̂, x)}. Now let us suppose that x, y ∈ X and there exist
decompositions such that x̂ = x1, . . . , xN are the parts of x and ŷ = y1, . . . , yN

are the parts of y. If we have some kind of kernel functions

Kn(xn, yn) = 〈Φ(xn), Φ(yn)〉, 1 ≤ n ≤ N,

to measure similarity between elements of Xn, then the kernel K(x, y) measur-
ing the similarity between x and y is defined to be the following generalized
convolution:

K(x, y) =
∑

x̂∈R−1(x)

∑

ŷ∈R−1(y)

N∏

n=1

Kn(xn, yn). (3)

There have been several different convolution kernels reported and applied in
NLP, for example, string kernel [13], tree kernel [3], word-position kernel ([14],
[15]) and HDAG kernel [5]. The LC kernel function proposed in this paper satis-
fies the properties of the above convolution approach and it is built over discrete
and homogeneous sequences of the features described in the Section 3.

5 Locality-Convolution Kernel

The Locality-Convolution kernel has the following properties that we believe are
of importance for the ranking task: i) the use of feature sequences extracted
in the order of the appearance in the parse, ii) construction of locality window
around matching features, and iii) position sensitive evaluation of the features
within the window. Below we define these properties formally.

Let us consider parses p, q ∈ P and let pj = (f tj

1 , . . . , f
tj

|pj|) and qj = (gtj

1 , . . . ,

g
tj

|qj |) be their subparses. They consist of the features of the same type tj as
described in Section 3. Next we consider how to define a similarity between the
subparses pj and qj . For the sake of simplicity, we write in the feature sequences
supersript j instead of tj .

The similarity of the subparses pj and qj is obtained with the following kernel:

K(pj , qj) =
∑

s∈Sj

κ(s) =
|pj |∑

i=1

|qj |∑

k=1

κ(f j
i , gj

k)δ(f j
i , gj

k), (4)
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where Sj =
{
(f j

i , gj
k)|1 ≤ i ≤ |pj |, 1 ≤ k ≤ |qj |, f j

i = gj
k

}
is the set of all equal

pairs of the features present in the subparses pj and qj , κ is a kernel, and

δ(x, y) =

{
0, if x �= y

1, if x = y.

If we set κ ≡ 1, then the equation (4) equals to |Sj |. To weight more those cases
where there are exact matches near each other within a certain locality window,
we define κ as follows. First, for each s = (f j

i , gj
k) ∈ Sj , we create a window

around f j
i and gj

k of length w, and define

ws =
{
(f j

m, gj
l )| s= (f j

i , gj
k) ∈ Sj , |m − i| ≤

⌊w

2

⌋
,|l − k| ≤

⌊w

2

⌋
, (f j

m, gj
l ) ∈ Sj

}
.

A simple realization of the weighting idea would be:

κ(s) = |ws|, (5)

where |ws| is the number of all identical feature pairs between two locality win-
dows. As another alternative, we construct a function that requires the matching
feature positions to be exactly the same:

κ(s) =
∑

(fj
m,gj

l )∈ws

δ(m, l). (6)

The kernel (4) with exact position matching κ described in (6) is related to
the locality improved kernel proposed in [16]. However, if we would not require
strict position matching, but rather penalize the features that match but have a
different position within the windows, one can use the following position sensitive
version of the kernel function:

κ(s) =
∏

(fj
m,gj

l )∈ws

(e−( (m−l)
θ )2

+ 1), (7)

where θ ≥ 0 is a parameter. Note that (5), (6), and (7) become equal to 1, 1,
and 2, respectively, when the length of the locality window is one. The choice of
an appropriate κ might be a matter closely related to the domain of the study.
In Section 6 we show that additional information captured with (7) is useful and
improves the ranking performance. Drawing a parallel between the proposed
kernel and the convolution approach, one can distinguish between “structures”
and “different decompositions” constructed by our kernel. By substituting the
position sensitive κ defined in (7) into (4), we obtain:

KLC(pj , qj) =
∑

s∈Sj

∏

(fj
m,gj

l )∈ws

(e−( (m−l)
θ )2

+ 1), (8)

which we call the Locality-Convolution kernel. Conceptually, the LC kernel enu-
merates all the substructures representing pairs of windows built around the mat-
ching features in the subparses and calculates their inner product. The LC kernel
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is able to treat not only exact matching of the features, but also matching within
the locality windows, therefore making the similarity evaluation more precise.

To measure the similarity between whole parses, we measure the correspon-
dence of their subparses within each type and then sum them up:

K(p, q) =
r∑

j=1

KLC(pj , qj). (9)

Finally, we wrap the kernel inside a Gaussian function KG in the following
way:

KG(p, q) = e(−
K(p,p)−2K(p,q)+K(q,q)

σ2 ), (10)
where σ is a parameter controlling the width of Gaussian function. The wrapping
has also a normalization effect, which is useful because the size of the parses,
that is, the total number of features in the parse is not a constant. Expression
(10) represents the kernel function used in the experiments of this study.

6 Experiments

The performance of the RLS ranker with the LC kernel proposed in this pa-
per was compared to the baseline method, the RLS ranker described in [8].
Throughout our experiments we have been using BDB corpus which consists
of 1100 annotated sentences. It was split into two datasets containing 500 and
600 sentences. The first dataset was used for the parameter estimation and the
second one was reserved for the final validation. For each sentence, there is a
certain amount of parses generated by the LG parser. Due to the computational
complexity, we restricted the number of parses per sentence to 5 in training and
to 20 in testing. When more parses were available for a sentence, we sampled
randomly the necessary amount, when fewer were available, all parses were used.

We used the Kendall’s correlation coefficient τb [10] as a performance measure
in all experiments. The parse goodness function that determines the true ranks
of the parses and the ranking procedure are described in [8].

The RLS algorithm has the regularization parameter λ that controls the trade-
off between the minimization of the training error and the complexity of the
regression function. In addition, the LC kernel uses θ parameter that determines
the width of the position sensitive function and w, the size of the locality window,
constructed around the matching features in both subparses. Finally, σ controls
the width of the Gaussian function, into which the LC kernel is wrapped. The
appropriate values of these parameters were determined by grid search with
10-fold cross-validation.

6.1 Evaluation of LC Kernel

The evaluation of the kernel function was conducted on the dataset consisting of
500 sentences. We observed a stable performance of the RLS ranker with the LC
kernel providing a correlation of 0.45 against 0.42 of the RLS ranker reported
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in [8]. The values of the parameters found by grid search are: λ = 2−10, w = 3,
σ = 155, and θ = 0.5. The small value of θ for the LC kernel in equation (8)
indicates that the positional matching of the features inside the locality window
is more important contributor than the position insensitive one. The optimal size
of the window appeared to be small. To find out whether some of the feature
types would prefer longer windows, we also tried different sizes for different
features. There was, however, no notable improvement in performance.

6.2 Final Validation

In order to test the statistical significance of the ranking performance difference
between the two methods, we conducted a two-tailed paired t-test. The rankers
were trained on the parameter estimation data and the 600 sentences reserved
for the final validation were considered as independent trials. The performance
of the RLS ranker with the LC kernel on the validation data is 0.46 and the
improvement is statistically significant (p < 0.05) when compared to 0.42 corre-
lation obtained using the RLS ranker as reported in [8].

7 Conclusions

This paper introduces the Locality-Convolution (LC) kernel and its application
to the dependency parse ranking with Regularized Least-Squares algorithm. The
proposed LC kernel uses feature sequences extracted in the order of the appear-
ance in the parse, constructs local windows around matching features in the
sequences in order to capture local correlations between the parses, and per-
forms position sensitive evaluation of the features within the window. The usage
of the LC kernel is not restricted for the parse ranking tasks, but can be applied
everywhere where dependency structures, position sensitive matching, or local
correlations play an important role.

We compared the ranking performance with the proposed kernel function to
the results reported in our previous work [8]. The results show statistically sig-
nificant improvement from 0.42 to 0.46 in correlation. A straightforward way to
obtain even higher correlations is to increase the number of training examples. In
[8], we show that by increasing the number of parses per sentence it is possible to
achieve a better performance, however, the improvement obtained by increasing
the number of sentences is larger.

In the future, we plan to investigate the task of dependency parse ranking by
learning the ranks directly instead of regressing the parse goodness function. We
also aim to consider the convolution properties of the LC kernel on a more basic
level of features by conducting different projections and to explore graph kernels
that are able to evaluate locality relations within dependency parse structures.
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