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Abstract. We present an adaptation of the Regularized Least-Squares
algorithm for the rank learning problem and an application of the method
to reranking of the parses produced by the Link Grammar (LG) depen-
dency parser. We study the use of several grammatically motivated fea-
tures extracted from parses and evaluate the ranker with individual fea-
tures and the combination of all features on a set of biomedical sentences
annotated for syntactic dependencies. Using a parse goodness function
based on the F-score, we demonstrate that our method produces a statis-
tically significant increase in rank correlation from 0.18 to 0.42 compared
to the built-in ranking heuristics of the LG parser. Further, we analyze
the performance of our ranker with respect to the number of sentences
and parses per sentence used for training and illustrate that the method
is applicable to sparse datasets, showing improved performance with as
few as 100 training sentences.

1 Introduction

Ranking, or ordinal regression, has many applications in Natural Language Pro-
cessing (NLP) and has recently received significant attention in the context of
parse ranking [1]. In this paper, we study parse reranking in the domain of
biomedical texts. The Link Grammar (LG) parser [2] used in our research is
a full dependency parser based on a broad-coverage hand-written grammar.
The LG parser generates all parses allowed by its grammar and applies a set
of built-in heuristics to rank the parses. However, the ranking performance of
the heuristics has been found to be poor when applied to biomedical text [3].
Therefore, a primary motivation for this work is to present a machine learning
approach for the parse reranking task in order to improve the applicability of
the parser to the domain. We propose a method based on the Regularized Least-
Squares (RLS) algorithm (see e.g. [4]), which is closely related to Support Vector
Machines (SVM) (see e.g. [5]). We combine the algorithm and rank correlation
measure with grammatically motivated features, which convey the most relevant
information about parses.

Several applications of SVM-related machine-learning methods to ranking
have been described in literature. Herbrich et al. [6] introduced SVM ordinal

A.F. Famili et al. (Eds.): IDA 2005, LNCS 3646, pp. 464–474, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Regularized Least-Squares for Parse Ranking 465

regression algorithm based on a loss function between rank pairs. Joachims [7]
proposed a related SVM ranking approach for optimizing the retrieval quality of
search engines. SVM-based algorithms have also been applied to parse reranking,
see, for example, [8]. For a recent evaluation of several parse reranking methods,
see [9].

One of the aspects of the method introduced in this paper is its applicability
to cases where only small amounts of data are available. The annotation of data
for supervised learning is often resource-intensive, and in many domains, large
annotated corpora are not available. This is especially true in the biomedical do-
main. In this study, we use the Biomedical Dependency Bank (BDB) dependency
corpus1 which contains 1100 annotated sentences.

The task of rank learning using the RLS-based regression method, termed
here Regularized Least-Squares ranking (RLS ranking), can be applied as an ma-
chine learning approach alternative to the built-in heuristics of the LG parser.
We address several aspects of parse ranking in the domain. We introduce an
F-score based parse goodness function, where parses generated by the LG parser
are evaluated by comparing the linkage structure to the annotated data from
BDB. For evaluating ranking performance, we apply the commonly used rank
correlation coefficient introduced by Kendall [10] and adopt his approach for ad-
dressing the issues of tied ranks. An application of the method to the parse rank
learning task is presented, and an extensive comparison of the performance of
the built-in LG parser heuristics to RLS ranking is undertaken. We demonstrate
that our method produces a statistically significant increase in rank correlation
from 0.18 to 0.42 compared to the built-in ranking heuristics of the LG parser.

The paper is organized as follows: in Section 2, we describe a set of gram-
matically motivated features for ranking dependency parses; in Section 3, we
introduce a parse goodness function; in Section 4, we discuss the Regularized
Least-Squares algorithm; in Section 5, we provide the performance measure ap-
plied to parse ranking and discuss the problem of tied ranks; in Section 6, we
evaluate the applicability of the ranker to the task and benchmark it with re-
spect to dataset size and the number of parses used in training; we conclude this
paper in Section 7.

2 Features for Dependency Parse Ranking

The features used by a learning machine are essential to its performance, and in
the problem considered in this paper, particular attention to the extracted fea-
tures is required due to the sparseness of the data. We propose features that are
grammatically relevant and applicable even when relatively few training exam-
ples are available. The output of the LG parser contains the following information
for each input sentence: the linkage consisting of pairwise dependencies between
pairs of words termed links, the link types (the grammatical roles assigned to the
links) and the part-of-speech (POS) tags of the words. As LG does not perform
any morphological analysis, the POS tagset used by LG is limited, consisting
1 http://www.it.utu.fi/∼BDB
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mostly of generic verb, noun and adjective categories. Different parses of a sin-
gle sentence have a different combination of these elements. Each of the features
we use are described below.

Grammatical bigram. This feature is defined as a pair of words connected by
a link. In the example linkage of Figure 1, the extracted grammatical bigrams
are absence—of, of—alpha-syntrophin, absence—leads, etc. These grammatical
bigrams can be considered a lower-order model related to the grammatical tri-
grams proposed as the basis of a probabilistic model of LG in [11]. Grammatical
bigram features allow the learning machine to identify words that are commonly
linked, such as leads—to and binds—to. Further, as erroneous parses are pro-
vided in training, the learning machine also has the opportunity to learn to avoid
links between words that should not be linked.

Word & POS tag. This feature contains the word with the POS tag assigned
to the word by LG. In the example, the extracted word & POS features are
absence.n, alpha-syntrophin.n, leads.v, etc. Note that if LG does not assign POS
to a word, no word & POS feature is extracted for that word. These features
allow the ranker to learn preferences for word classes; for example, that “binds”
occurs much more frequently as a verb than as a noun in the domain.

Link type. In addition to the linkage structure and POS tags, the parses contain
information about the link types used to connect word pairs. The link types
present in the example are Mp, Js, Ss, etc. The link types carry information
about the grammatical structures used in the sentence and allow the ranker to
learn to favor some structures over others.

Word & Link type. This feature combines each word in the sentence with the
type of each link connected to the word, for example, absence—Mp, absence—Ss,
of—Js, etc. The word & link type feature can be considered as an intermediate
between grammatical unigram and bigram features, and offers a possibility for
addressing potential sparseness issues of grammatical bigrams while still allowing
a distinction between different linkages, unlike unigrams. This feature can also
allow the ranker to learn partial selectional preferences of words, for example,
that “binds” prefers to link directly to a preposition.

Link length. This feature represents the number of words that a link in the
sentence spans. In Figure 1, the extracted features of this type are 1, 1, 3, etc.
This feature allows the ranker to learn the distinction between parses, which
have different link length. The total summed link length is also used as a part of
LG ordering heuristics, on the intuition that linkages with shorter link lengths
are preferred [2].

Absence.n of alpha-syntrophin.n leads.v to structurally aberrant.a neuromuscular.a synapses.n deficient.a in utrophin.n .

A
MVp A MVpMaJs

Jp

Mp
Ss

JsE

Fig. 1. Example of parsed sentence
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Link length & Link type. This feature combines the type of the link in the
sentence with the number of words it spans. In Figure 1, the extracted features
of this type are 1—Mp, 1—Js, 3—Ss, 1—MVp, etc. The feature is also related
to the total length property applied by the LG parser heuristics, which always
favor linkages with shorter total link length. However, the link length & link type
feature allows finer distinctions to be made by the ranker, for example, favoring
short links overall but not penalizing long links to prepositions as much as other
long links.

Link bigram. The link bigram features extracted for each word of the sentence
are all the possible combinations of two links connected to the word, ordered left-
most link first. In the example, link bigrams are Mp—Ss, Mp—Js, Ss—MVp, etc.

3 F-Score Based Goodness Function for Parses

The corpus BDB is a set of manually annotated sentences, that is, for each
sentence of BDB, we have a manually annotated correct parse. Let P be the set
of parses produced by the LG parser when applied to the sentences of BDB. We
define a parse goodness function as

f∗ : P �→ R+

which measures the similarity of the parse p ∈ P with respect to its correct parse
p∗. We propose an F-score based goodness function that assigns a goodness value
to each parse based on information about the correct linkage structure. This
function becomes the target output value that we try to predict with the RLS
algorithm.

Let L(p) denote the set of links with link types of a parse p. The functions cal-
culating numbers of true positives (TP), false positives (FP) and false negatives
(FN) links with link types are defined as follows:

TP (p) =| L(p) ∩ L(p∗) | (1)

FP (p) =| L(p) � L(p∗) | (2)

FN(p) =| L(p∗) � L(p) | (3)

The links are considered to be equal if and only if they have the same link
type and the indices of the words connected with the links are the same in the
sentence in question. We adopt one exception in (2) because of the characteristics
of the corpus annotation. Namely the corpus annotation does not have all links,
which the corresponding LG linkage would have: for example, punctuation is not
linked in the corpus. As a consequence, links in L(p) having one end connected
to a token without links in L(p∗), are not considered in (2). The parse goodness
function is defined as an F-score

f∗(p) =
2TP (p)

2TP (p) + FP (p) + FN(p)
. (4)
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High values of (4) indicate that a parse contains a small number of errors, and
therefore, the bigger f∗(p) is, the better is parse p.

Next we consider the Regularized Least-Squares algorithm by which the mea-
sure f∗ can be predicted.

4 Regularized Least-Squares Algorithm

Let {(x1, y1), . . . , (xm, ym)}, where xi ∈ P, yi ∈ R, be the set of training exam-
ples. We consider the Regularized Least-Squares (RLS) algorithm as a special
case of the following regularization problem known as Tikhonov regularization
(for a more comprehensive introduction, see e.g. [4]):

min
f

m∑

i=1

l(f(xi), yi) + λ‖f‖2
k, (5)

where l is the loss function used by the learning machine, f : P → R is a function,
λ ∈ R+ is a regularization parameter, and ‖·‖k is a norm in a Reproducing Kernel
Hilbert Space defined by a positive definite kernel function k. Here P can be any
set, but in our problem, P is a set of parses of the sentences of the BDB corpus.
The target output value yi is calculated by a parse goodness function, that is
yi = f∗(xi), and is the one which we predict with RLS algorithm. The second
term in (5) is called a regularizer. The loss function used with RLS for regression
problems is called least squares loss and is defined as

l(f(x), y) = (y − f(x))2.

By the Representer Theorem (see e.g. [12]), the minimizer of equation (5) has
the following form:

f(x) =
m∑

i=1

aik(x, xi),

where ai ∈ R and k is the kernel function associated with the Reproducing
Kernel Hilbert Space mentioned above.

Kernel functions are similarity measures of data points in the input space
P , and they correspond to the inner product in a feature space H to which the
input space data points are mapped. Formally, kernel functions are defined as

k(x, x′) = 〈Φ(x), Φ(x′)〉,

where Φ : P → H .

5 Performance Measure for Ranking

In this section, we present the performance measures used to evaluate the parse
ranking methods. We follow Kendall’s definition of rank correlation coefficient
[10] and measure the degree of correspondence between the true ranking and
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the ranking output by an evaluated ranking method. If two rankings are equal,
then correlation is +1, and on the other hand, if one ranking is the inverse of
the other, correlation is −1.

The problem of the parse ranking can be formalized as follows. Let s be a
sentence of BDB, and let Ps = {p1, . . . , pn} ⊆ P be the set of all parses of s
produced by the LG parser. We apply the parse goodness function f∗ to provide
the target output variables for the parses by defining the following preference
function

Rf∗(pi, pj) =

⎧
⎨

⎩

1 if f∗(pi) > f∗(pj)
−1 if f∗(pi) < f∗(pj)
0 otherwise

which determines the ranking of the parses pi, pj ∈ Ps. We also define a prefer-
ence function Rf (pi, pj) in a similar way for the regression function f learned by
the RLS algorithm. In order to measure how well the ranking Rf is correlated
with the target ranking Rf∗ , we adopt Kendall’s commonly used rank correlation
measure τ . Let us define the score Sij of a pair pi and pj to be the product

Sij = Rf (pi, pj)Rf∗(pi, pj).

If score is +1, then the rankings agree on the ordering of pi and pj , otherwise
score is -1. The total score is defined as

S =
∑

i<j≤n

Sij .

The number of all different pairwise comparisons of the parses of Ps that can
be made is

(
n
2

)
= 1

2 · n (n − 1). This corresponds to the maximum value of the
total score, when agreement between the rankings is perfect. The correlation
coefficient τa defined by Kendall is:

τa =
S

1
2 · n (n − 1)

.

While τa is well applicable in many cases, there is an important issue that is
not fully addressed by this coefficient—tied ranks, that is, f∗(pi) = f∗(pj) or
f(pi) = f(pj) for some i, j. To take into account possible occurrences of tied
ranks, Kendall proposes an alternative correlation coefficient

τb =
S

1
2

√∑
Rf∗(pi, pj)2 ·

∑
Rf (pi, pj)2

.

With tied ranks the usage of τb is more justified than τa. For example, if both
rankings are tied except the last member, then τb = 1 indicating complete agree-
ment between two rankings, while τa = 2

n . Then for large values of n this measure
is very close to 0, and therefore inappropriate. Due to many ties in the data, we
use the correlation coefficient τb to evaluate performance of our ranker.
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6 Experiments

In the experiments, BDB consisting of 1100 sentences was split into two datasets.
First 500 were used for parameter estimation and feature evaluation using 10-
fold cross-validation, and the rest were reserved for final validation. Each of the
sentences has a variable amount of associated parses generated by LG. To address
the computational complexity, we limited the number of considered parses per
sentence to 5 in the training and to 20 in testing dataset. We also considered the
effect of varying the number of parses per sentence used in training (Section 6.3).
When more parses than the limit were available, we sampled the desired number
of parses from these. When fewer were available, all parses were used.

We conducted several experiments to evaluate the performance of the method
with respect to different features and learning ability of the ranker. The RLS
algorithm has a regularization parameter λ which controls the tradeoff between
the minimization of training errors and the complexity of the regression func-
tion. The optimal value of this parameter was determined independently by grid
search in each of the experiments.

6.1 Evaluation of Features

In Section 2, we described features that were used to convey information about
parses to the ranker. To measure the influence of individual feature, we con-
ducted an experiment where features were introduced to the ranker one by one.
Performance is measured using τb coefficient with respect to the correct rank-
ing based on the parse goodness function f∗. As a baseline we considered the
correlation between LG ranking and the correct ranking, which is 0.16. We ob-
served that most of the features alone perform above or close to the baseline,
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Fig. 2. RLS ranking performance with different features separately and combined
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and performance of the RLS ranker with all the seven features combined on eval-
uation set is 0.42, supporting the relevance of proposed grammatical features.
The figure 2 shows the performance of RLS ranking with respect to the different
features separately and combined.

6.2 Final Validation

To test the statistical significance of the proposed method, we used the robust
5×2 cross-validation test [13]. The test avoids the problem of dependence be-
tween folds in N-fold cross-validation schemes and results in more realistic esti-
mate than, for example, t-test. The performance of RLS ranker with all the seven
features combined on validation set is 0.42 and the improvement is statistically
significant (p < 0.01) when compared to 0.18 obtained by the LG parser. We
also measured the performance of our ranker with respect to the parse ranked
first. The average F-score of the true best parse in the corpus is 73.2%. The
average F-score value obtained by the parses ranked first by the RLS ranker was
found to be 67.6%, and the corresponding value for the LG parser heuristics
was 64.2%, showing therefore better performance of our method also for this
measure. Note that average F-scores of the highest ranked parses were obtained
from the downsampled 20 parses per sentence.

6.3 Learning Ability of the Ranker with Respect to the Training
Data

To address the issue of applicability of the proposed method to very sparse
datasets, we measured performance of the RLS ranker with respect to two main
criteria: the number of sentences and the number of parses per sentence used for
training. In these experiments all grammatical features were used.

Number of Sentences. The training dataset of 500 sentences was divided into
several parts and for testing a separate set of 500 sentences was used. The vali-
dation procedure was applied for each of the parts, representing sets of sizes 50,
100,..., 500 sentences. The number of parses used per sentence for training was 5
and for testing 20. We observed that even with a very sparse dataset our method
gives a relatively good performance of 0.37 while the learning set size remains as
small as 100 sentences. The learning procedure reflected expected tendency of
the increased ranker performance with increased number of sentences, reaching
0.42 with 500 sentences.

Number of Parses. We measured performance of the RLS ranker based on the
number of parses per sentence used for training with dataset size fixed to 150
sentences. Number of parses per sentence in training was selected to be 5, 10,...,
50 for each validation run. Test dataset consisted of 500 sentences each con-
taining 20 parses. We observed that major improvement in ranker performance
occurs while using only 10 or 20 parses per sentence for training corresponding
to 0.41 and 0.43 performance respectively. When using 50 parses per sentence,
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performance was 0.45, indicating a small positive difference compared to results
obtained with less number of parses.

Parse-Sentence Tradeoff. In this experiment, we fixed the number of training
examples, representing number of sentences multiplied by number of available
parses per sentence, to be approximately one thousand. Datasets of 20, 30, 50,
100, 200, 300, 500 sentences with number of parses per sentence 50, 30, 20, 10, 5,
3, 2, respectively, were validated with 500 sentences each containing 20 parses.
The results of these experiments are presented in Table 1. We found that the
best performance of ranker was achieved using 100 sentences and 10 parses per
each sentence for training, corresponding to 0.41 correlation. The decrease in
performance was observed when either having large number of parses with small
amount of sentences or vice versa.

Table 1. Ranking performance with different number of sentences and parses

# Sentences # Parses Correlation Difference in correlation
20 50 0.3303 0.0841
30 30 0.3529 0.0615
50 20 0.3788 0.0357

100 10 0.4145 0.0000
200 5 0.3798 0.0347
300 3 0.3809 0.0335
500 2 0.3659 0.0485

7 Discussion and Conclusions

In this study, we proposed a method for parse ranking based on Regularized
Least-Squares algorithm coupled with rank correlation measure and grammati-
cally motivated features. We introduce an F-score based parse goodness function.
To convey the most important information about parse structure to the ranker,
we apply features such as grammatical bigrams, link types, a combination of link
length and link type, part-of-speech information, and others. When evaluating
the ranker with respect to each feature separately and all features combined, we
observed that most of them let the ranker to outperform Link Grammar parser
built-in heuristics. For example, grammatical bigram (pair of words connected
by a link) and link bigram (pair of links related by words) underline importance
of link dependency structure for ranking. Another feature yielding good perfor-
mance is link type & word, representing an alternative grammatical structure and
providing additional information in case of similar parses. We observed that link
length feature, which is related to LG heuristics, leads to poor, below the base-
line, performance, whereas other features appear to have more positive effect.

We performed several experiments to estimate learning abilities of the ranker,
and demonstrate that the method is applicable for sparse datasets. A tradeoff
spot between number of parses and sentences used for training demonstrates
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that maximum performance is obtained at 100 sentences and 10 parses per sen-
tence supporting our claim for applicability of the ranker to small datasets.
Experimental results suggest that for practical reasons the use of 10 to 20 parses
per sentence for training is sufficient. We compared RLS ranking to the built-in
heuristics of LG parser and a statistically significant improvement in perfor-
mance from 0.18 to 0.42 was observed.

In the future, we plan to address the issue of RLS algorithm adaptation for
ranking by applying and developing kernel functions, which would use domain
knowledge about parse structure. Several preliminary experiments with multiple
output regression seemed promising and are worth exploring in more detail. In
addition, we plan to incorporate RLS ranking into the LG parser as an alternative
ranking possibility to its built-in heuristics.
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