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Abstract— Conventionally, the correctness of functional and non-
functional properties of hardware components is ensured during design
process by simulation. Moreover, different description languages are
needed during development phases. Thus, by adopting the Action
Systems, we are able to use the same formalism from specification down
to implementation. Recently, we have been exploiting possibilities to
formally model power consumption. That is the purpose is to develop a
formal power estimation flow which can be used to monitor the power
consumption from abstract level down to the gate level implementation. In
this paper, we present a formal model for asynchronous Viterbi decoder,
which will be used as a case study for the power estimation flowin the
future.

I. I NTRODUCTION

Formal methods provides an environment to design, analyze,and
verify digital hardware with the benefits of rigorous mathematical
basis. In this study, the Action Systems formalism is applied [1]. It is
a framework for specification and correctness preserving development
of concurrent systems, and it is based on an extended versionof
Dijkstra’s language of guarded commands [3]. Development of the
action system is done in a stepwise manner within therefinement
calculus [2]. The specification of a hardware system is transformed
into an implementation using correctness preserving transformations.
In conventional Action Systems, only the logical correctness of the
system is verified, while non-functional properties, like time, power,
and area are not validated.

Convolutional encoding and Viterbi decoding are widely used in
modern communication systems, such as digital satellite TV, and
digital mobile radios [6]. To satisfy the demands caused by the
developments of the modern telecommunication, high-speed, low-
power, and low-cost Viterbi decoders are required. In this paper,
we present a formal model of an asynchronous Viterbi decoder. The
asynchronous approach is chosen for the implementation because of
its potential for low-power, and low-noise behavior [9].

Currently, we are exploiting the possibilities to formallymodel
power consumption [7] [8]. The purpose is to develop a formalpower
estimation flow from initial specification down to implementation.
To estimate the power consumption, there is a trade-off between
the accuracy and the abstraction level of detail which the system
is analyzed. The more detailed the description, the more accurate the
simulation will be. But on the other hand, the more time consuming
it will be. Moreover, the designer wants to make decisions asearly
as possible in the design flow to avoid design backtracking. Thus, the
purpose is to use the asynchronous Viterbi decoder as a case study for
the power estimation flow. That is, to estimate the power consumption
of the decoder at different development phases. For instance, starting
from the formal description presented here, and finally fromthe gate-
level description.

II. A CTION SYSTEMS

An action A is defined by (for example):

A ::= abort (abortion, non − termination)
| skip (empty statement)
| A1[] ... [] An (non − deterministic choice)
| A1; ... ;An (sequential composition)
| x := e ((multiple) assignement)
| g → A (guarded command)

where Ai, i = 0, ..., n, are actions;x is a variable or a list of
variables;x0 is a value(s) of the variable(s);e is an expression or a
list of expressions; g is a predicate.

Semantics of actions. Action is considered to beatomic, which
means that only the initial and final states are observed by the
system. Thus, when selected for execution, the action is completed
without any interference from other actions. Atomic actions may
be represented by simple assignments or by more complex action
compositions, such as the atomic sequence.Non−atomicity means
that an action outside the composition can execute between two
component actions of the construct, which is not possible inthe
atomic composition structures. The notation differs whether the
composition is atomic or not, for instance, the sequential composition
is noted by; (atomic), and ; (non − atomic).

The actions are defined using weakest precondition for predicate
transformers [3]. For instance, the correctness of an action A with
respect to predicatesP and Q (precondition and postcondition) is
denoted by:{P}A{Q} = P ⇒ wp(A,Q). The wp(A,Q) is
the weakest precondition for the actionA to establish the post-
condition Q. The guard gA of an actionA is defined bygA =
¬wp(A, false). An action is enabled when its guard evaluates to
true, otherwise disabled.

A. Action System

An action systemA has a form:

sys A (g) [par]
|[
type t
const c
var v
actions A
subsys SA

init ”initialization of the variables g and v”
exec
do ”composition of actions A” od
]|

Three different parts can be identified from the action system
description:interface, declarations, anditeration.

The interface part specifies global variablesg, that is, variables that
are visible outside the action system. In other words, global variables
are accessible by other action systems. If an action system does not
have any interface variables, it is aclosed action system otherwise it
is anopen action system. The declaration part consists of type(t),
variable(v), constant(c), and action(A) declarations. Furthermore,
type definitions and initializations are described in the declaration



part. Using the items introduced in the interface and declarative parts
the operation of the system is described in the iteration section; in
the do − od loop.

The operation of an action system is started by initialization in
which the variables are set to predefined values. Actions areselected
for execution based on the composition operators and the enabledness
of the actions. The operation is continued until there are noactions
to enable, which temporarily aborts the system. Thus, the operation
continues if some action enables it.

Quantified constructs Any action-level operator • ∈
[], ; (atomic), ;(non − atomic), and the system-level operator
|| can be quantified using the notation defined as follows:

[• 1 ≤ i ≤ n : A(i)]b=A(1) • ... • A(n)
[|| 1 ≤ i ≤ n : A(i)]b=A(1) || ... || A(n)

Composing Action SystemsConsider two hierarchical action
systemsA and B with distinct local variables, local procedures,
subsystem instances, and actions. The parallel composition of such
systems is denoted byA || B. It is defined to be another action system
whose global and local identifiers (procedures, variables,subsystem
instances, actions) consist of the identifiers of the component systems
and whoseexec-clause has the form:do A [] B od || SA || SB . HereA
andB denote the action compositions, andSA andSB the subsystem
compositions inA andB, respectively. The definition of the parallel
composition is used inversely in system derivation to decompose a
system description into a composition of smaller separate systems or
internal subsystems.

III. A SYNCHRONOUSV ITERBI DECODERDESIGN

A. Viterbi algorithm

Viterbi decoders [10][11] are used to decode convolutionally
encoded data. A message encoded using a convolutional encoder
follows a trellis diagram, which shows the different statesof the
encoder as well as the path taken to encode an arbitrary message.
Despite of the possible errors in the stream, the Viterbi algorithm tries
to reconstruct this correct path based on the received stream. This is
accomplished by reconstructing the trellis diagram and allocating a
weight to each branch and node of the reconstructed trellis per each
time slot. These weight defines the likely branches and nodesused
by the encoder. By tracing back through the reconstructed trellis,
the decoder can detect and correct errors in the receiver stream. In
other words the Viterbi algorithm finds the sequence of symbols in
the given trellis that is closest in distance to the receivedsequence of
noisy symbols, which is the global most likely sequence. By adopting
the Euclidean distance as a distance measure, the algorithm is the
optimal maximum likelihood detection method, when the sequence
of received symbols is corrupted by the additive white Gaussian noise
(AWGN) [4].

B. Asynchronous Viterbi architecture

The proposed decoder is a soft-decision 64-state1/2- rate Viterbi
decoder. The generator polynomials used are the industrialstandards
(1718, 1338) [6]. A simplified block diagram of the decoder is shown
in Figure 1.

The decoder consist of three units: Branch Metric Unit (BMU),
Path Metric Unit (PMU), and the Trace Back Unit (TBU). The BMU
generates the branch metrics, which measure the differencebetween
the received symbol, and the symbol that causes the transition in
trellis. Path Metric Unit (PMU) consists of two parts: The Add-
Compare-Select Unit (ACSU) and the State Metric Memory (SMM).
To find the survivor path for each state, the branch metric of agiven
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Fig. 1. A simplified block diagram of the Viterbi decoder

transition is added to the recent path metric value stored inthe state
metric memory. This new path metric is then compared with other
path metrics, which are entering to that state. The transition with
the minimum path metric is chosen to be the survivor metric. The
path metric of the survivor path of each state is updated and stored
back into the state metric memory. Trace Back Unit (TBU) stores
the survivor paths and performs the trace back operation. Finally, it
outputs the decoded sequence.

IV. FORMAL SPECIFICATION

The formal description of the Viterbi decoder is modeled as a
hierarchical Action System. Thus, the top level definition is fairly
simple. It consists of control variables, and three subsystems: Branch
Metric Unit (BMU), Path Metric Unit(PMU), and Trace Back
Unit (TBU). The decoder is enabled when there is data available
from the encoder by setting theenabledecoder variable totrue. Then
the BMU is enabled(V 1). On the contrary, when the there is no
data to process the decoder is disabled by setting theenabledecoder

to false, and the BMU is disabled(V 2).

sys ViterbiDecoder(enabledecoder , enablebmu : bool)
|[
const states := 64;

depth := 2;
L := 30;
memdepth = 2 ∗ (L + 1)
Dmax = 4;

type bit : bool;
array : bit[0..states − 1][0..Dmax];
bvect : bit[0..1];

subsys BMU, PMU, TBU ;
init enabledecoder, enablePMU := F ;
actions V 1 : enabledecoder → enablebmu := T ;

V 2 : ¬enabledecoder → enablebmu := F ;
exec
do V 1 [] V 2 od || BMU || PMU || TBU
]|

For simplicity, most of the constant variables are defined inthe top
level description. Moreover, we define a typebit, which is of type
boolean. The valuetrue indicates the logic ’1’, and the valuefalse
indicates the logic ’0’.

The branch Metric is the squared distance between the received
noisy symbolYn, and the ideal noiseless symbol of that transition
Ci,j . That is, the branch metric from statei to statej at stagen is
(Euclidean distance):Bi,j,n = (Yn − Ci,j)

2. Moreover, a multi-bit
quantization is assumed for the input bits, all though not described
here. The next state table, shown in Table I, of the trellis for the
(2,1,7) convolutional encoder is modeled as of typearray, and the
BMU receives the table as a parameter (metrics). The system model
for the BMU is defined by:



TABLE I
LOOK-UP TABLE OF THE OUTPUTS FOR THE PROPOSED DECODER

Current State Output (input ’0’) Output (input ’1’)
S0 00 11
S1 11 00
S2 01 10
S3 10 01
— — —
S62 11 00
S63 00 11

sys BMU (din : bvect, bm0, bm1 : array, enablepmu : bool)[metrics]
|[
var bmready : bool;
proc distcalc(metrics[i, j], din) :

(bm0[l, (l, 0..states − 1] :=
(din − metrics[0, i, (i, 0..states − 1)])2;
bm1[l, (l, 0..states − 1] :=
(din − metrics[1, j, (j, 0..states − 1)])2);

init enablepmu, bmready := F
actions B1 : enablebmu ∧ ¬bmready → distcalc;

bmready, enablepmu := T ;
B2 : pmuready → bmready := F ;
B3 : ¬enablebmu → enablepmu := F ;

exec
do B1 [] B2 [] B3 od
]|

The incoming symbolsdin from the encoder are defined as of type
bit vector bvect. When both theenablebmu is set totrue, and the
bmready is set tofalse, the calculation of the Euclidean distance is
carried out by the proceduredistcalc (B1). Moreover, the variables
bmready, and theenablepmu is set totrue. This indicates that the
BMU has processed the data, and the PMU is enabled. After the
PMU is ready to accept new data, it sets thepmuready signal to
true. Then thebmready is set tofalse, which indicates that the
BMU is ready to accept new symbol from the encoder(B2). The
action (B3) disables the PMU when there is no data to process.

Path metric unit is defined by:

sys PMU (enablepmu, pmuready, enabletbu)
|[
type smem : bit[0, ..., states − 1][0, ...,2Dmax + 1];
var SMM := smem;

enableacsu := bool;
proc update(SMM) : SMM [i, (i, 0..states − 1)] :=

pmout[i, (i, 0..states − 1)];
subsys ACSU [i];
init enableacsu, pmuready, enabletbu := F ;
actions P1 : enablepmu ∧ ¬pmuready →

enableacsu := T ;
P2 : ¬enablepmu → enableacsu := F ;

enabletbu := F ;
P3 : acsuready → update; pmuready := T ;
P4 : pmuready → acsuready, pmuready := F ;

enabletbu := T
exec
do P1 []P2 [] P3 [] P4 od||[ ||0 ≤ i ≤ states − 1 : ACSU [i]]
]|

The PMU consists of the state metric memorySMM , control
logic, and the 64 Add-Compare-Select Units (ACSU). The state
metric memory is modeled as of typesmem, which is an array.
It stores the local winner for each state, which is used in thepath
metric calculation for the next calculation cycle. The sizeof each
cell is defined by2Dmax + 1, where theDmax is the maximum

possible difference in the path metrics. For instance, by assuming
that the length of the each path metric is four (Dmax = 4), then
the size of the each cell in the given vector variable will be9 bits.
Thus, by adopting this approach the extra calculation needed for the
normalization operation is avoided [5].

The ACS units are connected as a butterfly network, illustrated in
Figure 2.
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Fig. 2. State relationship for the path metrics computation.

Since the ACS units have a similar structure, it is modeled as
a single subsystemACSU . The 64 ACS units are generated from
that model by using the quantified composition. The ACS unitsare
indexed by the state number as follows: the first ACS unit isACS(0),
the second one isACS(1) and so on. The PMU is enabled whenever
there is valid data from the BMU to process, and the PMU is ready
to accept new data(P1). Then, the PMU enables the ACS units. The
ACS unit is defined by:

sys ACSU(acsuready : bool, pmout : smem, D : bit)[i, SMM ]
|[
var pmnew1, pmnew0 : smem;

dv, select, acsuready : bool;
proc decbit(pmnew1, pmnew0) : (pmnew1 < pmnew0 → D := 1;

pmnew0 < pmnew1 → D := 0);
proc min(pmnew1, pmnew0) :

(pmnew1 < pmnew0 → pmout := pmnew1;
pmnew0 < pmnew1 → pmout := pmnew0)

init acsuready, select, dv := F ;
actions A : enableacsu → pmnew1, pmnew0 :=

(bm1[i, (i, 0..states − 1)]+
SMM [j, (j, (j, 0..states − 1]),
(bm0[i, (i, 0..states − 1)]+
SMM [j + 32, (j, (j, 0..states − 1]);
dv := T ;

C : dv ∧ ¬acsuready → D := decbit(pmnew1 , pmnew0);
select := T ;

S : dv ∧ select → pmout := min(pmnew1 , pmnew0);
acsready, select := T, F ;

U : ¬enableacsu → dv, acsuready, select := F ;
exec
do A [] C [] S [] U od
]|

The ACS unit consists of two adders, which calculates the sumof
the incoming branch metrics, and the previous path metrics from the
state metric memorySMM (A). The comparison operation finds
the most likely path that has the minimum metric. Thus, the decision
bit D is calculated by the action(C) using proceduredecbit, and
the smallest path metric is chosen by the selector(S), which is
then stored into the state metric memory. By assuming that the total
transition in the trellis isM , and the number of states isN , a
maximum of(M −N) comparison operations are required, and2N
sums are required to initialize the metric for each state.



Trace back unit stores the survivor paths for each state, and
performs the trace back operation. Moreover, it outputs thedecoded
bit. The data structure of the traceback memory is shown in Table II.

TABLE II
TRACEBACK UNIT DATA STRUCTURE PER STAGE

State Path Metrics Decision bit
0 PM0 D0
1 PM1 D1
— — —
62 PM62 D62
63 PM63 D63

At time t, the path metric, which is the local winner, and the
corresponding decision bit in each state is stored into the path metrics,
and decision bit category, respectively. Then, the same procedure
is repeated at timet + 1. Thus, the state numbers are used as
pointers, that is0 corresponds to stateS0, and so on. For simplicity,
we use integer representation for them, however in the lowerlevel
implementations, the length of the pointers will be(log2(64) = 6)
6 bits. The minimum value for the length of the survivor path is
L = 5(log2(N), where theN is the number of states [5]. In other
words, the number of stages to store in the memory before the trace
back operation can begin isL + 1. In this case we define that, the
number of stages that has to be stored before trace back is31, and
the overall lengthL for the trace back memory is62. Thus, we can
carry out the traceback from the memory location 30 down to 0,and
at the same time write new data to memory locations from 61 down
to 31. The trace back unit is defined by:

sys TBU (decbit : bit)
|[
type tracemem : [0..states − 3][0..2Dmax + 1];

decisionmem : [0..states − 3];
var trstart, inc, traceback : bool;

count : integer
proc gmin(trmem[k(k, 0..states − 1), trindex ]) :

PMmin := trmem[0, trindex];
proc trmem[k(k, 0..states − 1), trindex] ≤ PMmin →

PMmin := trmem[k, trindex ]; cstate := PMmin(k);
subsys TBUcontrol;
init trmem := tracemem; decmem := decisionmem;

trstart := F
count := 0, inc := F ;

actions T1 : enableTBU →
trmem[i, count, (i, 0..states − 1)] :=
PMout[i, (i, 0..states − 1)];
decmem[i, count, (i, 0..states − 1)] :=
D[i, (i, 0..states − 1)]; inc := T ;

T2 : traceback →
gmin(trmem[k, trindex, (k, 0..states − 1)]);
trstart := T ;

T3 : traceback ∧ trstart →
decbit := decmem[cstate, trindex];
bitout := decbit; trindex := trindex − 1; trstart := F

exec
do T1 [] T2 [] T3 od|| TBUcontrol

]|

The TBUcontrol is a subsystem that controls the memory opera-
tions.

sys TBUcontrol

|[
actions C1 : enabletbu ∧ inc → count := count + 1; inc := F ;

C2 : count = L + 1 → trindex , traceback := L + 1, T ;
C3 : count = 2 ∗ (L + 1) →

trindex, traceback := 2 ∗ (L + 1), T ; count := 0;
C4 : trindex := 0 ∨ traceindex := L → traceback := F ;

exec
do C1 [] C2 [] C3 []C4 od
]|

TheTBU is enabled by thePMU when there is data to be stored.
From each state, theTBU stores the smallest metric (local winner),
and the corresponding decision bit(T1). TheTBUcontrol is enabled
to count the number of stages stored in the memory(C1). When the
number of stages reaches the survivor depth, that is 31 stages, the
TBUcontrol enables the trace back operation(C2). The trace back
is carried out by calculating the global winner from stages30 down
to 0, or (61 down to31). That is the smallest metric from the local
winners per each stage. This is carried out in the proceduregmin.
The procedure returns the pointer to the global winner, thatis the state
numbercstate. Then the decision bit corresponding the global winner
state is read from the decision memorydecmem, and then outputted
as a decoded bit(T3). This is carried out as long as thetrindex

is either0 or L (C4). In parallel with the trace back operation the
incoming path metrics are written into the memory locationsfrom
31 to 61. Thus, the trace back is carried out alternately with the
memory write operation, and therefore theTBU is enabled as long
as thePMU is enabled.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we presented a formal model for asynchronous
Viterbi decoder. The decoder is 64-state1/2- rate Viterbi decoder,
and the generator polynomials used are the industrial standards
(1718, 1338). The asynchronous implementation is chosen due to its
potential for low-power, and low-noise behavior. The formal model
presented will be used as a case study for the formal power estimation
model, which will be included into the Action system formalism
in the near future. The purpose is to analyze power consumption
starting from the formal model presented here down to the gate-level
implementation of the decoder.
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