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Abstract— Conventionally, the correctness of functional and non-
functional properties of hardware components is ensured dting design
process by simulation. Moreover, different description laaguages are
needed during development phases. Thus, by adopting the Ach
Systems, we are able to use the same formalism from specificat down
to implementation. Recently, we have been exploiting podsiities to
formally model power consumption. That is the purpose is to évelop a
formal power estimation flow which can be used to monitor the pwer
consumption from abstract level down to the gate level implmentation. In
this paper, we present a formal model for asynchronous Vitebi decoder,
which will be used as a case study for the power estimation flown the
future.

|. INTRODUCTION

Formal methods provides an environment to design, anabze,
verify digital hardware with the benefits of rigorous matlatical
basis. In this study, the Action Systems formalism is app]ig. It is
a framework for specification and correctness preservingldpment

of concurrent systems, and it is based on an extended veofion

Dijkstra’s language of guarded commands [3]. Developmérthe
action system is done in a stepwise manner withinrthginement

calculus [2]. The specification of a hardware system is transformdd noted by;

into an implementation using correctness preserving toamstions.
In conventional Action Systems, only the logical corresgef the
system is verified, while non-functional properties, likme, power,
and area are not validated.

Convolutional encoding and Viterbi decoding are widely duge
modern communication systems, such as digital satellite and

digital mobile radios [6]. To satisfy the demands caused ly t

developments of the modern telecommunication, high-spted
power, and low-cost Viterbi decoders are required. In thapep,
we present a formal model of an asynchronous Viterbi decader
asynchronous approach is chosen for the implementatioaulecof
its potential for low-power, and low-noise behavior [9].

Currently, we are exploiting the possibilities to formaltyodel
power consumption [7] [8]. The purpose is to develop a forpmater
estimation flow from initial specification down to implemation.
To estimate the power consumption, there is a trade-off éetw
the accuracy and the abstraction level of detail which thetesy
is analyzed. The more detailed the description, the morerate the
simulation will be. But on the other hand, the more time conisig
it will be. Moreover, the designer wants to make decisiongaty
as possible in the design flow to avoid design backtrackimgisTthe
purpose is to use the asynchronous Viterbi decoder as atcaefsr
the power estimation flow. That is, to estimate the power @oion
of the decoder at different development phases. For instatarting
from the formal description presented here, and finally ftbegate-
level description.

Il. ACTION SYSTEMS

An action A is defined by (for example):

A ::= abort (abortion, non — termination)
| skip (empty statement)
| A1] ... | An  (non — deterministic choice)
| A1; o5 An (sequential composition)
|z:=e ((multiple) assignement)
lg — A (guarded command)

where A4;, i = 0,...,n, are actions;z is a variable or a list of
variables;zo is a value(s) of the variable(sy;is an expression or a
list of expressions; g is a predicate.

Semantics of actions Action is considered to betomic, which
means that only the initial and final states are observed ly th
system. Thus, when selected for execution, the action isptaied
without any interference from other actions. Atomic acsiomay
be represented by simple assignments or by more compleanacti
compositions, such as the atomic sequeféen — atomicity means
that an action outside the composition can execute between t
component actions of the construct, which is not possiblehim
atomic composition structures. The notation differs whether the
composition is atomic or not, for instance, the sequentatgosition
(atomic), and; (non — atomic).

The actions are defined using weakest precondition for gagésli
transformers [3]. For instance, the correctness of an mctiowith
respect to predicate® and Q (precondition and postcondition) is
denoted by:{P}A{Q} = P = wp(A,Q). The wp(4,Q) is
the weakest precondition for the actiof to establish the post-
condition Q. The guard gA of an actionA is defined bygA =
—wp(A, false). An action is enabled when its guard evaluates to
true, otherwise disabled.

A. Action System
An action systemA has a form:

T[ys A (9) [par]

type ¢

const c¢

var v

actions A

subsys Sa

init ”initialization of the variables g and v”
exec

do ”composition of actions A” od

Il

Three different parts can be identified from the action syste
description:inter face, declarations, anditeration.

The interface part specifies global variablgshat is, variables that
are visible outside the action system. In other words, dlehdables
are accessible by other action systems. If an action systes dot
have any interface variables, it iscbvsed action system otherwise it
is anopen action system. The declaration part consists of type
variable (v), constant(c), and action(A) declarations. Furthermore,
type definitions and initializations are described in thelaation



part. Using the items introduced in the interface and datilar parts
the operation of the system is described in the iteratiotig&cin
thedo — od loop.

The operation of an action system is started by initial@atin
which the variables are set to predefined values. Actionselected
for execution based on the composition operators and tHaedzess
of the actions. The operation is continued until there arectons
to enable, which temporarily aborts the system. Thus, theratipn
continues if some action enables it.

Quantified constructs Any action-level operatore €
I,; (atomic), ;(non — atomic), and the system-level operator
| can be quantified using the notation defined as follows:

ol < i< n: AW)]=A(1) e ... 0 A(n)
It <i<n: ADEAQ) [ - | Aln)

Path Metric Unit

Add-Compare—Select

Branch Metric Unit
Trace Back Unit

[l

State Metric Memory

Fig. 1. A simplified block diagram of the Viterbi decoder

transition is added to the recent path metric value storatierstate
metric memory. This new path metric is then compared witteioth
path metrics, which are entering to that state. The tramsitwith
the minimum path metric is chosen to be the survivor metriee T
Composing Action SystemsConsider two hierarchical action path metric of the survivor path of each state is updated &oebcs
systems.A and B with distinct local variables, local proceduresphack into the state metric memory. Trace Back Unit (TBU) esor

subsystem instances, and actions. The parallel composificuch the survivor paths and performs the trace back operatiorallfi it
systems is denoted by | B. Itis defined to be another action systempytputs the decoded sequence.

whose global and local identifiers (procedures, varialdabsystem
instances, actions) consist of the identifiers of the corapbeystems
and whosexecclause has the formto A| Bod | Sa | Sg. HereA
and B denote the action compositions, afid and.Ss the subsystem
compositions ind and B, respectively. The definition of the parallel
composition is used inversely in system derivation to dquase a
system description into a composition of smaller sepangdtems or
internal subsystems.

IV. FORMAL SPECIFICATION

The formal description of the Viterbi decoder is modeled as a
hierarchical Action System. Thus, the top level definitienfairly
simple. It consists of control variables, and three sulesyst Branch
Metric Unit (BMU), Path Metric Unit(PMU), and Trace Back
Unit (T'BU). The decoder is enabled when there is data available
from the encoder by setting th@ablejecoder Variable totrue. Then
the BMU is enabled(V'1). On the contrary, when the there is no

A. Viterbi algorithm d he decoder is disabled b ing:rtladl
o . ata to process the decoder is disabled by setting: €decoder
Viterbi decoders [10][11] are used to decode convolutlltynalt8 false, and the BMU is disabledV2).

encoded data. A message encoded using a convolutional e&mco
follows a trellis diagram, which shows the different gtatésthe sys ViterbiDecoder(enable oeoder; enablepms : bool)
encoder as well as the path taken to encode an arbitrary geessa Il

I11. A SYNCHRONOUSVITERBI DECODERDESIGN

Despite of the possible errors in the stream, the Vitertortlgm tries
to reconstruct this correct path based on the receivednstrehis is
accomplished by reconstructing the trellis diagram andcaling a
weight to each branch and node of the reconstructed tredliepch
time slot. These weight defines the likely branches and noded
by the encoder. By tracing back through the reconstructeftistr
the decoder can detect and correct errors in the receivearstrin

const states := 64;
depth := 2;
L := 30;
memdepth = 2% (L + 1)
Dmpaz = 4;
type bit : bool;
array : bit[0..states — 1][0.. Dmaz);
bvect : bit[0..1];

subsys BMU, PMU,TBU;

init  enablegecoder, enablep py := F

actions V'1: enablegecoder — enablepmq, =T
V2 : —enablegecoder — enableyy, := F;

other words the Viterbi algorithm finds the sequence of symbo
the given trellis that is closest in distance to the receseglience of
noisy symbols, which is the global most likely sequence. 8gpding
the FEuclidean distance as a distance measure, the algorithm is the exec
optimal maximum likelihood detection method, when the sege Oﬁ’ V1| V2 od| BMU | PMU | TBU
of received symbols is corrupted by the additive white Giamssoise
(AWGN) [4].
For simplicity, most of the constant variables are definethétop
B. Asynchronous Viterbi architecture level description. Moreover, we define a typi, which is of type
The proposed decoder is a soft-decision 64-stdte rate Viterbi boolean. The valuetrue indicates the logic '1’, and the valugulse
decoder. The generator polynomials used are the industsiablards indicates the logic '0'.
(1718, 1335) [6]. A simplified block diagram of the decoder is shown The branch Metric is the squared distance between the received
in Figure 1. noisy symbolY,,, and the ideal noiseless symbol of that transition
The decoder consist of three units: Branch Metric Unit (BMU)C; ;. That is, the branch metric from statgo state; at stagen is
Path Metric Unit (PMU), and the Trace Back Unit (TBU). The BMU(Euclidean distance)B; ;. = (Y. — C: ;). Moreover, a multi-bit
generates the branch metrics, which measure the diffefegiveeen quantization is assumed for the input bits, all though natcdbed
the received symbol, and the symbol that causes the tramsiti here. The next state table, shown in Table I, of the trellistfe
trellis. Path Metric Unit (PMU) consists of two parts: The ddd (2,1,7) convolutional encoder is modeled as of typeay, and the
Compare-Select Unit (ACSU) and the State Metric Memory (SMMBMU receives the table as a parametere(rics). The system model
To find the survivor path for each state, the branch metric given  for the BMU is defined by:



TABLE |
L OOK-UP TABLE OF THE OUTPUTS FOR THE PROPOSED DECODER

Current State| Output (input '0’) | Output (input '1")
SO 00 11
S1 11 00
S2 01 10
S3 10 01
S62 11 00
S63 00 11

sys BMU (din : bvect, bm0, bml : array, enablepma : bool)[metrics)
I
var  bmyeqdy : bool;
proc  disteqic(metricsli, j,din) :
(dbmO[l, (1,0..states — 1] :=
(din — metrics|0, 1, (i,0..states — 1)])2;
bmlll, (1,0..states — 1] :=
(din — metrics[1, j, (4,0..states — 1)])?);

init  enablepmu, bMyeady =
actions B1 : enablepmy A =bMycaay — disteqlcs
bMycqdy, enablepmqy := T}
B2 P PMUready — bm'ready = Fj
B3 : menablepy,,, — enablepmy := F
exec

do Bl | B2| B3 od

Il

possible difference in the path metrics. For instance, uraig
that the length of the each path metric is fodp.{.. = 4), then
the size of the each cell in the given vector variable willdbits.
Thus, by adopting this approach the extra calculation re:éolethe
normalization operation is avoided [5].

The ACS units are connected as a butterfly network, illusttan
Figure 2.
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Fig. 2. State relationship for the path metrics computation

Since the ACS units have a similar structure, it is modeled as
a single subsystemlC'SU. The 64 ACS units are generated from
that model by using the quantified composition. The ACS uaits
indexed by the state number as follows: the first ACS un#t@S(0),
the second one i4C'S(1) and so on. The PMU is enabled whenever

The incoming symboldin from the encoder are defined as of typdhere is valid data from the BMU to process, and the PMU isyead

bit vector bvect. When both theenablepn. is set totrue, and the

to accept new datgP1). Then, the PMU enables the ACS units. The

binreaay IS Set tofalse, the calculation of the Euclidean distance iACS unit is defined by:

carried out by the procedur@st ... (B1). Moreover, the variables
bMready, and theenablepm. iS set totrue. This indicates that the

BMU has processed the data, and the PMU is enabled. After thé[ar

PMU is ready to accept new data, it sets f®u,cqqy Signal to

true. Then thebm,cqqy is set to false, which indicates that the

BMU is ready to accept new symbol from the encod&?2). The

action (B3) disables the PMU when there is no data to process.
Path metric unit is defined by:

sys PMU (enablepmu, prmiireqdy, enablesy,)
Il
type
var

smem : bit[0, ..., states — 1][0, ..., 2Dmaz + 1];
SMM := smem;

enablegcsy 1= bool;
proc update(SMM) : SMMTi, (i,0..states — 1)] :=

PMout s, (i, 0..states — 1)];

subsys ACSUJi;
init  enablegcsu, PMUreqdy, enablesy, = F;
actions P1 : enablepmu A "pMityeqdy —
enablegesy =T}
—enablepmy — enableqcsu = F;
enableyy, = F;
aCSUreqdy — update; pmilyeady = T}
PMUready — ACSUreadys PMWUready = £
enablegp, ;=T

P2:

P3:
P4 :

exec
do P1[P2[ P3| P4od|[]0<:< states —1: ACSUJi]]

Il

The PMU consists of the state metric mema$w/ M, control

sys ACSU (acsuyeqdy : bool, pmout : smem, D : bit)[i, SM M)

PMnewl, PMnew0 * STNEM;
dv, select, acsureqdy : bool;
proc decbit(pmnewlypmnewo) : (pmnewl < pMpewo — D :=1;
PMpewd < PMnpewl — D := 0)7
proc min(pmnewlvpmnewo) :
(pmnewl < PMpewd — PMout ‘= PMnewl;
PMnewd < PMnpewl — PMout ‘= pmnewO)
init  acsureqdy, select, dv := F;
actions A : enableqcsu — PMnewl, PMnewd =
(bm1ls, (3, 0..states — 1)]+
SMM{j, (4, (4,0..states — 1]),
(bmO[3, (3, 0..states — 1)]+
SMMI[j+ 32, (4, (4,0..states — 1]);
dv :=T;
C: dv A —acstyeqay — D := decyit (pPMnewl , PMnewo);
select .= T}
S dv A select — pmout := Min(PMnewl s PMnewo );
ACSreqdy, select := T, F;
U : —enablegcsu — dv, acsurcqdy, select := F;
exec
doA[C[|S|Uod
1l

The ACS unit consists of two adders, which calculates the stim
the incoming branch metrics, and the previous path metras the
state metric memorySM M (A). The comparison operation finds
the most likely path that has the minimum metric. Thus, theigien
bit D is calculated by the actioC') using procedurelecy;:, and

logic, and the 64 Add-Compare-Select Units (ACSU). Theestathe smallest path metric is chosen by the sele¢t®), which is

metric memory is modeled as of typenem, which is an array.
It stores the local winner for each state, which is used inphtn
metric calculation for the next calculation cycle. The safeeach
cell is defined by2D,,q. + 1, where theD,,q. is the maximum

then stored into the state metric memory. By assuming ttetdtal
transition in the trellis isM, and the number of states &, a
maximum of (M — N) comparison operations are required, &ad
sums are required to initialize the metric for each state.



Trace back unit stores the survivor paths for each state, and

performs the trace back operation. Moreover, it outputsdieded
bit. The data structure of the traceback memory is shown bieTh.
TABLE Il
TRACEBACK UNIT DATA STRUCTURE PER STAGE

State | Path Metrics | Decision bit
0 PMO DO
1 PM1 D1
62 PM62 D62
63 PM63 D63

TheT BU is enabled by thé® MU when there is data to be stored.
From each state, tHEBU stores the smallest metric (local winner),
and the corresponding decision (t1). The T BU ontro1 IS €nabled
to count the number of stages stored in the men{6ty). When the
number of stages reaches the survivor depth, that is 31sstége
T BU.ontroi €nables the trace back operatigfi2). The trace back
is carried out by calculating the global winner from stagésdown
to 0, or (61 down to31). That is the smallest metric from the local
winners per each stage. This is carried out in the proceguten.
The procedure returns the pointer to the global winner,ithtite state

At time ¢, the path metric, which is the local winner, and thgyumberestate. Then the decision bit corresponding the global winner

corresponding decision bit in each state is stored into &tle metrics,
and decision bit category, respectively. Then, the sameegioe

state is read from the decision mematyemem, and then outputted
as a decoded bi(7'3). This is carried out as long as the;,decx

is repeated at time + 1. Thus, the state numbers are used &g either0 or L (C4). In parallel with the trace back operation the
pointers, that i%) corresponds to stat€0, and so on. For simplicity, incoming path metrics are written into the memory locatiérsn

we use integer representation for them, however in the |dexel
implementations, the length of the pointers will Beg2(64) = 6)

31 to 61. Thus, the trace back is carried out alternately with the
memory write operation, and therefore the3U is enabled as long

6 bits. The minimum value for the length of the survivor pash igs thePMU is enabled.

L = 5(log2(N), where theN is the number of states [5]. In other
words, the number of stages to store in the memory beforerlce t
back operation can begin & + 1. In this case we define that, the

number of stages that has to be stored before trace bagk isnd

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we presented a formal model for asynchronous
Viterbi decoder. The decoder is 64-statg2- rate Viterbi decoder,

the overall lengthL, for the trace back memory 2. Thus, we can and the generator polynomials used are the industrial atedad

carry out the traceback from the memory location 30 down tan@,

(171s,133g). The asynchronous implementation is chosen due to its

at the same time write new data to memory locations from 61ndovpotential for low-power, and low-noise behavior. The folmedel

to 31. The trace back unit is defined by:
sys TBU (decbit : bit)
Il
type tracemem : [0..states — 3][0..2Dmaz + 1];
decisionmem : [0..states — 3];
trstart, inc, traceback : bool;
count : integer
proc gmin(trmem[k(k,0..states — 1), tripgez]) :
Mpin := trmem|0, trindez|;
proc trmemlk(k,0..states — 1), trindex] < PMpin —
PMpin := trmemlk, trindes); cstate := P Mpin (k);
subsys TBUcontrol;
init  trmem := tracemem; decmem := decisionmem;
trstart i = F
count := 0,inc := F;
actions T'1 : enablerpy —
trmeml[i, count, (i, 0..states — 1)] :=
PMoutlt, (3, 0..states — 1)];
decmem|[i, count, (i, 0..states — 1)] :=
DJi, (i,0..states — 1)];inc := T
T2 : traceback —
gmin(trmem[kv ITindex> (k7 0..states — 1)})7
trstart := T}
T3 : traceback A trstart —
decyi := decmeml|cstate, tringes];
bitout 1= decbit; trindes ‘= trindex — 1; trstart := F

var

exec
doT1 |] T2 |] T3 Od" TBUcont'rol

Il

The T BU, ontro1 iS @ subsystem that controls the memory opera-

tions.

|s[ys TBUcontrol

actions C'1 : enablesp,, N inc — count := count + 1;inc := F};
C2:count =L+ 1 — tringes,traceback := L + 1, T}
C3:count=2%(L+1) —

tTindes traceback := 2 x (L + 1), T'; count := 0;

C4 : trindes := 0V trace;nges = L — traceback := F;

exec

doC1]C2] C3|C4 od

Il

presented will be used as a case study for the formal powienag&in
model, which will be included into the Action system fornsafi
in the near future. The purpose is to analyze power consompti
starting from the formal model presented here down to the-igael
implementation of the decoder.
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