
Towards a Formal Power Estimation Framework for
Hardware Systems

Johanna Tuominen∗†, Tero Säntti †, and Juha Plosila†
∗Turku Centre of Computer Science, Finland

†Dept. of information Technology, University of Turku, Finland
{joeltu|teansa|juplos}@utu.fi

Abstract— Conventionally, the correctness of functional and
non-functional properties of hardware components is ensured
during design process by simulation. Moreover, different de-
scription languages are needed during development phases.
Thus, by adopting the Action Systems, we are able to use the
same formalism from specification down to implementation. In
this study, exploit the possibilities to formally model power
consumption in Action Systems context. The purpose is to develop
formal power estimation flow, which can be used to monitor the
power consumption from abstract level down to the gate level
implementation.

I. INTRODUCTION

Formal methods provides an environment to design, ana-
lyze, and verify digital hardware with the benefits of rigorous
mathematical basis. In this study, the Action Systems formal-
ism is applied [2]. It is a framework for specification and
correctness preserving development of concurrent systems, and
it is based on an extended version of Dijkstra’s language of
guarded commands [3]. Development of the action system is
done in a stepwise manner within the refinement calculus [1].
The specification of a hardware system is transformed into an
implementation using correctness preserving transformations.
In conventional Action Systems, only the logical correctness
of the system is verified, while non-functional properties, like
time, power, and area are not validated. The Action Systems
formalism has been proved to be suitable for designing both
synchronous [6], and asynchronous [5] systems.

Advances in VLSI technology over recent years have con-
siderably increased both physical and functional size of single-
chip systems. Thus, it is obvious that with the increased
circuit integration, power dissipation aspects assumes greater
importance [4]. Moreover, with the advent of wireless and
mobile high performance computing platforms, and the limited
operational life time of batteries, low power designs are re-
quired. To estimate the power consumption, there is a trade-off
between the accuracy and the abstraction level of detail which
the system is analyzed. The more detailed the description, the
more accurate the simulation will be. But on the other hand,
the more time consuming it will be. Moreover, the designer
wants to make decisions as early as possible in the design flow
to avoid design backtracking.

In this study, we exploit the possibilities to formally model
physical quantity, power. We analyze the power consumption
for the basic Action Systems compositions and system struc-
tures as an example. This paper lays foundation for the formal

power estimation framework. In other words, the purpose
is to develop a formal power estimation flow from initial
specification down to implementation [7]. This would give us
a possibility to formally estimate the power consumption of
a hardware system during the different phases of the design
process.

II. ACTION SYSTEMS

An action A is defined by (for example):

A ::= abort (abortion, non− termination)
| skip (empty statement)
| A1[] ... [] An (non− deterministic choice)
| A1; ... ; An (sequential composition)
| x := e ((multiple) assignement)
| g → A (guarded command)

where Ai, i = 0, ..., n, are actions; x is a variable or a list of
variables; x0 is a value(s) of the variable(s); e is an expression
or a list of expressions; g is a predicate.

The actions are defined using weakest precondition for
predicate transformers [3]. For instance, the correctness of an
action A with respect to predicates P and Q (precondition and
postcondition) is denoted by:

{P}A{Q} = P ⇒ wp(A, Q)

Here wp(A,Q) is the weakest precondition for the action
A to establish the postcondition Q.

Action is considered to be atomic, which means that only
the initial and final states are observed by the system. Further-
more, when action is selected for execution, it is completed
without any interference from other actions.

The guard gA of an action A is defined by gA =
¬wp(A, false). An action is enabled when its guard evaluates
to true, otherwise disabled.

A. Action System

An action system has a form:

sys Name (g) [par]
|[
type t
const c
var v
actions A
init ”initialization of the variables g and v”
exec
do ”composition of actions A” od
]|

Three different parts can be identified from the action
system description: interface, declarations, and iteration.

The interface part specifies global variables g, that is,
variables that are visible outside the action system. In other
words, global variables are accessible by other action systems.
If an action system does not have any interface variables, it is
a closed action system otherwise it is an open action system.
The declaration part consists of type (t), variable (v), constant
(c), and action (A) declarations. Furthermore, type definitions
and initializations are described in the declaration part. Using
the items introduced in the interface and declarative parts the
operation of the system is described in the iteration section;
in the do − od loop.

In this paper, we will use a non-atomic composition
structures in the system models. Non-atomicity means that
an action outside the composition can execute between two
component actions of the construct, which is not possible in
the atomic composition structures. For instance, we will use
the bold semicolon ’;’ as the operator symbol for the non-
atomic sequential composition.

The operation of an action system is started by initialization
in which the variables are set to predefined values. Actions are
selected for execution based on the composition operators and
the enabledness of the actions. The operation is continued until
there are no actions to enable, which temporarily aborts the
system. Thus, the operation continues if some action enables
it. In this study, we will discuss of non − independent and
independent actions. Thus, independent actions may operate
in parallel (no write-read or write-write conflicts between
the actions executed in parallel), while the non-independent
actions cannot.

III. SEMANTICS OF FORMAL POWER MODELING

A. Timing and Activity

Consider an arbitrary action A, which consumes power
during one execution by the amount of PA = eA

tA
. The eA

is an energy consumption, and the tA is the execution time of
the action A. Next, we assume that the action A is executed
several times during discrete time period T , shown in Figure
1.

Fig. 1. Execution sequence for the action A

At first, we have to define the activity, noted by α, of the
action A during the time period T .

α(A, T) =
n · tA

T
(1)

where the n is a number of executions during the time
period T . The time period T is then defined by: n·tA+

∑
tidle,

which is the sum of the idle periods tidle and the execution
times tA. By applying the definition of the time period T to
the equation 1, we can estimate the activity α(A, T) to be:

α(A, T) =
n · tA

n · tA +
P

tidle
=

tA

tA +
P

tidle
n

(2)

Assuming that there is no fixed time period T under which
the activity is estimated. Thus, the time is assumed to be
continuous, and the equation 2 can be re-written into:

α(A) =
tA

tA + lim
P

tidle
n

(3)

where the evaluation process depends on the limit value ofP
tidle

n . For example, if we assume that limn→∞ the value of
α(A) is approaching to the long term average. In general, we
can define that the power estimate for the action A is

PA =
eA

tA
· α(A) (4)

B. Power Analysis for Action Compositions

Consider two arbitrary actions A and B. We denote the
energy consumption and execution times for the actions A
and B by (eA,tA) for action A and (eB ,tB) for action B. The
activity α is defined for both actions according to the equation
3.

The actions are composed as follows: do A [] B od. The
result of the power estimation depends on how we physically
interpret this composition. Moreover, how we are able to
model these physical aspects into the formal power consump-
tion model in the future. The operation of the actions A, and
B can be either independent (no write-read or write-write
conflict between the actions A and B) or non-independent.
Notice that, the independent actions introduces a possibility for
parallel behavior, which has influence on the power estimate.
Therefore, we have four different execution sequence for the
non-deterministic choice, shown in Figure 2.

Fig. 2. Physical interpretations of the execution sequences for the composi-
tion do A [] B od

We can divide the power estimation for the independent
actions into two parts. At first, consider the situations shown
in Figure 2 (a)-(c). Thus, in the figure 2 (a) the two actions are
enabled simultaneously, and their execution times are assumed
to be equal (tA = tB). On the contrary, in the figure 2 (b), we
have simultaneous execution, but the execution times are not
equal (tA 6= tB). Finally, in the figure 2 (c), (for instance), the
action B is executed in parallel with action A at some time

during the execution time tA. The average power consumption
estimation for these three cases is defined by:

Pavg =
eA · α(A) + eB · α(B)

max(tA, tB)
(5)

where α(A) and the α(B) are denoted as an activity for
actions A and B, respectively. The max(tA, tB) denotes the
execution time of the slowest action. The transition activity is
defined for both actions separately, because for instance, there
might be a cycle where the action B is not executed at all.

Moreover, we can estimate the instantaneous power con-
sumption for the execution sequences, shown in Figure 2 (a)-
(c).

Pinst =
eA

tA
· α(A) +

eB

tB
· α(B) (6)

Secondly, we consider the situation, shown in Figure 2 (d).
The two actions A and B are executed sequentially. Therefore,
the power consumption is estimated by:

Pavg =
eA · α(A) + eB · α(B)

tA + tB
(7)

In conclusion, if the actions A and B are considered indepen-
dent, the difference between formal notation and the physical
interpretation may vary significantly. Thus, to determine the
order of the events in the hardware system will have significant
role in the formal power model. Moreover, another critical
issue is to detect the idle periods between enabled actions.
Therefore, we can conclude that timing issues plays a signif-
icant role in the formal power estimation model. However, if
the actions A and B are considered to be non-independent, the
actions are executed sequentially, and the power consumption
is estimated according to the equation 7.

IV. SYSTEM LEVEL POWER ESTIMATION

A. Overview
The initial specification of the target system module M

can be decomposed into an architecture of dedicated sub-
system modules. Typically lots of new variables, procedures,
invariants and protocols are introduced during the refinement
process. This combined with several atomicity refinement
steps introduces new actions into the system. Thus, result of
the decomposition is a correct architecture model of the initial
specification. The first steps of the decomposition process is
illustrated in Figure 3.

Fig. 3. Decomposition steps for the target system M

The initial specification of the module M is extracted into
two submodules M1 and M2. Therefore, we can estimate the
power consumption for each of the submodules separately, and
then together. Notice that, the the division into submodules
simplifies the estimation process.

B. Example: System level analysis

Consider the following Action System M , which includes
three arbitrary actions: A, B, and C.

sys M ()
actions A, B, C
exec
do

(A ; B) [] C
od

From the action system composition do (A ; B) [] C od, we
can define three possible execution sequences: ABC, CAB,
and ACB. However, the estimation procedure depends on how
the system description is physically interpreted. The physical
interpretations of the given execution sequence is shown in
Figure 4.

At first, assume that the operation of the actions is non-
independent. In other words, the execution times do not
overlap between the actions A, B, and C. Thus, the operation
of the actions is sequential, and the power estimate is defined
by:

PM =
eA + eB + eC

tA + tB + tC
(8)

Secondly, we assume that the action C is independent with
respect to actions A and B. Thus, the execution of the action
A is followed by the execution of the action B, and the action
C operates parallel with the actions A and B. Therefore, to
estimate the power consumption of the system M , the problem
is to determine the time tx, which describes the amount of
delay before the action C is executed, shown in Figure 4.
The first execution sequence, shown in Figure 4, presents the
worst case situation in terms of power consumption. Thus, the
action C is executed simultaneously along with the actions A
and B. The last one presents the best case where the actions
are executed sequentially.

Fig. 4. Physical interpretation of the executions sequences for the system M

The time tx is a variable delay between the execution of
the action A and the action C, as shown in the Figure 4.
Therefore, we estimate the power consumption of the system
M by integrating over the difference of the starting times. The
equation for the power estimate is shown in 9.

1

ttot

Z ta+tb

−tc

P (tx)dtx (9)

To evaluate the integral, the analysis is divided into three
cases:

tA + tB < tC

tA + tB = tC

tA + tB > tC

where the second one represents the situation when the
actions A, and B are executed simultaneously with the action
C. The first and the last case presents the situation where the
execution of action C is interleaved by the amount of tx. For
simplicity, we define that tA + tB = tZ , because the first
and the last case results to a similar result, and therefore it is
necessary to discuss only one of them. Therefore, the system
composition is re-written into: do Z [] C od. Moreover, we
have only two cases under evaluation: tZ = tC and tZ ≥ tC .
The graphical representations of these two cases are shown in
Figure 5 (a) and (b), respectively.

Fig. 5. Graphs for power estimation

The equation for the power estimate for the system M ,
shown in Equation 9, is solved with the aid of geometry. At
first, consider the situation shown in Figure 5 (a), where the
power estimate integral is solved by using the properties of
the right triangle. Thus, we define the pivotal points for the
triangle, shown in Figure 5 (a). The points are defined as:
P1 = etot

tZ+tC
and P2 = etot

tZ
. Next, we form a square from the

right triangle, marked as 1 in the Figure 5 (a). Thus, now we
can determine the length of the 2, which is P1 + P2−P1

2 . The
average power consumption for the synchronous execution is
shown in Equation 10.

Pavg = P1 +
P2 − P1

2
=

P2 + P1

2
(10)

Next, consider the situation shown in Figure 5 (b), where the
Z ≥ C. By applying the same pivotal points as in the previous
example, we can define the average power consumption by:

Pavg =
(P2 + P1) · tC + P2(tZ − tC)

tC + tZ
=

P1 · tC + P2 · tZ

tC + tZ
(11)

By assuming that the tZ −tC = 0, the equation 11 recurs to
the equation 10. In other words, the power estimate presented

in Equation 10 is a special set from the estimate presented in
Equation 11.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an early level specification for the formal
power consumption model is introduced. We analyzed a ba-
sic Action Systems compositions and structures in terms of
power consumption. At first, we discussed about timing and
activity issues, which showed that the power consumption
estimation is highly time dependent task. To determine the
power consumption, we need to know the activity of the given
action(s). For instance, in an asynchronous circuit there might
be long idle period before the particular action is executed
again. The problem rises how to model this behavior properly.
Moreover the activity differs, whether we assume the time to
be continuous or discrete. Therefore, we decided to analyze
the timing and energy consumption separately.

Secondly, we analyzed basic Action Systems compositions.
The form of the analysis depends on whether the actions
under investigation are considered independent or not. Thus,
independent actions introduces potential for parallel behavior,
which complicates the power estimation. On the contrary, if
the actions are non-independent, then the power estimation is
straightforward. Therefore, the critical part of the estimation
process is to determine the correct order of events, and
detect the parallel behavior. Therefore, the meaning of timing
issues are highlighted. Finally, the topics discussed above were
analyzed using example Action Systems description.

Future Work: The experiences of this study lays the
foundation for the formal power model. The formal power
estimation framework is created in two phases. At first, we
concentrate on energy estimation and its formal model. Then
we will expand the existing energy estimation framework
into the power estimation model. Finally, in the gate-level
analysis, we will compare this model with existing power
estimation methods and simulators. The technology dependent
information is included as late as possible into the model. For
timing solutions, we can apply a existing Timed Actions model
[8], Petri Nets [4], etc.

REFERENCES

[1] R. J. R. Back, On the Correctness of Refinement Steps in Program
Development, Ph.D Thesis, University of Helsinki, 1978.

[2] R. J. R. Back and K. Sere, From Modular Systems to Action Systems,
in Proc. of Formal Methods Europe’ 94, Spain, October 1994. Lecture
notes on computer science, Springer-Verlag.

[3] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall International,
1976.

[4] A. K. Murugavel, and N. Ranganathan, Petri Net Modeling of Gate and
Interconnect Delays for Power Estimation, in Proc. DAC 2002, June 10-
14, 2002, New Orleans, LA, USA.

[5] J. Plosila, Self-Timed Circuit Design - The Action Systems Approach, Ph.D
Thesis, University of Turku, 1999.

[6] T. Seceleanu, Systematic Design of Synchronous Digital Circuits, Ph.D
Thesis, Turku Centre for Computer Science, 2001.

[7] J. Tuominen and J. Plosila, High Level Power Estimation, Turku Center
for Computer Science Technical Report Series, Number 623, September
2004, ISBN 952-12-1416-3.

[8] T. Westerlund and J. Plosila, Formal Timing Model for Hardware Com-
ponents, in Proc. IEEE Norchip 2004, November 8-9, Oslo, Norway.

