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Abstract— We present an evaluation study on applying aspect-
oriented modeling concepts in UPPAAL timed automata. The 
study is focusing on the modeling and verification effort that can 
be reduced when applying explicit aspect-oriented structuring 
principles in model construction. We discuss the drawbacks and 
benefits related to model update and verification effort. The 
approach suggested is benchmarked on a mission critical crisis 
management system case study. We demonstrate the usability of 
our approach by extracting the aspects such as resource 
authentication and mission execution. Finally, we demonstrate by 
experimental data how our approach is more efficient compared 
to verification and testing effort applied in the non-aspect-
oriented model. 
  

Keywords— model-based testing, aspect-oriented modeling, 
compositional verification, UPPAAL timed automata, mission 
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I. INTRODUCTION 
Model-based testing (MBT) [1] has become one of the 

black-box testing solutions for reducing software testing effort 
[2]. MBT suggests the use of abstract behavioral models for 
specifying the expected behavior of the System Under Test 
(SUT) and for automatically deriving tests from it. According 
to Utting et al. [3] there are three distinct phases in MBT: test 
specification, test generation, and test execution.  

Compared to traditional testing methods, in MBT, the 
testing effort is shifted from mere test purpose specifications 
to modeling the requirements which the SUT should conform 
to. However, the recent survey by Binder [2] showed that two 
of the main challenges of MBT are in updating the models and 
in handling their complexity. In addition, the models used in 
MBT are not always intuitive and usually only part of the 
system behavior is modeled to reduce the test generation 
effort.  

Model-checking is one of the methods used for test 
generation [3]. Given a formal model of the SUT and a set of 
properties the model should satisfy, a model-checker will 
generate witness or counterexample traces that confirm or 
refute the validity of these properties. The resulting traces are 
used for creating tests. UPPAAL Timed Automata (UPPAAL 
TA) are one of the popular formalisms supported by mature 
model-checking and testing tools [4]. Uppaal TA are well-

suited for specifying timing properties of the SUT and 
therefore widely used in real time and embedded systems 
design. However, model-checking tools may suffer from 
scalability problems due to the so called state space explosion 
problem. Therefore, in this paper we aim at the reduction of 
the search space by applying model-checking to partial 
specifications in the form of aspect models.  

Aspect-Oriented Software Development (AOSD) is a 
paradigm, originating from Aspect-Oriented Programming 
(AOP) [5]. It addresses the effects of crosscutting concerns on 
software artefacts: scattering – specifications related to one 
concern are distributed over several units, and tangling – a 
given unit contains specifications related to several concerns.  

The core principle of AOSD is to develop multiple 
concerns of a system in isolation (via aspects) and later on 
combine (weave) them into a complete system. The perceived 
benefits of AOSD are: separation of concerns (which 
improves the developers’ comprehension of large systems), 
ease of maintenance, evolution and customization, and thus, 
greater flexibility in development [6].  

Aspect-Oriented Modeling (AOM) [7] combines the ideas 
behind AOSD with those of model-based software 
development, where the main focus is placed on how different 
concerns of the system can be modeled independently and 
combined later on via composition mechanisms. Experiments 
confirm that using AOM techniques provides models of better 
quality [8]  and improved readability [9]. 

In this paper, we present an evaluation of our AOM 
approach for UPPAAL TA. The approach has been originally 
presented in [10], where we defined weaving mechanisms for 
UPPAAL TA models and associated tool support for aspect 
weaving. In the current paper we evaluate the approach and 
discuss its benefits and drawbacks with respect to modeling 
and model update effort, as well as with respect to the 
verification and testing effort. The evaluation is performed on 
a partial implementation of the Crisis Management System 
(CMS) case study suggested as reference case study in [11]. 

II. RELATED WORK 
Several authors have evaluated the benefits of using AOM. 

The vast majority of these works target the Unified Modeling 
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Language (UML) [12]. UML has been the de facto modeling 
language in AOM. For instance, authors of [13] evaluate 
several aspect modeling notations in order to evaluate them 
with respect to reusability and maintainability of the obtained 
models. They concluded that having Reusable Aspect Models 
performs well against the majority of the employed metrics. 

In [8], the authors report a controlled experiment to assess 
the applicability of AOM from the perspective of the 
AspectSM UML profile. The study focuses on two aspects: 
the quality of the derived state machines and the effort 
required to build them. The study concludes that, even if it 
took more time to develop, the aspect state machines derived 
with AspectSM are more complete and correct compared to 
standard approach.  

A similar study [9] evaluates the reliability of state machine 
developed with AspectSM. The results show that AOM 
enables better defect identification and fixing rates in both 
hierarchical and flat state machines.  
 Another study [14], points out that using AOM in an 
industrial context enables scalable modeling, reduced 
modeling complexity and facilitates model evolution. 

In contrast to the works referred above, we perform an 
evaluation on applying AOM principles to modeling, 
verification, and testing using UPPAAL TA. We are not 
aware of similar studies in this context. 

 

III. PRELIMINARIES 

A. UPPAAL Timed Automata 
UPPAAL Timed Automata (UPPAAL TA) [15] used for 

the specification are defined as a closed network of extended 
timed automata that are called processes. The processes are 
combined into a single system by synchronous parallel 
composition like that in process algebra CCS. The nodes of 
the automata graph are called locations and directed vertices 
between locations are called edges. The state of an automaton 
consists of its current location and assignments to all 
variables, including clocks. Synchronous communication 
between processes is expressed by synchronisation links 
called channels. A channel ch relates a pair of transitions in 
parallel processes where synchronised edges are labelled with 
symbols for input and output actions (denoted ch? and ch!, 
respectively). 

Asynchronous communication between processes is 
modeled using global variables accessible in all processes. 
Let Σ denote a finite alphabet of actions a, b, …, and C a finite 
set of real-valued variables x, y, z denoting clocks. A guard 
condition of the edge is a conjunctive formula of atomic 
constraints of the form x∼n for c ∈ C, ∼ ∈ { ≥, ≤, =, >, <} and 
n ∈ N+. We use G(C) to denote the set of clock guards.  

A timed automaton A is a tuple (L, l0, E, Inv)  where L is a 
finite set of locations, l0 ∈ L is the initial location, E ∈ L × 
G(C) × Σ × 2C × L is the set of edges, and Inv: L → I(C) 
assigns invariants to locations (here we restrict to constraints 
in the form: x ≤ n or x < n, n ∈ N+). Without the loss of 
generality we assume that guard conditions are in conjunctive 
form with conjuncts including besides clock constraints also 
constraints on integer variables. Similarly to clock conditions, 
the propositions on integer variables k are of the form k ∼ n 
for n ∈ Z, and ∼ ∈ { ≤, ≥, =, >, <}. For formal definition of 
complete semantics of UPPAAL TA we refer to [16].  

 

 B.  Aspect-Oriented Modeling with UPPAAL TA 
   The approach evaluated in this paper has been originally 
presented in [10] where we defined aspect-oriented concepts 
for UPPAAL TA and proposed weaving adapters for weaving. 
We will briefly summarize this work in the following.  

1) Mapping aspect-oriented concepts to UPPAAL TA 
According to aspect-oriented principles, different crosscutting 
concerns are modeled independently starting from 
requirements, either as a base or advice models. They are then 
woven into a composite model. Before we elaborate on AO 
verification, we interpret the AO terminology in the context of 
UPPAAL TA, as follows. A base model is a set of UPPAAL 
TA processes modeling the base (primary) functionality of the 
system. An aspect model is an UPPAAL TA process or a set 
of parallel processes implementing a crosscutting concern. 
Joinpoints are model fragments in the base model to which an 
aspect can be woven. For this paper, we limit our join points 
to model fragments composed of an edge with 
synchronization. However the approach can be generalized to 
larger model fragments. A pointcut is the set of joinpoints and 
conditions under which an advice can be woven. Pointcut 
expression is a logic condition which uniquely defines the 
model fragments (join points) where the weaving is applied. A 
woven model, sometimes referred in the literature as 
augmented model, is an UPPAAL TA in which the base 
model is woven with all intended aspect models. Weaving is 
the process of composing a base model with the aspects. 
Weaving adapters are model fragments that allow the 
execution of an advice model at the designated joinpoints. A 
weaving adapter encodes the pointcut expression, the advice 
type and the joinpoint. Our approach is based on several 
assumptions:  
● We do not allow unique instances of the same advice 

model (defined by an UPPAAL TA template) to be shared 
by several join points of a base model. 
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Fig. 1  Model fragment with channel synchronization 
 

Fig. 2  Generic after adapter (top) and generic advice (bottom). 

● The execution of an advice is atomic w.r.t. its joinpoint. 
This means that once a joinpoint is reached, the control 
flow of the base model process containing the joinpoint 
will be passed to the aspect model and the base model 
process will wait for the aspect to complete and return to 
the same joinpoint. However, this does not restrict several 
joinpoints located in different processes of the base model 
to be enabled at the same time and their corresponding 
aspects to be executed simultaneously.  

● An advice model has one entry point and one or several 
exit points which return to the same joinpoint. 

● The base model and advice model can be woven using 
UPPAAL TA specific communication and 
synchronization constructs, e.g. synchronizing the entry 
and exit of the advice model with wait in the base model, 
sharing or refining data between base and advice model, 
etc. 

● Joinpoint definitions cannot target the elements 
introduced by the weaving adapters in order to ensure that 
the weaving does not introduce or remove joinpoints for 
another adapter. However new joinpoints can be 
introduced via the advice models. 

2) Weaving Adapters 
In [10], we defined four types of weaving adapters. They 

provide support for weaving an advice before, after, and 
around a join point, similarly to the homonym advice types in 
AspectJ. The forth adapter type, conditional, has been 
suggested based on practical considerations. Due to space 
limit, in this paper we will only discuss the adapters used in 
our example, while we defer the others to [10].  
   In the current approach, we restrict a joinpoint to a model 
fragment composed of an UPPAAL TA edge labelled with a 
guard expression, channel, and update as depicted in Fig. 1. 
The channel represents a synchronization. It can be interpreted 
either as send or receive action denoted respectively by 
channel! and channel?. Optionally, the edge may carry a 
guard expression and an update expression. However, our 
approach can be easily extended to more complex model 
fragments, as long as weaving assumptions are fulfilled.  

The main purpose of the weaving adapters is to allow a 
systematic and mechanized weaving of advice models at 
designated joinpoints in the base model. A weaving adapter 
has a base model side and an advice model side, specifying 
the model fragment to be included in the base model and, 
respectively, to the advice model, during weaving.  
 The after adapter (Fig.2 top) allows the execution of an 
advice after a channel synchronization. It refines the End  
location with two new locations AspectStart  and Call , as well 

as with two new channels enterAdvice! and exitAdvice?. 
Whenever the pointcut_expression is true, the advice is 
executed, otherwise the advice is skipped. 
The corresponding adapter introduced to the advice model 
during the weaving is shown in Fig. 4 (bottom). As one may 
notice, the execution of the advice model is triggered from the 
base model via the joinpoint by receiving the enterAdvice? 
synchronization and, after  executing the advice functionality, 
it returns the control via the exitAdvice!  synchronization [11]. 

3) Weaving Process:  
In our approach, we assume that aspects can be designed 

independently from specifications and the aspects are woven 
incrementally. That is, for a given base model and a set of 
advices, we weave one advice at a time to all of its designated 
join points. We regard the weaving process as a model 
transformation that takes as input a base model, an advice 
model, and a selected weaving adapter. 

 The pointcut expression is used as model pattern which 
identifies joinpoints. The transformation inserts the adapter at 
the joinpoint and instantiates the UPPAAL template of the 
advice for each joinpoint. 

We also assume that the weavings are applied to the class 
of weakly-invasive aspects and that the weaving is 
conservative with respect to this class. Weakly-invasive 
aspects may change the control flow and the values of non-
local variables, as long as the state after returning the 
execution to the base model is reachable in the base model 
without the aspect woven [17]. Additionally, verification of 
aspect non-interference is another prerequisite for allowing us 
to take advantage of compositional verification and testing of 
the aspect-oriented models. That is, inferring the properties 
and test verdicts of the composition from verified properties 
or passed tests of components in separation. We presented 
guidelines for enabling compositional verification and testing 
of aspect-oriented UPPAAL models in [18].  
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IV. CASE STUDY – CRISIS MANAGEMENT SYSTEM 
We take as an example a specification of the Crisis 

Management System (CMS) proposed in [11] as reference 
case study. The idea behind CMS is to deal with different 
kinds of crisis situations, ranging from major to catastrophic 
accidents, by allocating resources to handle the crisis. The 
actors in the CMS are the Coordinator and the Resources. 
Coordinator receives calls from witnesses who are reporting 
an incident and initiates a new mission. Each mission has a 
type which tells the number of resources that have to be 
allocated. Three procedures of the CMS will be modeled, as 
follows: 

ResourceAllocation: A mission needs to be completed within 
a specified mission time, MT. Coordinator initiates the 
mission by sending a message to cSystem. The latter is 
responsible for allocating resources and waiting for them to 
complete their task. The resources are allocated after 
performing a feasibility check by comparing if the resource's 
time-to-arrive (TTA) and mission execution time (MET) 
match. The feasibility check is performed twice, i.e., before 
sending the initial synchronization for allocation and later 
when the resource is allocated to the mission via a second 
synchronization. When all the allocated resources have 
completed their tasks within MT, cSystem informs 
Coordinator about the mission completion. However, if a 
resource cannot be allocated, cSystem will attempt to allocate 
the next available resource. Furthermore, if cSystem cannot 
allocate the required number of resources within MT, the 
mission will fail. Likewise, if all the allocated resources are 
unable to complete their task within MT, the mission will 
timeout and Coordinator is notified. 

Authentication: Every Resource needs to authenticate itself 
before it can be allocated to a mission. The authentication 
process follows a simplified version of Needham-Schroeder 
protocol adopted from [19]. There are two participants in the 

protocol: A - the initiator, and B - the responder.  
In the first step, the initiator A sends a message containing 

its identity to the responder B and after a sequence of 
encryption/decryption procedures with the information using 
public and private keys, the initiator is eventually 
authenticated. In case of an authentication failure a resource 
cannot be used for the current mission. The authentication 
process for every resource requires a fixed amount of time, 
including the time needed to generate the secret key of B, and 
to encrypt and decrypt the messages sent between A and B. 

Execute Critical Mission (ECM): The execution of each 
resource begins when its allocation is completed. It starts to 
travel to the mission site and it must arrive after TTA time 
units. After reaching the location, each resource requires MET 
time units to complete its task. Upon successful execution, it 
notifies cSystem. 

A. Modeling the CMS 
For evaluation purposes, we developed two versions of the 

CMS specification, referred in the following as flat and, 
aspect-oriented (AO) model, respectively. The former is 
developed using traditional, non-aspect-oriented methods, 
while the latter is developed using our aspect-oriented 
approach. To ensure that the two versions are specifying the 
same observable behavior, we use bisimulation relation as 
detailed later on. 

1) Traditional approach: Fig. 3 depicts the flat version of 
CMS specified using the traditional modeling approach, 
containing a Coordinator, an AuthResponder and a resource 
(flatResource0) process (only Coordinator, one Resource  and 
corresponding AuthResponder are shown in order to save 
space, while cSystem is shown in Fig. 4). cSystem initially 
allocates the number of required resources. The feasibility 
check is performed before sending an alloc synchronization 
and later when the resource is allocated to the mission. 

 
Fig. 3  Flat model with one resource including the Authentication and ECM features 
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After authentication, resource proceeds to Travel and 
spends TTA time units to reach the crisis location 
(atLocation). The mission execution progresses while staying 
at atLocation and after MET time units, the resource notifies 
cSystem about the successful completion of its task via 
sending a done! synchronization and reaching ResourceDone 
location. 

Moreover, the successfully deployed resources, i.e., the 
ones that reached the location and have performed their task 
within MT time units, contribute to the overall success. The 
mission is completed when all required resources have 
successfully reached the ResourceDone location in the model.  

 
2) Aspect-oriented approach: For the aspect-oriented 

version of the CMS, the starting point is modeling the 
resource allocation procedure which will be considered as the 
base model (see Fig. 4). Each resource is modeled as one 
process, but in order to save space we only show one instance 
of it. The additional Authentication and ECM features are 
modeled as separate aspects, which are incrementally woven 
into the base model in Fig. 5 (the cSystem automaton is 
omitted since it is identical to the one in Fig 4).  

The ECM aspect refines the time behavior of how a 
resource executes a mission as well as the functional steps 
involved. Beside the number of required resources,  a mission 
requires that the resource arrives at the location and executes 
its task within MT. Thus, we characterize each resource 

availability by its distance to the incident site and time for task 
execution, i.e., bounded by the TTA and the MET clock 
constants. This exemplifies one possible option of weaving 
aspect models, as a refinement of an abstract model. The ECM 
aspect is woven in the base model at the alloted[i]! join point 
using an after adapter which allows the control flow to return 
to a location before the join point. The execution of each 
resource specified by the aspect advice begins when receiving 
a synchronization on channel eExec[i]? from the base model 
and proceeds to mission site (location Travel) which 
consumes TTA time units. After reaching the mission site 
(location atLocation), each resource requires MET time units 
to complete its task. After successful execution, the control is 
returned back to the base model of a resources via the 
exExecT[i]! synchronization. 

The second aspect to be modeled is the Authentication 
(Auth). Whenever a resource is initialized (requested to be 
allocated), it attempts to authenticate itself via eAuth[i] by 
providing its credentials. The authentication aspect is modeled 
as two parallel automata, one for the initiator and one for the 
responder. The initiator automaton, modeled as AuthI0, 
receives the credentials of a given resource from the 
Resource0 process (Fig. 5), while the responder process 
(AuthR0) will provide the verdict of authentication back to the 
base model via the channel of the adapter exAuthT! for 
successful authentication. 

 
Fig. 4  The Base model of CMS 



 V. EVALUATION OF THE METHOD 
In our evaluation, we aim at answering two questions 

regarding the proposed approach:  
1. Are aspect-oriented UPPAAL TA models easier to 

update compared to models built using the 
traditional method? 

2. Is the compositional verification and test generation 
effort of UPPAAL TA aspect models smaller than the 
verification and testing effort of the traditional 
model. 

A. Modeling Update Effort Evaluation 
In order to evaluate the modeling and update effort, we 

conducted an experiment with the two different developed 
versions of the authentication feature. The first version used a 
simpler specification, in which the resource provided its 
credentials (authentication token) and the CMS checked if 
they correspond to a list of known credentials. The CMS 
specification was developed both as flat and aspect models 
and the two models were checked for equivalence via 
bisimulation. In the second version, we updated the 
authentication feature to use the Needham-Schroeder protocol 
which resulted in the models described in this paper.  

During the update we measured the number of changes 
(statement additions, updates, removals) that we had to 
perform on the flat model. It resulted that modifying the flat 
models required editing approximately 40% of the model, 
versus 20% in the case of the aspect model. The effort of 
updating the models was much smaller in the case of aspect 
models, since it was easier to identify which elements had to 

be changed, and these elements had in general a local scope, 
without affecting the specification of the other features. This 
was an expected result, according to different studies, which 
confirm that AOM reduces the scattering and tangling of 
requirements.  

 
B. Verifying equivalence between flat and aspect models  

 
As referred above, AOM imposes explicit structure to the 

models which in their flat form do not provide clear separation 
of design concerns and do not support compositional 
verification and testing. When transforming flat models to 
aspect-oriented ones or comparing their complexity the same 
behavior has to be maintained by both. To assure that aspect-
oriented models present the same observable behavior as the 
non-aspect models, a relevant notion of equivalence between 
models is needed. For that, we employ bisimulation relation 
between models. Informally, two UPPAAL TA are bisimilar if 
they accept the same timed language, i.e., they perform 
exactly the same observable (i/o-) actions and reach bisimilar 
states while satisfying same time constraints. In other words, 
these two system models cannot be distinguished by an 
external observer. Bisimilarity is a symmetrical relation.  

Bisimulation for timed automata has been originally 
introduced by [16] and, as shown in [20], it is decidable for 
parallel timed processes. 

In order to show bisimilarity between the flat and aspect-
oriented models of the same system, we follow the steps 
below: 

1. we compose the flat model and its aspect-oriented 
counterpart in parallel; 

 
Fig. 5  Base model woven with Authentication (surrounded by bold line in the left) and ECM aspects (surrounded by bold line in the right) 
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2. we define an observable interface (set of i/o actions) 
between the system and its environment models, with respect 
to which the equivalence has to be shown; 

3. we add additional, side-effect free, synchronization 
channels between the edges (of compared models) that model 
same observable i/o-actions defined in step 2;  

4. Finally, we verify that the synchronous composition of 
compared models never deadlocks in states where the models 
verified separately would not deadlock. 

Before benchmarking the case study with respect to 
verification effort, we proved that different versions of the 
CMS are bisimilar.  

 

C. Evaluation of the Verification Effort 
The verification and testing in UPPAAL are in the same 

complexity class since verification traces are later used as test 
sequences. In order to compare the verification and testing 
effort and exemplify the difference between the traditional and 
aspect-oriented approach, we execute the same verification 
queries and benchmark them against the three models: flat 
model, Base ⊕ Auth, and Base ⊕ ECM, where ⊕ denotes the 
weaving composition operator.  

In our evaluation, we rely on two characteristics of our 
models: a) compositionality - since the individual aspect 
models are weakly-invasive by construction, a verification 
property that holds on two intermediate aspect models 
i.e.,  Base ⊕ Auth and Base ⊕ ECM will also hold on the 
complete  aspect model and b) bisimilarity - the complete 
(augmented) aspect model is bisimilar to the flat model. Thus, 
any local property of an aspect that will pass the verification 
on the individual aspect models, is expected to also pass the 
verification on that flat model. 

Since the Base ⊕ Auth ⊕ ECM model and the 
corresponding version of the flat model have been proven 
bisimilar and each intermediate weaving, i.e., Base ⊕ Auth 
and Base ⊕ ECM, preserve their local properties if they are 
satisfied in the full aspect model. Thus, any local property of 
an aspect that will pass the verification on the flat model, is 
expected to also pass the verification of that aspect model in 
isolation.  

For instance, we use the following property "The system 
should not be in a deadlock state except when the mission is 
completed or there was a mission timeout." which corresponds 
to UPPAAL query:  

 
A[] deadlock imply (cSystem:Done || cSystem:TO) 
 
For each model we recorded the number of stored symbolic 

states, the number of explored symbolic states and the CPU 
time. We repeated each benchmark 10 times and calculated 
the average values shown in TABLE 1.  

The results show that the verification effort for the above 
query on flat model was 862 stored and 2991 processed 
symbolic states, respectively. The benefit of compositionality 
becomes evident when verifying the aspect models 
independently. The verification search space resulted in 1380 

stored symbolic states for the Base ⊕ Auth model, and in 230 
stored symbolic states for the Base ⊕ ECM model. Similarly, 
the number of steps required to verify the query was 2235 and 
230 explored symbolic states, respectively. 
 

TABLE 1 
EXPERIMENTAL RESULTS 

Model States 
Explored 

CPU time 
(ms) 

States 
Stored 

Flat 2991 108 862 

Base ⊕ Auth 2235 52 1380  

Base ⊕ Exec  230 5  230 

 
The effort of verifying the query on the individual aspect 

model is, as expected, much smaller than verifying the query 
on the flat model. In this particular case, the sum of the effort 
of the two verification tasks is also smaller than verifying the 
same query on the flat model, both time and space wise. 
However, the flat model has less structural elements as 
compared to aspects model, the verification is achievable with 
fewer verification steps. One may notice that the explored 
states for verification of both flat and sum of explored states 
of the aspect models is almost the same. 

 

VI. CONCLUSIONS 
In this work, aspect-oriented modeling concepts have been 

applied to UPPAAL timed automata and studied from the 
perspective of improving the modularity and reducing 
complexity of model-based verification and testing. 

By developing simultaneously non-aspect oriented and 
aspect-oriented models we found that besides improving 
human comprehension and traceability of requirements the 
modularity of aspect-oriented models allows one to reduce the 
verification effort. 

The experiments built upon the Crisis Management System 
case study revealed also some limitations stemming from the 
weaving adapters. Even though the weaving adapters are not 
introducing additional interleaving in the parallel composition, 
they introduce additional model elements which increase the 
structural complexity of models and indirectly affect the state 
space. Though, the larger the structural complexity of the 
advice models, the more effect the compositional testing and 
verification have, since the complexity of the advice model 
compensates for the structural complexity introduced by the 
adapters. 

The efficiency of aspect-oriented verification and testing, 
depends on whether these activities can be done 
compositionally, i.e., if it is possible to infer from verified 
properties or passed tests of components in separation the 
properties and test verdicts of the augmented model as a 
whole. The experiments also confirmed that separate aspect 



models can support compositionality if there is no interference 
between them.   

 As future work, we plan to define and evaluate the aspect-
oriented coverage criteria for model-based testing, which will 
allow better addressing aspects related properties of systems. 
We also plan to conduct a set of larger case studies to evaluate 
the scalability of the approach as well as its advantages from 
the point of view of incremental test suite updates. 
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