
On the Benefits of Using Aspect-Orientation in
UPPAAL Timed Automata

Jüri Vain* , Dragos Truscan#, Junaid Iqbal#, Leonidas Tsiopoulos*
#Software Engineering Laboratory, Abo Akademi University

Vesilinnankatu 3, FI-20500 TURKU, FINLAND
firstname.surname@abo.fi

*Department of Software Science, Tallinn University of Technology
 Akadeemia tee 15A, 12618 Tallinn, ESTONIA

firstname.surname@ttu.ee

Abstract— We present an evaluation study on applying aspect-
oriented modeling concepts in UPPAAL timed automata. The
study is focusing on the modeling and verification effort that can
be reduced when applying explicit aspect-oriented structuring
principles in model construction. We discuss the drawbacks and
benefits related to model update and verification effort. The
approach suggested is benchmarked on a mission critical crisis
management system case study. We demonstrate the usability of
our approach by extracting the aspects such as resource
authentication and mission execution. Finally, we demonstrate by
experimental data how our approach is more efficient compared
to verification and testing effort applied in the non-aspect-
oriented model.

Keywords— model-based testing, aspect-oriented modeling,
compositional verification, UPPAAL timed automata, mission
execution

I. INTRODUCTION
Model-based testing (MBT) [1] has become one of the

black-box testing solutions for reducing software testing effort
[2]. MBT suggests the use of abstract behavioral models for
specifying the expected behavior of the System Under Test
(SUT) and for automatically deriving tests from it. According
to Utting et al. [3] there are three distinct phases in MBT: test
specification, test generation, and test execution.

Compared to traditional testing methods, in MBT, the
testing effort is shifted from mere test purpose specifications
to modeling the requirements which the SUT should conform
to. However, the recent survey by Binder [2] showed that two
of the main challenges of MBT are in updating the models and
in handling their complexity. In addition, the models used in
MBT are not always intuitive and usually only part of the
system behavior is modeled to reduce the test generation
effort.

Model-checking is one of the methods used for test
generation [3]. Given a formal model of the SUT and a set of
properties the model should satisfy, a model-checker will
generate witness or counterexample traces that confirm or
refute the validity of these properties. The resulting traces are
used for creating tests. UPPAAL Timed Automata (UPPAAL
TA) are one of the popular formalisms supported by mature
model-checking and testing tools [4]. Uppaal TA are well-

suited for specifying timing properties of the SUT and
therefore widely used in real time and embedded systems
design. However, model-checking tools may suffer from
scalability problems due to the so called state space explosion
problem. Therefore, in this paper we aim at the reduction of
the search space by applying model-checking to partial
specifications in the form of aspect models.

Aspect-Oriented Software Development (AOSD) is a
paradigm, originating from Aspect-Oriented Programming
(AOP) [5]. It addresses the effects of crosscutting concerns on
software artefacts: scattering – specifications related to one
concern are distributed over several units, and tangling – a
given unit contains specifications related to several concerns.

The core principle of AOSD is to develop multiple
concerns of a system in isolation (via aspects) and later on
combine (weave) them into a complete system. The perceived
benefits of AOSD are: separation of concerns (which
improves the developers’ comprehension of large systems),
ease of maintenance, evolution and customization, and thus,
greater flexibility in development [6].

Aspect-Oriented Modeling (AOM) [7] combines the ideas
behind AOSD with those of model-based software
development, where the main focus is placed on how different
concerns of the system can be modeled independently and
combined later on via composition mechanisms. Experiments
confirm that using AOM techniques provides models of better
quality [8] and improved readability [9].

In this paper, we present an evaluation of our AOM
approach for UPPAAL TA. The approach has been originally
presented in [10], where we defined weaving mechanisms for
UPPAAL TA models and associated tool support for aspect
weaving. In the current paper we evaluate the approach and
discuss its benefits and drawbacks with respect to modeling
and model update effort, as well as with respect to the
verification and testing effort. The evaluation is performed on
a partial implementation of the Crisis Management System
(CMS) case study suggested as reference case study in [11].

II. RELATED WORK
Several authors have evaluated the benefits of using AOM.

The vast majority of these works target the Unified Modeling

https://paperpile.com/c/h0k6dv/COCH
https://paperpile.com/c/h0k6dv/dkUr
https://paperpile.com/c/h0k6dv/mgc6
https://paperpile.com/c/h0k6dv/dkUr
https://paperpile.com/c/h0k6dv/mgc6
https://paperpile.com/c/h0k6dv/GmhH
https://paperpile.com/c/h0k6dv/Aiwg
https://paperpile.com/c/h0k6dv/Y5A1
https://paperpile.com/c/h0k6dv/mhxb
https://paperpile.com/c/h0k6dv/4biU
https://paperpile.com/c/h0k6dv/RVbF
https://paperpile.com/c/h0k6dv/4AzS
https://paperpile.com/c/h0k6dv/wwLS

Language (UML) [12]. UML has been the de facto modeling
language in AOM. For instance, authors of [13] evaluate
several aspect modeling notations in order to evaluate them
with respect to reusability and maintainability of the obtained
models. They concluded that having Reusable Aspect Models
performs well against the majority of the employed metrics.

In [8], the authors report a controlled experiment to assess
the applicability of AOM from the perspective of the
AspectSM UML profile. The study focuses on two aspects:
the quality of the derived state machines and the effort
required to build them. The study concludes that, even if it
took more time to develop, the aspect state machines derived
with AspectSM are more complete and correct compared to
standard approach.

A similar study [9] evaluates the reliability of state machine
developed with AspectSM. The results show that AOM
enables better defect identification and fixing rates in both
hierarchical and flat state machines.
 Another study [14], points out that using AOM in an
industrial context enables scalable modeling, reduced
modeling complexity and facilitates model evolution.

In contrast to the works referred above, we perform an
evaluation on applying AOM principles to modeling,
verification, and testing using UPPAAL TA. We are not
aware of similar studies in this context.

III. PRELIMINARIES

A. UPPAAL Timed Automata
UPPAAL Timed Automata (UPPAAL TA) [15] used for

the specification are defined as a closed network of extended
timed automata that are called processes. The processes are
combined into a single system by synchronous parallel
composition like that in process algebra CCS. The nodes of
the automata graph are called locations and directed vertices
between locations are called edges. The state of an automaton
consists of its current location and assignments to all
variables, including clocks. Synchronous communication
between processes is expressed by synchronisation links
called channels. A channel ch relates a pair of transitions in
parallel processes where synchronised edges are labelled with
symbols for input and output actions (denoted ch? and ch!,
respectively).

Asynchronous communication between processes is
modeled using global variables accessible in all processes.
Let Σ denote a finite alphabet of actions a, b, …, and C a finite
set of real-valued variables x, y, z denoting clocks. A guard
condition of the edge is a conjunctive formula of atomic
constraints of the form x∼n for c ∈ C, ∼ ∈ { ≥, ≤, =, >, <} and
n ∈ N+. We use G(C) to denote the set of clock guards.

A timed automaton A is a tuple (L, l0, E, Inv) where L is a
finite set of locations, l0 ∈ L is the initial location, E ∈ L ×
G(C) × Σ × 2C × L is the set of edges, and Inv: L → I(C)
assigns invariants to locations (here we restrict to constraints
in the form: x ≤ n or x < n, n ∈ N+). Without the loss of
generality we assume that guard conditions are in conjunctive
form with conjuncts including besides clock constraints also
constraints on integer variables. Similarly to clock conditions,
the propositions on integer variables k are of the form k ∼ n
for n ∈ Z, and ∼ ∈ { ≤, ≥, =, >, <}. For formal definition of
complete semantics of UPPAAL TA we refer to [16].

 B. Aspect-Oriented Modeling with UPPAAL TA
 The approach evaluated in this paper has been originally
presented in [10] where we defined aspect-oriented concepts
for UPPAAL TA and proposed weaving adapters for weaving.
We will briefly summarize this work in the following.

1) Mapping aspect-oriented concepts to UPPAAL TA
According to aspect-oriented principles, different crosscutting
concerns are modeled independently starting from
requirements, either as a base or advice models. They are then
woven into a composite model. Before we elaborate on AO
verification, we interpret the AO terminology in the context of
UPPAAL TA, as follows. A base model is a set of UPPAAL
TA processes modeling the base (primary) functionality of the
system. An aspect model is an UPPAAL TA process or a set
of parallel processes implementing a crosscutting concern.
Joinpoints are model fragments in the base model to which an
aspect can be woven. For this paper, we limit our join points
to model fragments composed of an edge with
synchronization. However the approach can be generalized to
larger model fragments. A pointcut is the set of joinpoints and
conditions under which an advice can be woven. Pointcut
expression is a logic condition which uniquely defines the
model fragments (join points) where the weaving is applied. A
woven model, sometimes referred in the literature as
augmented model, is an UPPAAL TA in which the base
model is woven with all intended aspect models. Weaving is
the process of composing a base model with the aspects.
Weaving adapters are model fragments that allow the
execution of an advice model at the designated joinpoints. A
weaving adapter encodes the pointcut expression, the advice
type and the joinpoint. Our approach is based on several
assumptions:
● We do not allow unique instances of the same advice

model (defined by an UPPAAL TA template) to be shared
by several join points of a base model.

https://paperpile.com/c/h0k6dv/mNor
https://paperpile.com/c/h0k6dv/Mx4x
https://paperpile.com/c/h0k6dv/4biU
https://paperpile.com/c/h0k6dv/RVbF
https://paperpile.com/c/h0k6dv/3lCh
https://paperpile.com/c/h0k6dv/Emcf
https://paperpile.com/c/h0k6dv/52Oe
https://paperpile.com/c/h0k6dv/4AzS

Fig. 1 Model fragment with channel synchronization

Fig. 2 Generic after adapter (top) and generic advice (bottom).

● The execution of an advice is atomic w.r.t. its joinpoint.
This means that once a joinpoint is reached, the control
flow of the base model process containing the joinpoint
will be passed to the aspect model and the base model
process will wait for the aspect to complete and return to
the same joinpoint. However, this does not restrict several
joinpoints located in different processes of the base model
to be enabled at the same time and their corresponding
aspects to be executed simultaneously.

● An advice model has one entry point and one or several
exit points which return to the same joinpoint.

● The base model and advice model can be woven using
UPPAAL TA specific communication and
synchronization constructs, e.g. synchronizing the entry
and exit of the advice model with wait in the base model,
sharing or refining data between base and advice model,
etc.

● Joinpoint definitions cannot target the elements
introduced by the weaving adapters in order to ensure that
the weaving does not introduce or remove joinpoints for
another adapter. However new joinpoints can be
introduced via the advice models.

2) Weaving Adapters
In [10], we defined four types of weaving adapters. They

provide support for weaving an advice before, after, and
around a join point, similarly to the homonym advice types in
AspectJ. The forth adapter type, conditional, has been
suggested based on practical considerations. Due to space
limit, in this paper we will only discuss the adapters used in
our example, while we defer the others to [10].
 In the current approach, we restrict a joinpoint to a model
fragment composed of an UPPAAL TA edge labelled with a
guard expression, channel, and update as depicted in Fig. 1.
The channel represents a synchronization. It can be interpreted
either as send or receive action denoted respectively by
channel! and channel?. Optionally, the edge may carry a
guard expression and an update expression. However, our
approach can be easily extended to more complex model
fragments, as long as weaving assumptions are fulfilled.

The main purpose of the weaving adapters is to allow a
systematic and mechanized weaving of advice models at
designated joinpoints in the base model. A weaving adapter
has a base model side and an advice model side, specifying
the model fragment to be included in the base model and,
respectively, to the advice model, during weaving.
 The after adapter (Fig.2 top) allows the execution of an
advice after a channel synchronization. It refines the End
location with two new locations AspectStart and Call , as well

as with two new channels enterAdvice! and exitAdvice?.
Whenever the pointcut_expression is true, the advice is
executed, otherwise the advice is skipped.
The corresponding adapter introduced to the advice model
during the weaving is shown in Fig. 4 (bottom). As one may
notice, the execution of the advice model is triggered from the
base model via the joinpoint by receiving the enterAdvice?
synchronization and, after executing the advice functionality,
it returns the control via the exitAdvice! synchronization [11].

3) Weaving Process:
In our approach, we assume that aspects can be designed

independently from specifications and the aspects are woven
incrementally. That is, for a given base model and a set of
advices, we weave one advice at a time to all of its designated
join points. We regard the weaving process as a model
transformation that takes as input a base model, an advice
model, and a selected weaving adapter.

 The pointcut expression is used as model pattern which
identifies joinpoints. The transformation inserts the adapter at
the joinpoint and instantiates the UPPAAL template of the
advice for each joinpoint.

We also assume that the weavings are applied to the class
of weakly-invasive aspects and that the weaving is
conservative with respect to this class. Weakly-invasive
aspects may change the control flow and the values of non-
local variables, as long as the state after returning the
execution to the base model is reachable in the base model
without the aspect woven [17]. Additionally, verification of
aspect non-interference is another prerequisite for allowing us
to take advantage of compositional verification and testing of
the aspect-oriented models. That is, inferring the properties
and test verdicts of the composition from verified properties
or passed tests of components in separation. We presented
guidelines for enabling compositional verification and testing
of aspect-oriented UPPAAL models in [18].

https://paperpile.com/c/h0k6dv/4AzS
https://paperpile.com/c/h0k6dv/4AzS
https://paperpile.com/c/h0k6dv/Myqx
https://paperpile.com/c/h0k6dv/nsaa

IV. CASE STUDY – CRISIS MANAGEMENT SYSTEM
We take as an example a specification of the Crisis

Management System (CMS) proposed in [11] as reference
case study. The idea behind CMS is to deal with different
kinds of crisis situations, ranging from major to catastrophic
accidents, by allocating resources to handle the crisis. The
actors in the CMS are the Coordinator and the Resources.
Coordinator receives calls from witnesses who are reporting
an incident and initiates a new mission. Each mission has a
type which tells the number of resources that have to be
allocated. Three procedures of the CMS will be modeled, as
follows:

ResourceAllocation: A mission needs to be completed within
a specified mission time, MT. Coordinator initiates the
mission by sending a message to cSystem. The latter is
responsible for allocating resources and waiting for them to
complete their task. The resources are allocated after
performing a feasibility check by comparing if the resource's
time-to-arrive (TTA) and mission execution time (MET)
match. The feasibility check is performed twice, i.e., before
sending the initial synchronization for allocation and later
when the resource is allocated to the mission via a second
synchronization. When all the allocated resources have
completed their tasks within MT, cSystem informs
Coordinator about the mission completion. However, if a
resource cannot be allocated, cSystem will attempt to allocate
the next available resource. Furthermore, if cSystem cannot
allocate the required number of resources within MT, the
mission will fail. Likewise, if all the allocated resources are
unable to complete their task within MT, the mission will
timeout and Coordinator is notified.

Authentication: Every Resource needs to authenticate itself
before it can be allocated to a mission. The authentication
process follows a simplified version of Needham-Schroeder
protocol adopted from [19]. There are two participants in the

protocol: A - the initiator, and B - the responder.
In the first step, the initiator A sends a message containing

its identity to the responder B and after a sequence of
encryption/decryption procedures with the information using
public and private keys, the initiator is eventually
authenticated. In case of an authentication failure a resource
cannot be used for the current mission. The authentication
process for every resource requires a fixed amount of time,
including the time needed to generate the secret key of B, and
to encrypt and decrypt the messages sent between A and B.

Execute Critical Mission (ECM): The execution of each
resource begins when its allocation is completed. It starts to
travel to the mission site and it must arrive after TTA time
units. After reaching the location, each resource requires MET
time units to complete its task. Upon successful execution, it
notifies cSystem.

A. Modeling the CMS
For evaluation purposes, we developed two versions of the

CMS specification, referred in the following as flat and,
aspect-oriented (AO) model, respectively. The former is
developed using traditional, non-aspect-oriented methods,
while the latter is developed using our aspect-oriented
approach. To ensure that the two versions are specifying the
same observable behavior, we use bisimulation relation as
detailed later on.

1) Traditional approach: Fig. 3 depicts the flat version of
CMS specified using the traditional modeling approach,
containing a Coordinator, an AuthResponder and a resource
(flatResource0) process (only Coordinator, one Resource and
corresponding AuthResponder are shown in order to save
space, while cSystem is shown in Fig. 4). cSystem initially
allocates the number of required resources. The feasibility
check is performed before sending an alloc synchronization
and later when the resource is allocated to the mission.

Fig. 3 Flat model with one resource including the Authentication and ECM features

https://paperpile.com/c/h0k6dv/wwLS
https://paperpile.com/c/h0k6dv/Xm1a

After authentication, resource proceeds to Travel and
spends TTA time units to reach the crisis location
(atLocation). The mission execution progresses while staying
at atLocation and after MET time units, the resource notifies
cSystem about the successful completion of its task via
sending a done! synchronization and reaching ResourceDone
location.

Moreover, the successfully deployed resources, i.e., the
ones that reached the location and have performed their task
within MT time units, contribute to the overall success. The
mission is completed when all required resources have
successfully reached the ResourceDone location in the model.

2) Aspect-oriented approach: For the aspect-oriented

version of the CMS, the starting point is modeling the
resource allocation procedure which will be considered as the
base model (see Fig. 4). Each resource is modeled as one
process, but in order to save space we only show one instance
of it. The additional Authentication and ECM features are
modeled as separate aspects, which are incrementally woven
into the base model in Fig. 5 (the cSystem automaton is
omitted since it is identical to the one in Fig 4).

The ECM aspect refines the time behavior of how a
resource executes a mission as well as the functional steps
involved. Beside the number of required resources, a mission
requires that the resource arrives at the location and executes
its task within MT. Thus, we characterize each resource

availability by its distance to the incident site and time for task
execution, i.e., bounded by the TTA and the MET clock
constants. This exemplifies one possible option of weaving
aspect models, as a refinement of an abstract model. The ECM
aspect is woven in the base model at the alloted[i]! join point
using an after adapter which allows the control flow to return
to a location before the join point. The execution of each
resource specified by the aspect advice begins when receiving
a synchronization on channel eExec[i]? from the base model
and proceeds to mission site (location Travel) which
consumes TTA time units. After reaching the mission site
(location atLocation), each resource requires MET time units
to complete its task. After successful execution, the control is
returned back to the base model of a resources via the
exExecT[i]! synchronization.

The second aspect to be modeled is the Authentication
(Auth). Whenever a resource is initialized (requested to be
allocated), it attempts to authenticate itself via eAuth[i] by
providing its credentials. The authentication aspect is modeled
as two parallel automata, one for the initiator and one for the
responder. The initiator automaton, modeled as AuthI0,
receives the credentials of a given resource from the
Resource0 process (Fig. 5), while the responder process
(AuthR0) will provide the verdict of authentication back to the
base model via the channel of the adapter exAuthT! for
successful authentication.

Fig. 4 The Base model of CMS

 V. EVALUATION OF THE METHOD
In our evaluation, we aim at answering two questions

regarding the proposed approach:
1. Are aspect-oriented UPPAAL TA models easier to

update compared to models built using the
traditional method?

2. Is the compositional verification and test generation
effort of UPPAAL TA aspect models smaller than the
verification and testing effort of the traditional
model.

A. Modeling Update Effort Evaluation
In order to evaluate the modeling and update effort, we

conducted an experiment with the two different developed
versions of the authentication feature. The first version used a
simpler specification, in which the resource provided its
credentials (authentication token) and the CMS checked if
they correspond to a list of known credentials. The CMS
specification was developed both as flat and aspect models
and the two models were checked for equivalence via
bisimulation. In the second version, we updated the
authentication feature to use the Needham-Schroeder protocol
which resulted in the models described in this paper.

During the update we measured the number of changes
(statement additions, updates, removals) that we had to
perform on the flat model. It resulted that modifying the flat
models required editing approximately 40% of the model,
versus 20% in the case of the aspect model. The effort of
updating the models was much smaller in the case of aspect
models, since it was easier to identify which elements had to

be changed, and these elements had in general a local scope,
without affecting the specification of the other features. This
was an expected result, according to different studies, which
confirm that AOM reduces the scattering and tangling of
requirements.

B. Verifying equivalence between flat and aspect models

As referred above, AOM imposes explicit structure to the

models which in their flat form do not provide clear separation
of design concerns and do not support compositional
verification and testing. When transforming flat models to
aspect-oriented ones or comparing their complexity the same
behavior has to be maintained by both. To assure that aspect-
oriented models present the same observable behavior as the
non-aspect models, a relevant notion of equivalence between
models is needed. For that, we employ bisimulation relation
between models. Informally, two UPPAAL TA are bisimilar if
they accept the same timed language, i.e., they perform
exactly the same observable (i/o-) actions and reach bisimilar
states while satisfying same time constraints. In other words,
these two system models cannot be distinguished by an
external observer. Bisimilarity is a symmetrical relation.

Bisimulation for timed automata has been originally
introduced by [16] and, as shown in [20], it is decidable for
parallel timed processes.

In order to show bisimilarity between the flat and aspect-
oriented models of the same system, we follow the steps
below:

1. we compose the flat model and its aspect-oriented
counterpart in parallel;

Fig. 5 Base model woven with Authentication (surrounded by bold line in the left) and ECM aspects (surrounded by bold line in the right)

https://paperpile.com/c/h0k6dv/52Oe
https://paperpile.com/c/h0k6dv/ny7T

2. we define an observable interface (set of i/o actions)
between the system and its environment models, with respect
to which the equivalence has to be shown;

3. we add additional, side-effect free, synchronization
channels between the edges (of compared models) that model
same observable i/o-actions defined in step 2;

4. Finally, we verify that the synchronous composition of
compared models never deadlocks in states where the models
verified separately would not deadlock.

Before benchmarking the case study with respect to
verification effort, we proved that different versions of the
CMS are bisimilar.

C. Evaluation of the Verification Effort
The verification and testing in UPPAAL are in the same

complexity class since verification traces are later used as test
sequences. In order to compare the verification and testing
effort and exemplify the difference between the traditional and
aspect-oriented approach, we execute the same verification
queries and benchmark them against the three models: flat
model, Base ⊕ Auth, and Base ⊕ ECM, where ⊕ denotes the
weaving composition operator.

In our evaluation, we rely on two characteristics of our
models: a) compositionality - since the individual aspect
models are weakly-invasive by construction, a verification
property that holds on two intermediate aspect models
i.e., Base ⊕ Auth and Base ⊕ ECM will also hold on the
complete aspect model and b) bisimilarity - the complete
(augmented) aspect model is bisimilar to the flat model. Thus,
any local property of an aspect that will pass the verification
on the individual aspect models, is expected to also pass the
verification on that flat model.

Since the Base ⊕ Auth ⊕ ECM model and the
corresponding version of the flat model have been proven
bisimilar and each intermediate weaving, i.e., Base ⊕ Auth
and Base ⊕ ECM, preserve their local properties if they are
satisfied in the full aspect model. Thus, any local property of
an aspect that will pass the verification on the flat model, is
expected to also pass the verification of that aspect model in
isolation.

For instance, we use the following property "The system
should not be in a deadlock state except when the mission is
completed or there was a mission timeout." which corresponds
to UPPAAL query:

A[] deadlock imply (cSystem:Done || cSystem:TO)

For each model we recorded the number of stored symbolic

states, the number of explored symbolic states and the CPU
time. We repeated each benchmark 10 times and calculated
the average values shown in TABLE 1.

The results show that the verification effort for the above
query on flat model was 862 stored and 2991 processed
symbolic states, respectively. The benefit of compositionality
becomes evident when verifying the aspect models
independently. The verification search space resulted in 1380

stored symbolic states for the Base ⊕ Auth model, and in 230
stored symbolic states for the Base ⊕ ECM model. Similarly,
the number of steps required to verify the query was 2235 and
230 explored symbolic states, respectively.

TABLE 1
EXPERIMENTAL RESULTS

Model States
Explored

CPU time
(ms)

States
Stored

Flat 2991 108 862

Base ⊕ Auth 2235 52 1380

Base ⊕ Exec 230 5 230

The effort of verifying the query on the individual aspect

model is, as expected, much smaller than verifying the query
on the flat model. In this particular case, the sum of the effort
of the two verification tasks is also smaller than verifying the
same query on the flat model, both time and space wise.
However, the flat model has less structural elements as
compared to aspects model, the verification is achievable with
fewer verification steps. One may notice that the explored
states for verification of both flat and sum of explored states
of the aspect models is almost the same.

VI. CONCLUSIONS
In this work, aspect-oriented modeling concepts have been

applied to UPPAAL timed automata and studied from the
perspective of improving the modularity and reducing
complexity of model-based verification and testing.

By developing simultaneously non-aspect oriented and
aspect-oriented models we found that besides improving
human comprehension and traceability of requirements the
modularity of aspect-oriented models allows one to reduce the
verification effort.

The experiments built upon the Crisis Management System
case study revealed also some limitations stemming from the
weaving adapters. Even though the weaving adapters are not
introducing additional interleaving in the parallel composition,
they introduce additional model elements which increase the
structural complexity of models and indirectly affect the state
space. Though, the larger the structural complexity of the
advice models, the more effect the compositional testing and
verification have, since the complexity of the advice model
compensates for the structural complexity introduced by the
adapters.

The efficiency of aspect-oriented verification and testing,
depends on whether these activities can be done
compositionally, i.e., if it is possible to infer from verified
properties or passed tests of components in separation the
properties and test verdicts of the augmented model as a
whole. The experiments also confirmed that separate aspect

models can support compositionality if there is no interference
between them.

 As future work, we plan to define and evaluate the aspect-
oriented coverage criteria for model-based testing, which will
allow better addressing aspects related properties of systems.
We also plan to conduct a set of larger case studies to evaluate
the scalability of the approach as well as its advantages from
the point of view of incremental test suite updates.

ACKNOWLEDGMENTS
This research is partially supported by Estonian Science

Foundation Project IUT33-13 “Strong warranties software
methodologies, tools and processes” and by ECSEL JU
MegaM@Rt2 project under grant agreement No 737494.

REFERENCES

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann, 2010.

[2] R. V. Binder, “2011 Model-based Testing User Survey: Results and
Analysis.” Jan-2012.

[3] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp.
297–312, 2012.

[4] G. Behrmann, A. David, and K. Larsen, “A Tutorial on Uppaal,” in
Formal Methods for the Design of Real-Time Systems, vol. 3185, M.
Bernardo and F. Corradini, Eds. Springer Berlin Heidelberg, 2004, pp.
200–236.

[5] Kiczales and Others, “Aspect-Oriented Programming,” in ECOOP ’97
- Object-Oriented Programming, 1997, vol. 1241, pp. 140–149.

[6] M. Badri, L. Badri, and M. Bourque-Fortin, “Generating unit test
sequences for aspect-oriented programs: towards a formal approach
using UML state diagrams,” in Information and Communications
Technology, 2005. Enabling Technologies for the New Knowledge
Society: ITI 3rd International Conference on, 2005, pp. 237–253.

[7] S. Clarke and E. Baniassad, Aspect-Oriented Analysis and Design. The
Theme Approach. Addison-Wesley, 2005.

[8] S. Ali, T. Yue, and L. Briand, “Assessing Quality and Effort of
Applying Aspect State Machines for Robustness Testing: A Controlled
Experiment,” in Software Testing, Verification and Validation (ICST),
2013 IEEE Sixth International Conference on, 2013, pp. 212–221.

[9] Shaukat Ali, Tao Yue, Lionel C. Briand, “Does Aspect-Oriented
Modeling Help Improve the Readability of UML State Machines?,”
Software & Systems Modeling, vol. 13, no. 3, pp. 1189–1221, 2014.

[10] D. Truscan and Others, “A Tool-supported Approach for Introducing
Aspects in UPPAAL Timed Automata,” in Software Technologies -
The 9th International Conference, ICSOFT 2014, Vienna, Austria,
2014, Revised Selected Papers, 2014.

[11] N. G. Jörg Kienzle and S. Mustafiz, “Crisis Management Systems: A
Case Study for Aspect-Oriented Modeling,” Transactions on Aspect-
Oriented Software Development, vol. 7, pp. 1–22, 2010.

[12] Omg, “Unified Modeling Language Infrastructure Specification,
version 2.1.2.” Oct-2007.

[13] A. Mehmood and D. N. A. Jawawi, “A quantitative assessment of
aspect design notations with respect to reusability and maintainability
of models,” in Software Engineering Conference (MySEC), 2014 8th
Malaysian, 2014, pp. 136–141.

[14] S. Ali, L. C. Briand, A. Arcuri, and S. Walawege, “An Industrial
Application of Robustness Testing Using Aspect-Oriented Modeling,
UML/MARTE, and Search Algorithms,” in Lecture Notes in Computer
Science, 2011, pp. 108–122.

[15] A. Hessel and Others, “Testing Real-Time Systems Using UPPAAL,”
in Formal Methods and Testing, Springer-Verlag, 2008, pp. 77–117.

[16] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms and
Tools,” in Lectures on Concurrency and Petri Nets, vol. 3098, J. Desel,
W. Reisig, and G. Rozenberg, Eds. Springer Berlin Heidelberg, 2004,
pp. 87–124.

[17] E. Katz and S. Katz, “Incremental Analysis of Interference Among

Aspects,” in Proceedings of the 7th Workshop on Foundations of
Aspect-oriented Languages, Brussels, Belgium, 2008, pp. 29–38.

[18] J. Iqbal, L. Tsiopoulos, D. Truscan, J. Vain, and I. Porres, “The Crisis
Management System – A Case Study in Aspect-Oriented Modeling
Using UPPAAL,” Turku Centre for Computer Science, 2016.

[19] M. Rong, Z. Li, and G. Zhang, “Model Checking of Needham-
Schroeder Protocol Using UPPAAL,” in 2010 6th International
Conference on Wireless Communications Networking and Mobile
Computing (WiCOM), 2010, pp. 1–4.

[20] K. Čerāns, “Decidability of bisimulation equivalences for parallel timer
processes,” in Computer Aided Verification: Fourth International
Workshop, CAV ’92 Montreal, Canada, June 29 -- July 1, 1992
Proceedings, G. von Bochmann and D. K. Probst, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 302–315.

http://paperpile.com/b/h0k6dv/COCH
http://paperpile.com/b/h0k6dv/COCH
http://paperpile.com/b/h0k6dv/COCH
http://paperpile.com/b/h0k6dv/COCH
http://paperpile.com/b/h0k6dv/dkUr
http://paperpile.com/b/h0k6dv/dkUr
http://paperpile.com/b/h0k6dv/mgc6
http://paperpile.com/b/h0k6dv/mgc6
http://paperpile.com/b/h0k6dv/mgc6
http://paperpile.com/b/h0k6dv/mgc6
http://paperpile.com/b/h0k6dv/mgc6
http://paperpile.com/b/h0k6dv/GmhH
http://paperpile.com/b/h0k6dv/GmhH
http://paperpile.com/b/h0k6dv/GmhH
http://paperpile.com/b/h0k6dv/GmhH
http://paperpile.com/b/h0k6dv/GmhH
http://paperpile.com/b/h0k6dv/GmhH
http://paperpile.com/b/h0k6dv/Aiwg
http://paperpile.com/b/h0k6dv/Aiwg
http://paperpile.com/b/h0k6dv/Aiwg
http://paperpile.com/b/h0k6dv/Aiwg
http://paperpile.com/b/h0k6dv/Y5A1
http://paperpile.com/b/h0k6dv/Y5A1
http://paperpile.com/b/h0k6dv/Y5A1
http://paperpile.com/b/h0k6dv/Y5A1
http://paperpile.com/b/h0k6dv/Y5A1
http://paperpile.com/b/h0k6dv/Y5A1
http://paperpile.com/b/h0k6dv/Y5A1
http://paperpile.com/b/h0k6dv/mhxb
http://paperpile.com/b/h0k6dv/mhxb
http://paperpile.com/b/h0k6dv/mhxb
http://paperpile.com/b/h0k6dv/mhxb
http://paperpile.com/b/h0k6dv/4biU
http://paperpile.com/b/h0k6dv/4biU
http://paperpile.com/b/h0k6dv/4biU
http://paperpile.com/b/h0k6dv/4biU
http://paperpile.com/b/h0k6dv/4biU
http://paperpile.com/b/h0k6dv/4biU
http://paperpile.com/b/h0k6dv/RVbF
http://paperpile.com/b/h0k6dv/RVbF
http://paperpile.com/b/h0k6dv/RVbF
http://paperpile.com/b/h0k6dv/RVbF
http://paperpile.com/b/h0k6dv/4AzS
http://paperpile.com/b/h0k6dv/4AzS
http://paperpile.com/b/h0k6dv/4AzS
http://paperpile.com/b/h0k6dv/4AzS
http://paperpile.com/b/h0k6dv/4AzS
http://paperpile.com/b/h0k6dv/4AzS
http://paperpile.com/b/h0k6dv/wwLS
http://paperpile.com/b/h0k6dv/wwLS
http://paperpile.com/b/h0k6dv/wwLS
http://paperpile.com/b/h0k6dv/wwLS
http://paperpile.com/b/h0k6dv/wwLS
http://paperpile.com/b/h0k6dv/mNor
http://paperpile.com/b/h0k6dv/mNor
http://paperpile.com/b/h0k6dv/Mx4x
http://paperpile.com/b/h0k6dv/Mx4x
http://paperpile.com/b/h0k6dv/Mx4x
http://paperpile.com/b/h0k6dv/Mx4x
http://paperpile.com/b/h0k6dv/Mx4x
http://paperpile.com/b/h0k6dv/Mx4x
http://paperpile.com/b/h0k6dv/3lCh
http://paperpile.com/b/h0k6dv/3lCh
http://paperpile.com/b/h0k6dv/3lCh
http://paperpile.com/b/h0k6dv/3lCh
http://paperpile.com/b/h0k6dv/3lCh
http://paperpile.com/b/h0k6dv/3lCh
http://paperpile.com/b/h0k6dv/Emcf
http://paperpile.com/b/h0k6dv/Emcf
http://paperpile.com/b/h0k6dv/Emcf
http://paperpile.com/b/h0k6dv/Emcf
http://paperpile.com/b/h0k6dv/52Oe
http://paperpile.com/b/h0k6dv/52Oe
http://paperpile.com/b/h0k6dv/52Oe
http://paperpile.com/b/h0k6dv/52Oe
http://paperpile.com/b/h0k6dv/52Oe
http://paperpile.com/b/h0k6dv/52Oe
http://paperpile.com/b/h0k6dv/Myqx
http://paperpile.com/b/h0k6dv/Myqx
http://paperpile.com/b/h0k6dv/Myqx
http://paperpile.com/b/h0k6dv/Myqx
http://paperpile.com/b/h0k6dv/Myqx
http://paperpile.com/b/h0k6dv/nsaa
http://paperpile.com/b/h0k6dv/nsaa
http://paperpile.com/b/h0k6dv/nsaa
http://paperpile.com/b/h0k6dv/Xm1a
http://paperpile.com/b/h0k6dv/Xm1a
http://paperpile.com/b/h0k6dv/Xm1a
http://paperpile.com/b/h0k6dv/Xm1a
http://paperpile.com/b/h0k6dv/Xm1a
http://paperpile.com/b/h0k6dv/Xm1a
http://paperpile.com/b/h0k6dv/ny7T
http://paperpile.com/b/h0k6dv/ny7T
http://paperpile.com/b/h0k6dv/ny7T
http://paperpile.com/b/h0k6dv/ny7T
http://paperpile.com/b/h0k6dv/ny7T
http://paperpile.com/b/h0k6dv/ny7T
http://paperpile.com/b/h0k6dv/ny7T

	I. Introduction
	II. Related Work
	III. Preliminaries
	A. UPPAAL Timed Automata
	B. Aspect-Oriented Modeling with UPPAAL TA
	1) Mapping aspect-oriented concepts to UPPAAL TA
	2) Weaving Adapters
	3) Weaving Process:

	IV. Case Study – Crisis Management System
	1) Traditional approach: Fig. 3 depicts the flat version of CMS specified using the traditional modeling approach, containing a Coordinator, an AuthResponder and a resource (flatResource0) process (only Coordinator, one Resource and corresponding Aut...

	V. Evaluation of the Method
	A. Modeling Update Effort Evaluation
	C. Evaluation of the Verification Effort

	VI. Conclusions
	Acknowledgments

