
NoC Interface for a Protocol Processor
Seppo Virtanen, Jani Paakkulainen, Tero Nurmi, Jouni Isoaho

University of Turku, Dept. of Information Technology
and Turku Centre for Computer Science (TUCS)

Lemmink̈aisenkatu 14 A, FIN-20520 Turku, Finland
Email: seppo.virtanen@utu.fi, jani.paakkulainen@utu.fi, tero.nurmi@utu.fi, jouni.isoaho@utu.fi

Abstract— In this paper we present our design and imple-
mentation of Network-on-Chip (NoC) support into our TACO
protocol processor architecture. Our signaling scheme is Virtual
Component Interface standard (VCI) compliant. Due to the data-
and I/O-intensive nature of protocol processing, memory access
from I/O logic plays a key role in NoC interface design. We have
addressed this problem by using dual-port memory for protocol
data units (PDUs) and a separate single port memory for other
user data. We evaluated our NoC interface with VHDL synthesis
of a case study in IPv6 processing. Based on our simulations and
synthesis, the logic part is able to operate at 200 MHz in 0.18µm
CMOS technology. Adding a NoC interface into our architecture
did not considerably increase area and power costs.

I. I NTRODUCTION

With tightening design schedules and more complex ver-
ification requirements, the decision to include an IP block
in a SoC or NoC design often depends on the on-chip
communication mechanisms supported by the IP. If several
IP blocks are available for the same on-chip functionality or
processing task, the ones without support for typical on-chip
communication schemes are among the first to be discarded.
The Virtual Component Interface Standard (VCI) [13] defines
on-chip interfaces for interconnecting different kinds of com-
plex IP blocks. VCI makes it possible for compliant IPs to
communicate with each other easily and without errors. By
adhering to the interface definitions given in the VCI standard,
IPs developed in different organizations can be integrated into
a single network-on-chip with less effort and thus in less time.

In our research project TACO (Tools for Application-
specific Hardware/Software Codesign) we are developing a
methodology for obtaining an optimized protocol processor
architecture, its instruction set and application code from a
high abstraction level protocol processing application descrip-
tion. We have developed a transport triggered base protocol
processor architecture [10], [12] and system-level simulation,
physical characteristics estimation and synthesis models for it
[4], [9], [11].

The external communication in our TACO protocol proces-
sor architecture has until now been conducted using custom
solutions. For some time we have seen it necessary to en-
hance the architecture by adding support for a standard on-
chip communication scheme. Recently we were invited to
participate in a NoC design co-operation project within the
national COMPLAIN research project in Finland. We were
asked to provide an IPv6 client implementation of our TACO

protocol processor architecture for inclusion in a multimedia
processing NoC platform. The IPv6 client core was required
to be BVCI (Basic VCI) [13] compliant. Thus, we proceeded
to specify, design and implement a BVCI interface module
into our protocol processor architecture. The module acts as
a wrapper that maps signals from our existing input/output
blocks to VCI compliant signals towards an on-chip bus.

In the following pages, we first give an overview of our
TACO protocol processor design framework and the base
processor architecture. Then we present our design and imple-
mentation of a VCI-compliant Network-on-Chip interface. We
conclude the paper with results from a case study, in which
we were especially interested in determining the amount of
additional area and power required by adding a NoC interface
into our architecture.

II. T HE TACO PROTOCOL PROCESSOR PLATFORM

The challenge in protocol processor design is to find an
architecture that is a good compromise between a general
purpose processor and a custom, protocol-specific processor
(ASIC): ideally the architecture should be programmable,
and at the same time optimized for a family of protocols
and tasks required in the processing of these protocols. The
TACO protocol processor design framework [9] addresses this
design problem by providing tools and methods for helping the
designer in specifying, simulating, evaluating and synthesizing
programmable protocol processors. These protocol processors
are called TACO processors [10], [12].

The starting point in the TACO design flow is a high level
application description or specification. The development of
the application software guides the processor design work so
that the processing requirements of the application determine
the hardware architecture of a protocol processor [3], [8].
The approach is quite different from what is found in most
commercial protocol processors available today. They are most
often multiprocessors with high performance general purpose
computing elements.

The TACO protocol processor architecture, as seen in Fig.
1, is based on transport triggered architectures (TTA) [1], [7].
The most important difference between TTAs and traditional
processors is that in TTAs operations occur as side effects
of programmed data transports. In traditional processors the
operations are programmed, and data transports occur as side
effects of the programmed operations. A TTA based processor



Network Controller
Interconnection 

output socket
Input and

connections

memory
Program User data

In
te

rc
on

ne
ct

io
n 

N
et

w
or

k

SFU

SFU

Generic Registers uMMU

memory

dMMU

memory
Protocol data

SFU

SFU Output FU

Input FU

SFU

Data packets and
host interface

Fig. 1. A functional view of the TACO architecture.

is composed of functional units (FUs) that communicate via
an interconnection network. This network of data buses is
controlled by a special-purpose controller unit. The FUs are
connected to the buses through modules called sockets. It was
observed in the TACO project that this kind of modularity
facilitates both component reuse and hardware design automa-
tion.

Although TTA based, the TACO architecture differs from
basic TTA in many ways. The reader is referred to [12] for a
detailed discussion on the differences. Within the scope of this
paper we limit ourselves to stating one important difference
between the two architectures: all TACO functional units are
Special Functional Units (SFUs, as seen in Fig. 1). The generic
TTA FUs as described in [1] are missing from the TACO
architecture. SFUs are FUs with a distinct application-domain
specific task to execute, and usually they can not efficiently
be used in some other application domain. The application
domain for TACO SFUs is protocol processing.

The SFUs in TACO processors have a varying number of
input and output registers with programmable addresses. SFU
operations are executed every time data is moved to a specific
kind of input register, the trigger register. Each SFU has one
trigger register, and each SFU performs a specific protocol
processing task or operation (for example, CRC calculation or
logical comparisons).

The benefit of TTA-based platforms is their modularity and
scalability. Functional units can be added to the architecture
or they can be refined and changed as long as they provide
the same interface to the sockets connecting them to the
interconnection network. The TACO architecture (see Fig.
1) is therefore more of a template for protocol processors,
instantiated for a specific protocol, or family of protocols.
Extensive component and module reuse is typical for TACO
design projects.

III. TACO N OC INTERFACE

As seen in Fig.1, data and control I/O in TACO processors
is normally managed by two SFUs, the input and output FUs.

O
ut

A
dr

O
ut

D
at

a

Data 

Ack

TACO protocol processor

dMMU 

SRAM

INPUT FU

OUTPUT FU

T
A

C
O

 B
V

C
I 

in
te

rf
ac

e 
w

ra
pp

er
 m

od
ul

e

O
n−

C
hi

p 
bu

s 
B

V
C

I 
In

te
rf

ac
e

On−Chip bus

On−Chip bus

BVCI
signals

Interface
SRAM

T
o/

Fr
om

In
te

rc
on

ne
ct

io
n 

N
et

w
or

k

In
te

rc
on

ne
ct

io
n 

N
et

w
or

k
In

te
rc

on
ne

ct
io

n 
N

et
w

or
k

T
o/

Fr
om

T
o/

Fr
om

In
D

at
a

T
ri

gg
er

A
ck

T
ri

gg
er

A
ck

Data Length 

Data

Trigger

Ack

Data Length 

Trigger

In
A

dd
r

Fig. 2. Connections between the interconnection network, internal datagram
memory, input and output FUs and the BVCI interface in a TACO processor.

These two units take care of all external connections. Until
now we have used a proprietary signalling scheme in the
input and output FUs. To implement BVCI support into our
architecture, we had two major design alternatives:

1. Remove the input and output FUs and replace them with
BVCI compliant FUs.

2. Design a wrapper module that maps signals from the
existing FUs to BVCI signals.

We decided to proceed with alternative2. This way we
would not have to redesign the existing FUs and we would
be loyal to one of the key principles within the TACO design
framework: modularity. With a wrapper module we could
include BVCI support when necessary, and leave it out in
projects that do not require NoC bus compliancy.

The I/O path in TACO processors is constructed of the input
and output FUs, the protocol data MMU (dMMU) and the
protocol data memory. Fig. 2 shows the connections between
the modules in the path and how the new BVCI wrapper
module connects to the path. The dMMU manages access to
the dual-port protocol data memory. If dMMU notifies the
Input FU that incoming data can be written into the memory,
the data is passed through the Input FU and dMMU to the
memory. Some information, like the base memory address
of the incoming protocol data unit (PDU), is stored into the
Input FU. While the PDU is being written into the memory, its
processing can be started by the other functional units through
the interconnection network. Since the memory is dual-port,
it can simultaneously be read from and written to as long as
the operations do not concern the same address.

To write modified data back into the protocol data memory,
the functional units accessing the memory through the inter-
connection network need to either wait for the incoming PDU
write to finish, or to use the user data memory (see Fig. 1) for
temporary storage. This of course depends on the application
and its program code implementation.

Once the PDU has been processed, the Output FU is
informed of an outbound PDU. The Output FU accesses the
protocol data memory from a given base address and sends out



R
SP

V
A

L

R
D

A
T

A

R
E

R
R

O
R

R
E

O
P

R
SP

A
C

K

From TACO Output FUTo TACO Input FU

...

B
V

C
I 

SI
G

N
A

L
S

C
L

E
N ...

FIFOTest unit
Command

Response
Error andTrigger and

Transfer
Trigger and
Transfer Response

Resend and

C
M

D
A

C
K

W
D

A
T

A

C
M

D
V

A
L

R
SP

V
A

L

R
D

A
T

A

R
E

R
R

O
R

R
E

O
P

R
SP

A
C

K

C
M

D
V

A
L

W
D

A
T

A

C
L

E
N

C
M

D
A

C
K

B
V

C
I 

SI
G

N
A

L
S

T
ri

gg
er

D
at

a

D
at

a 
le

ng
th

A
ck

T
ri

gg
er

D
at

a

D
at

a 
L

en
gt

h

A
ck

FROM BVCI INITIATOR TO BVCI TARGET

Fig. 3. Functional block diagram of the TACO NoC wrapper module.

a given number of data words. In our current implementation
the Output FU blocks other read accesses to the protocol data
memory while it sends a processed PDU. While the Output FU
is sending a PDU, a new PDU can simultaneously be written
into the protocol data memory through the Input FU and its
processing can start immediately.

So far the above memory access scheme has not caused
problems for us in terms of performance. Due to the ba-
sic nature of communication protocols, PDUs are always
of reasonable size (no matter which protocol is used). So,
transferring PDUs does not block the rest of the processing for
too long. Also, PDU processing can usually be carried out at a
much higher speed than the speed at which the PDUs appear at
the inputs of the processor. The reason we have implemented
the memory access this way is to be able to use dual-port
memory; if the Input and Output FUs and the interconnection
network should all have simultaneous access to the protocol
data memory, a four-port memory implementation would be
needed. Another solution that we intend to explore in the near
future is to design and implement an equal-priority arbitration
scheme into the dMMU. Naturally, a four-port access scheme
would still be the fastest alternative, if it could be implemented
at the same speed as two-port access.

Fig. 3 shows the internal structure of the TACO VCI
wrapper module. On the input side (left side of Fig. 3), the
TACO protocol processor acts as a VCI target and the VCI
interface on the on-chip network side acts as a VCI initiator.
The communication is started by the initiator raising the
CMDVAL signal and asserting certain other VCI signals (e.g.
WDATA, CMD, CLEN). On CMDVAL, the TACO interface
wrapper checks that the correct VCI command is issued. If the
command is incorrect, the wrapper responds by generating a
VCI error packet to the on-chip originator of the erroneous
data. If the command is correct, the wrapper raises the trigger
signal towards the Input FU. If the Input FU responds with
an Ack, the CMDACK signal is raised, and data transfer from
the on-chip network to the TACO dMMU begins.

On the output side (right side of Fig. 3), the TACO wrapper
acts as the VCI initiator. When the Output FU is ready to send
data to an on-chip IP, it raises the trigger signal. The wrapper
responds with an Ack towards the Output FU, if there is space
left on the output FIFO of the wrapper. If the FIFO is full, the
Ack is not asserted. The FIFO size is parameterizable, and is

typically set to match the packet size of the on-chip network.
With at least one item in the FIFO, the wrapper raises the
CMDVAL signal towards the VCI interface on the on-chip
network side. As soon as a CMDACK signal is detected by
the wrapper, data from the FIFO is transferred over the VCI
interface to the target.

IV. I MPLEMENTATION

As mentioned in the introduction, we were invited to partic-
ipate in a NoC design co-operation project within the national
COMPLAIN research project in Finland. The objective in the
co-operation was to combine existing IPs developed in the par-
ticipating universities into a multimedia processing Network-
on-Chip platform. The target application for the platform was
specified to be receiving, decrypting and decompressing an
encrypted MPEG video stream transmitted over a WLAN-
IPv6 connection. The main building blocks for the platform
were the PROTEO packet switching on-chip network [6], a
TACO processor for IPv6 processing, an RSA decryption unit
[5] and a RISC processor core for decompressing the video
stream. The PROTEO network required VCI compliancy from
all included IPs. The platform was required to be able to
process incoming data in a 100 Mbps network environment.

We had already previously designed and implemented a
TACO processor for IPv6 routing [12]. For the NoC platform
we needed to provide an IPv6 client processor. The processor
should receive and verify incoming IPv6 datagrams and re-
move the IPv6 header information from them. The datagram
payloads should then be transported to the decryption block
through the PROTEO on-chip network. After examining the
IPv6 client application we decided to modify the existing
router processor architecture and its application code to obtain
an IPv6 client processor model. Using the available modules
in our TACO libraries we constructed a processor architecture
instance with one 32-bit internal data bus, and the functional
units listed in table I. After specifying the architecture for
IPv6 client operation we specified and implemented a BVCI
wrapper unit between the NoC interface and the TACO input
and output FUs as described in the previous section.

SystemC simulations of the TACO IPv6 client and its ap-
plication code revealed that the IPv6 client operation requires
1920 clock cycles per datagram. In a 100 Mbps network
environment (with a peak transmission rate of about 8300
datagrams per second) this means that the minimum clock
speed for a TACO IPv6 client with the chosen set of functional
units and interconnection buses is 17 MHz. We proceeded
to synthesize the TACO IPv6 client using 0.18µm CMOS
technology and a standard cell library with the target clock
speed of 200 MHz. Targeting the synthesis to this clock speed
should make it possible for the IPv6 client to operate at
network speeds of up to 1 Gbps. The module areas obtained
from synthesis are shown in Table II.

Power consumption of different TACO modules and the
wrapper module has been estimated with an early estimation
model based on Rent’s rule [2]. From Rent’s rule and the



FU type description
Matcher Find a bitstring inside another data word
Shifter Shift data logically left or right
Comparator Make Boolean evaluations (<,>,=, ...)
Masker Replace sequence of bits with another sequence
IP Checksum Calculate IP checksum for given words
Counter Count up or down
Input FU Data/host input
Output FU Data/host output
dMMU Packet (datagram) memory management
uMMU User data memory management

TABLE I

IPV6 CLIENT FUNCTIONAL UNITS AND THEIR DESCRIPTIONS.

Estimated Synthesized
average power area

[mW] [µm2]
Matcher 14.9 12 851
Shifter 26.9 19 302
Comparator 34.1 17 197
Masker 13.0 11 335
Checksum 34.2 15 595
Counter 32.9 11 782
Input FU 30.5 26 064
Output FU 28.7 17 002
dMMU 15.6 11 721
uMMU 8.4 7342
Sockets (35) 79.1 31 720
Network Controller 33.4 21 169
Total (IPv6 client part) 351.7 203 080
BVCI Interface wrapper 33.7 23 137
Total (IPv6 client with BVCI wrapper) 385.4 226 217

TABLE II

ESTIMATED POWER CONSUMPTION AND SYNTHESIZED AREAS FOR ALL

MODULES IN THE TACO IPV6 CLIENT PROTOCOL PROCESSOR.

information on standard cell library (0.18µm) we can estimate
the number of gates and the power consumption in all modules.

Designer experience helps in estimating Rent’s constant (i.e.
the average number of I/Os in one logic gate) and corre-
sponding Rent’s exponent. In the estimations we used NAND2
gate and D flip flop as our basic gates (both with driving
strength of 2) representing combinatorial and sequential logic,
respectively. In power estimation the frequency of 200 MHz
has been used.

The results presented in Table II revealed that the BVCI
wrapper module did not considerably increase the size or
power use of the IPv6 client processor. In fact, the increase
in both size and power use is about the same as the cost of
adding one functional unit into the architecture. For the IPv6
client processor discussed above, the area is increased by 10
% and the estimated power consumption by 9 %. The relative
increase in area and power consumption is naturally reduced
as more functional units and interconnection network buses
are added in the architecture. The number of functional units
and buses needed in a TACO architecture increases with the
complexity of the target application.

V. CONCLUSIONS

We presented the latest improvement to our protocol proces-
sor architecture, a VCI compliant NoC interface. By resorting
to the VCI standard, we see ourselves now able to provide
TACO processors as IPs to a variety of NoC projects. Our
NoC interface acts as a wrapper that maps signals from the
input/output functional units of our protocol processors to VCI
compliant signals towards an on-chip NoC bus.

Our implementation showed that the amount of additional
area and power required by adding a NoC interface into our
architecture was tolerable: our case study of an IPv6 client
processor required 10 % more area and 9 % more power with
VCI support included. As a generalization, we concluded that
the area and power consumed by our VCI interface wrapper
module equals the area and power consumed by an average
functional unit. The IPv6 client was synthesized using 0.18
µm CMOS technology and a standard cell library with the
target clock speed of 200 MHz. Targeting the synthesis to this
clock speed makes it possible for the IPv6 client to operate at
network speeds of up to 1 Gbps.

REFERENCES

[1] H. Corporaal.Microprocessor Architectures - from VLIW to TTA. John
Wiley and Sons Ltd., Chichester, West Sussex, England, 1998.

[2] B. S. Landman and R. L. Russo. On a pin versus block relationship
for partitions of logic graphs.IEEE Transactions on Computers, C-
20(12):1469–1479, December 1971.

[3] J. Lilius and D. Truscan. UML-driven TTA-based protocol processor
design. InProceedings of the 2002 Forum for Design and Specification
Languages (FDL’02), Marseille, France, September 2002.

[4] T. Nurmi, S. Virtanen, J. Isoaho, and H. Tenhunen. Physical modeling
and system level performance characterization of a protocol processor
architecture. InProceedings of the 18th IEEE NORCHIP Conference,
pages 294–301, Turku, Finland, November 2000.

[5] T. Ristimäki and J. Nurmi. Implementation of a fast 1024-bit RSA
encryption on platform FPGA. InProceedings of the 6th IEEE Interna-
tional Workshop on Design and Diagnostics of Electronics Circuits and
Systems (DDECS’03), Poznan, Poland, April 2003.

[6] D. Sigüenza-Tortosa and J. Nurmi. Proteo: A new approach to network-
on-chip. In Proceedings of the IASTED International Conference
on Communication Systems and Networks (CSN’02), Malaga, Spain,
September 2002.

[7] D. Tabak and G. J. Lipovski. MOVE architecture in digital controllers.
IEEE Transactions on Computers, 29(2):180–190, February 1980.

[8] S. Virtanen and J. Lilius. The TACO protocol processor simulation
environment. In Proceedings of the 9th International Symposium
on Hardware/Software Codesign (CODES’01), pages 201–206, Copen-
hagen, Denmark, April 2001.

[9] S. Virtanen, J. Lilius, T. Nurmi, and T. Westerlund. TACO: Rapid design
space exploration for protocol processors. Inthe Ninth IEEE/DATC
Electronic Design Processes Workshop Notes, Monterey, CA, USA,
April 2002.

[10] S. Virtanen, J. Lilius, and T. Westerlund. A processor architecture for the
TACO protocol processor development framework. InProceedings of
the 18th IEEE NORCHIP Conference, pages 204–211, Turku, Finland,
November 2000.

[11] S. Virtanen, D. Truscan, and J. Lilius. SystemC based object oriented
system design. InProceedings of the 2001 Forum on Design Languages
(FDL’01), Lyon, France, September 2001.

[12] S. Virtanen, D. Truscan, and J. Lilius. TACO IPv6 router - a case study
in protocol processor design. Technical Report 528, Turku Centre for
Computer Science, Turku, Finland, April 2003.

[13] VSI Alliance. Virtual Component Interface Standard. VSIA, April 2001.


