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Abstract

The correctness of functional and non-functional proper-
ties of hardware components is ensured during develop-
ment cycles conventionally by simulation. Also differ-
ent description languages are needed during development
phases. With Action Systems, we are able to use the same
formalism from a specification down into an implementa-
tion. In this study we present timed Action Systems, an
extension of Action Systems, with which a non-functional
property, time, can be modelled. We show how untimed
models are transformed into timed ones, and how timing
characteristics of a model are analysed.

1 Introduction

Formal methods provide an environment to specify, de-
sign and verify digital hardware devices with the bene-
fits of a rigorous mathematical basis. The Action Systems
formalism [3], which we use in this study, is one of such
methods. It is a framework for specification and correct-
ness preserving development of concurrent systems and it
is based on an extended version of Dijkstra’s language of
guarded commands [6]. Therefore, it offers a powerful
stepwise design environment for digital hardware devices.
It has already been successively proved to be suitable for
designing both asynchronous [8] and synchronous [9] dig-
ital hardware systems. Development of action systems is
done in a stepwise manner within the refinement calculus
[2].

The specification of a hardware system is transformed
into an implementation using correctness preserving trans-
formations. In conventional Action Systems, only logical
correctness of the system is verified during the transfor-
mations. Non-functional properties, like timing and area,
of the end product are not validated.

In this study we introduce timed Action Systems, which
is an extension of Action Systems. With timed Action Sys-
tems, we are able to formally specify timing of a hardware
system. This gives us an opportunity to formally anal-
yse, using precise mathematical calculations, timing dur-
ing the development phases from specification down to
implementation. When using informal design language,
such as VHDL or Verilog, verification is based on simu-
lation, which is always incomplete operation. We show
how an untimed model of a hardware component is trans-
formed into a timed one. We also give an example of tim-
ing analysis of a hardware component.

2 Action Systems

An actionA is defined by

A ::= abort (abortion, non-termination)

| skip (empty statement)

| A1 8 . . . 8 An (non-deterministic choice)

| A1 � . . . � An (prioritised composition)

| A1; . . . ; An (sequential composition)

| x := e ((multiple) assignment)

| p → A (guarded action)

whereA andAi, j = 0..n, are actions;x is a variable or a
list of variables;x0 is a value(s) of the variable(s);e is an
expression or a list of expressions;R andp are predicates.

The actions are defined using weakest precondition [6]
for predicate transformers. For example:

wp(skip, Q) = Q, wp(x := e, Q) = Q[e/x] .

Actions and action composition are considered atomic,
which means that only their pre- and post-states are ob-
servable, and when they are chosen for execution they can-
not be interrupted by external counterparts.

The guard gA of an action A is defined by
gA =̂¬wp(A, false). An action is said to be enabled
when its guard evaluates to true, disabled otherwise. If
the action has a guard that is invariantlytrue, it is always
enabled. The guard of a guarded actionb → A is given as:
b ∧ gA.

A quantified compositionof actions is defined by[• 1 ≤
i ≤ n : Ai]=̂A1 • . . . • An , where the bullet• denotes
any of the composition operators, andn is the number of
actions (n ∈ N).

A substitutionoperation within an actionA is denoted
by A[e′/e] wheree refers to an element (variable, pred-
icate, etc.) of the original actionA, ande′ denotes the
new element, which replacese in A. The same notation is
applied to action systems as well.

2.1 Action System

An action system has a form:
sys Name (g)
|[
const c
var l
actions actions
init g, l = g0, l0
do composition of actions od

]|



in which we can identify three parts:interface, declara-
tions, anditeration. The interface part specifies those vari-
ables,g, that are visible outside the action system bound-
aries, and thus accessible by other action systems. If an
action system does not have any interface variables, it is
a closed action system, otherwise it isan open action sys-
tem. In the declarations part actions both (actions) and
constants (c), variables (v), and their initialisations are de-
clared. Using the items introduced in the interface and
declarative parts the behaviour of the system is described
in the iteration section; thedo-od loop.

The operation of an action system is started by initiali-
sation in which the variables are set to predefined values.
Then in the iteration, actions are selected for execution
based on the composition operators and the enabledness
of the actions. This is continued until there are no en-
abled actions after which the action system is temporarily
aborted until some other action enables it.

Parallel Action System. Consider action systemsA
and B in which both action names and local variables
(lA ∩ lB = ∅) are distinct, and a communication vari-
ables are a setgA ∩ gB . We require that the initialisations
of the communication variablesgA ∩ gB in the systemsA
andB are consistent with each other, so that initial values
are equivalent in the systems. The functionality of the ac-
tion systemsA andB is specified by actionsA andB, re-
spectively. Theparallel compositionof A andB, denoted
A ‖ B, is the action system:

sys A ‖ B ( gA ∪ gB )
|[
var lA ∪ lB actionsA, B
init (gA ∪ gB), lA, lB = (gA0 ∪ gB0), lA0, lB0
do A 8 B od

]|
Thus the parallel composition combines the state spaces of
the constituent action systems keeping the local variables
lA and lC distinct. The action systemsA andB do not
terminate independently of each other, but termination is
a global property ofC.

3 Semantics of Timed Actions

In conventional Action Systems computation does not take
time, a reaction is instantaneous – and therefore atomic in
any possible sense. This is due to its software tailored
background. In hardware systems time has a crucial role:
for example in sychronous systems the time used in oper-
ation is restricted by the clock. In this paper, we take the
view that every computation consumes time.

3.1 Time

The time at which we start computation is set in the ini-
tialisation of the action system. Conventionally a system
time is initialised to zero, but it is of no importance be-
cause only the relative time among events is relevant. We
define the time domainT be dense [1, 5] (R+), and con-
tinuous [5] (∀t1∃t2.(t1 > t2)).

In an alternative approach a time domain is represented
as natural numbers (N) or integers (Z) as in [7]. However,

we see that non-negative real numbers offers more free-
dom on designing hardware systems; and furthermore, a
discrete time can be modelled in continuous time domain
by taking samples at certain intervals.

3.2 Timed Behaviour

Behaviour of an action system is a sequences of states
with two components [4]:s =< (l1, g1), (l2, g2), . . . >,
where li and gi (i ∈ N) are states of local and global
variables, respectively. Atimed behaviouris a sequence
t: t =< (l1, g1, ct1), (l2, g2, ct2), . . . > [1, 7], wherecti
denotes the time when there was change in a state, and
cti ≤ cti+1. Thus, we have introduced a new variablecti
into the sequences. The new variable carries information
about the time elapsed from the start of the system.

A trace, a sequence of observable states, in the Ac-
tion Systems is formed by removing all the local vari-
ables from the states in the sequences, and then removing
all the consecutive states that are identical, called stutter-
ing states [4]. Atimed traceis formed using the same
procudere except that the time variables, which are local
variables, are not removed. Thus, a timed trace [1, 7] is:
tr =< (g1, ct1), (g2, ct2), . . . >.

4 Timed Actions

Consider an action systemA with the following do-od–
loop in which the actions are prioritised over an actionFt.
The priorisation ensures that every action that is enabled
will be chosen for execution before the actionFt is exe-
cuted. We have:

do [ 8 1 ≤ i ≤ n : Ai] � Ft od .

whereAi is a timed action of formAi=̂Ao,i 8Aw,i 8Ar,i,
whereAo,i is anoperationaction,Aw,i is awrite action,
andAr,i is areleaseaction. The actions are defined by:

Ao,i b= ¬b[i] ∧ gA → Ai[u/w]; b[i], ft[i] := T, ct + d[i] ,

Aw,i b= b[i] ∧ (ct = ft[i]) ∧ gA → w[i], b[i] := u[i], F ,

Ar,i b= b[i] ∧ ¬gAi → b[i] := F ,

wherei is the number of actions,i ∈ N, ct denotesa
current timeinside the action system,d is a delayspecific
for a given action, andft, calleda future time, stores the
time when the write variable will be updated. The boolean
variableb sequences the operation into two parts. The ac-
tion Ft is called anupdateaction. It sets the future time
to current time. It is defined by.

Ft b= [ 8 1 ≤ i ≤ n : min[i] → ct := ft[i]] ,

wheren is the number of timed actions (n ≥ 1 ∧ n ∈ N),
and the guardmin[i], given as:

min[i]b=(ft[i] > ct) ∧ (∀j.1 ≤ j ≤ n ∧ j 6= i ⇒ (ft[i] ≤ ft[j])) ,

explores the values of future timesft[i]. It evaluates to
true if a future timeft[i] is greater than the current timect
and no other future timeft[j] is smaller than it is. Future
time is calculated in the actionAo by adding the delayd
to the current timect, ft := ct + d.

An activity of an action is performed in the operation
action. The result of the activity is postponed by a speci-
fied delayd[i] after which it is written in the write action



to an output variablew[i]. The release action is only used
when an timed action is disabled during the delay, that is,
it prevents a timed action beingdeadlocked. This kind
of situation may arise when several timed actions are en-
abled and executed at the same time, and moreover, they
are modelled to disable each other. The result of the de-
scribed behaviour is that only the winning action (cho-
sen non-deterministically) may proceed, whereupon other
timed actions are disabled forever without the actionAr.

A shorthand notationfor a timed action is presented to
prevent large, complex descriptions to become opaque. It
hides all the details of the timed action definition. The
shorthand notation is:

AJdK b= (Ao 8 Aw 8 Ar) � Ft ,

and a presence of several actions:

[ 8 1 ≤ i ≤ n : AiJd[i]K]b=
[ 8 1 ≤ i ≤ n : (Ao,i 8 Aw,i 8 Ar,i)] � Ft . (1)

Composition of Timed Action Systems. Consider
timed action systemsA andB with distinct local variables:
lA∩lB = ∅ and communication variables are a setgA∩gB .
We require that the initialisations of the communication
variablesgA ∩ gB in the systemsA andB are consistent
with each other, so that initial values are equivalent in the
systems. The functionality of the action systemsA and
B is specified by actionsAJdAK andBJdBK, respectively.
Theparallel compositionof A andB, denotedA ‖ B is:

sys A ‖ B (g)
|[
var lA ∪ lB : natural

init g, lA, lB = g0, lA0, lB0
do AJdAK 8 BJdBK od
]|

whereAJdAK 8 BJdBK is according to definition (1):ą
(Ao 8 Aw 8 Ar) 8 (Bo 8 Bw 8 Br)

ć � Ft. Hence, the com-
position of timed action systems combines the state spaces
of the constituent action systems, merges the update ac-
tionsFt by unifying local time variables and keeping the
local variables distinct.

5 Component Modelling

We show an example of transformation from untimed do-
main into a timed one. Then we analyse the operation of
the arbiter in a timed domain by giving its execution se-
quence and a timed trace.

5.1 Clocked Computation

A clock is an action:

Clk b= ¬clk → clk := T 8 clk → clk := F .

It is used to sequence the operation of a system. The
operation can be modelled, for instance, with two self-
disabling parts:Read andWrite. The former performs
the activity of the component and the latter stores the re-
sult. A synchronous system modelled using the above ac-
tion is:

sys S ( din, dout : nat )
|[
var clk, p, w, u: bool, bool, nat, nat
actions Read: ¬clk ∧ ¬p → u := f(din); p := T

Write: clk ∧ p → dout := u; p := F
Clk: ¬clk → clk := T 8 clk → clk := F

init clk, b, w, din, dout = 0, 0, w0, din0, dout0
do (Read 8 Write) � Clk od
]|

wheref is a function and a clock changes its value after
either theRead or Write action has disabled itself. The
auxiliary variablep sequence the operation of theRead
andWrite actions. This behaviour is ensured by the pri-
oritised composition. As in the previous example, we want
to know more about the system’s timing characteristics,
and therefore we specify a delay for every action. The de-
lays aredr, dw anddclk for the actionsRead, Write, and
Clk, respectively.

Because we are changing a domain of a system, we need
also to take in consideration that functionality is not af-
fected by the introduction of delays. Therefore, we spec-
ify a requirement that ensures a proper operation of the
system. The requirement is:dr, dw < dclk. It ensures that
the computation of an action must be completed before the
clock signal changes its value. Now, after the transforma-
tion we have a timed synchronous system:

sys St ( g : nat )
|[
const dr, dw, dclk: 8, 4, 10
var clk, w, u: bool, nat, nat
actions ReadJdrK: ¬clk ∧ ¬p → u := f(din); p := T

WriteJdwK: clk ∧ p → dout := u; p := F
ClkJdclkK: ¬clk → clk := T 8 clk → clk := F

init clk, w, g = 0, w0, g0
do ReadJdrK 8 WriteJdwK 8 ClkJdclkK od
]|

TheClkJdclkK is by definition:

ClkJdclkK b= (¬bclk → (¬clk → clk′ := T 8
clk → clk′ := F ); bclk, ftclk := T, ct + dclk) 8
(bclk ∧ (ct = ftclk) → clk, bclk := clk′, F ) 8
(bclk ∧ ¬gClk → bclk := F ) ,

wheregClk=̂¬clk∨clk = T and thereforegClkr=̂bclk∧
¬gClk = F . Thus, the actionClkr can be omitted. Note,
that we changed the prioritised composition into a non-
deterministic choice. The change was possible, because in
the timed model the lapse of time does the same thing as
the prioritised composition in the untimed model.

Clock signal.With the above model of the clock, we are
able to model a clock wave with equal sized low′0′ and
high ′1′ periods, that is, the duty cycle, ratio of clock width
and clock period, is50%. We have to divide the clock ac-
tion into two separate parts to be able to model other kinds
of clock waves. In general we can define:Clk0Jdclk0K :
¬clk → clk := T andClk1Jdclk1K : clk → clk := F .

5.2 Arbiter

An arbiter is a component that takes care of selecting
which one of the two or more independent modules access
a shared resource. In the below systemSys:

sys Sys ( )
|[
init lM1, lM2, ct = lM10, lM20, 0

lArb, lShR = lArb0, lShR0
M1 ‖ M2 ‖ Arb ‖ ShR
]|



mastersM1 andM2 communicate with a shared resource
ShR through an arbiterArb. We assume that the time
required by the mastersM1 andM2 for their operation is
dm. The arbiterArb is:

sys Arb ( reqM1, grM1, reqM2, grM2 : bool )
|[
const d: 10
actions M11: reqM1¬grM2 → grM1 := T

M12: ¬reqM1 ∧ grM1 → grM1 := F
M21: reqM2 ∧ ¬grM1 → grM2 := T
M22: ¬reqM2 ∧ grM2 → grM2 := F

M1JdK: M11 8 M12
M2JdK: M21 8 M22

init reqM1, grM1 = reqM10, grM10
reqM2, grM2 = reqM20, grM20

do M1JdK 8 M2JdK od
]|

and the iteration part by the definition is:

M1JdK 8 M2JdK b= ą
(M1o 8 M1w 8 M1r) 8

(M2o 8 M2w 8 M2r)
ć � Ft ,

Let us consider a situation where the masters request the
shared resource at the same time. After the requests have
arrived, the arbiter grants either the masterM1 or M2
non-deterministically. The winning master may proceed
its activity, while the other must wait its turn. Note, that
if the requests are not simultaneous, the grant is given de-
terministicly, the first requesting master is granted. The
execution sequence is, for example:

. . . ,M2,M1, M1o,1, M2o,1, F t, M1w,1, M2r,1, F t,M1,

F t, M1o,2, F t, M1w,2,M2, F t, M2o,1, F t, M2w,1 . . . , (2)

where the masters simultaneously request the grant after
which the actionsM1o,1 andM2o,1 are executed. The
next enabled actions, based on the definition of the timed
actions, areM1w,1 areM2w,1. The arbiter gives the grant
to the masterM1, and henceM1w,1 will be executed and
M2w,1 becomes disabled. This leads a situation where
M2r,1 becomes enabled and executed. The former exe-
cuted action reveals the winning master and the latter ex-
ecuted initialises the actionM2JdK. Now, the masterM1
may start accessing the shared resource. After the commu-
nication has ended,M1 withdraws the request after which
the arbiter gives the grant to the masterM2. The future
time actionFt is executed whenever all the other actions
are disabled.

The timed trace, the observable behaviour of the arbiter
is formed by collecting the states of the global variable
and the state of the time variable. The timed trace of the
sequence 2 is:

trArb =(¬reqM1,¬grM1,¬reqM2,¬grM2, 0),

(reqM1,¬grM1, reqM2,¬grM2, dm), (a)

(reqM1, grM1, reqM2,¬grM2, d + dm), (b)

(¬reqM1, grM1, reqM2,¬grM2, d + 2dm), (c)

(¬reqM1,¬grM1, reqM2,¬grM2, 2d + 2dm), (d)

(¬reqM1,¬grM1, reqM2, grM2, 3d + 2dm), . . . (e)

By analysing the timed trace above, we can conclude that
the best case delay for a master to be granted isd, and
if a master must wait the shared resource, the worst case
delay is3d + dm . Based on the timed trace we have de-
picted a timing diagram (Figure 1). We also included the
boolean variableb into the timing diagram to address the
inner execution sequences of the timed actions.
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Figure 1: The timing diagram of the sequence (2)

6 Conclusions

In this paper we introduced Timed Action Systems with
which it is possible to model hardware components in a
time domain. We showed what is required in transforma-
tion of an untimed model to a timed one. In a transfor-
mation, not only the delays of individual actions, but also
requirements that ensure the correct functionality of the
system after the transformation must be specified.

The experiences of this study showed the usability of
the defined Action System extension, and pointed out the
direction for further studies. These include for example: a
creation of a framework for modelling intellectual prop-
erty (IP) blocks and development of a powerful formal
timing verification method.
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