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Abstract

In this paper we show the derivation of a local segmented bus
arbiter from a single segment bus arbiter. The arbiter is exten-
ded to cater for requests coming from and going to external
segment. The derivation demonstrates the capability of pre-
serving correctness when considering an important hardware
design decision. The operations are performed in the formal
framework of Action Systems. Action Systems is a predicate
transformer based method for modelling reactive systems. It
has also been successfully applied to both asynchronous and
synchronous hardware designs.

1 Introduction

The latest advances in technology allowed more and more
functionality to be placed within a single chip. The complex-
ity of such systems comes as an inherent byproduct, which
leads further to problems concerning the correctness of the
development flow. On one hand, modular design is one of
the solutions towards partially reducing the task of the de-
signer of complex systems, while on the other hand, the em-
ployment of formal methods in system design tries to solve
the aspects related to correctness. However, the pressure im-
posed by time-to-market usually does not leave enough time
for thorough analysis of designs before they are shipped. Ad-
ditionally, the often heavy mathematical apparatus behind
formal method frameworks still forbids the expected wide
usage of such approaches in (hardware) system design.

The traditional approach to bus designs relies on a single
segment bus. Due to multiple reasons, this may not continue
to serve well the design flow of highly integrated systems.
We face the problem in adapting existent designs to the new
environment. In the following sections, we address this issue
by showing how a previous bus arbiter description can be
correctly transformed into a local segment bus arbiter. For
this, we apply action systems technique. Action systems is
a state-based formalism, relying on an extended version of
Dijkstra’s language ofguarded commands[1].

2 The Segmented Bus Platform

Modern deep sub-micron silicon technologies have given a
real boost to system-on-chip (SOC) design research and de-
velopment. The growing diversity of devices brings up an
immense number of possible interfaces. In many situations,
both the system design and performance are limited by the
complexity of the interconnection between the different mod-
ules and blocks that are integrated into those chips. Further-
more, different data transfer speeds are required as well as
parallel transmission. A simple bus is one such structure that

may not be suitable for such a design. This is because only
one module can transmit at a time and the bus is slow due to
large capacitive load caused by the interfaces of the modules
that are attached to it and the long physical length.

A solution to the above mentioned problems is a segmen-
ted bus design combined with a globally asynchronous loc-
ally synchronous (GALS) [2] system architecture. In this
approach, each module of a SOC system is synchronised to
a local optimised clock whereas interactions between those
modules are arranged asynchronously. A segmented bus [3]
is a bus which is partitioned into a segments. Each segment
act as a normal bus by themselves. These segments can be
connected dynamically to each other to form a larger bus
structure. Due to the segmentation of this resource, parallel
transaction can take place, thus increasing the performance.

2.1 Segmented Bus Architecture

The segmented bus structure is simply illustrated in figure
1. Everysegment is composed of masters, slaves, a local ar-
biter, the physical lines (address, data, request, acknowledge
and read / write lines), and aninter-segment bridge controller
as shown in figure 2. Most of the time masters are asking
services from local slaves. Occasionally, one master may re-
quire services from a slave residing in some other segment.
In this situation, the local arbitration unit forwards the request
to a central arbitration module.

The central arbiter (CA) stores the information regarding
the current situation of the segments: what segments are par-
ticipating in an inter-segment transaction, and what segments
are requesting for an inter-segment access. Based on this in-
formation, the CA informs a change in the ownership of the
segments that are participating an inter-segment transfer.
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Figure 1: Segmented bus structure.

In this paper we concentrate on the description of the seg-
ment arbiter (SA), the one that coordinates the activity within
one segment limits.

2.2 Operations on a Segmented Bus

There are three modes in which operation on a specific seg-
ment may proceed, from the point of view of local arbitra-
tion. These modes depend on the localisation of the master
requesting the bus and the slave. Thus, we have (i) alocal



master – local slave, (ii) a local master – external slave and
(iii) a external master – local or external slave situation.

In all the situations, the master that is granted the access
to the bus connects to the slave following a four-phase sig-
nalling protocol. Therequest part is also visible to the SA
residing in the same segment as the master. Thus, the SA su-
pervises the access of the master to the bus by counting the
number of transfers, in cases (i) and (ii) above.
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Figure 2: The Segment Control Elements.

All the participants in the segmented bus implementation
are mutually asynchronous devices. Therefore, the commu-
nication follows handshake protocols. The only situation
where the handshake protocols are not reflected are related
to the logic, which controls the bridges. In this case, the seg-
ment arbiter only sends the command to open or close the
bridge, while the direction is specified by the CA.

3 Action Systems

Back and Kurki-Suonio [4] introduced the action systems
formalism, providing a framework for specifying and refin-
ing concurrent programs. Anaction system(AS) is in gen-
eral a collection ofactionsor guarded commands, which are
executed one at a time. The Action Systems is used for spe-
cification and correctness preserving development of reactive
systems. It was first tailored to a software system design but
is then successfully applied also to a hardware system design,
both synchronous [5] and asynchronous [6].

An action A is defined (for example) by

A ::= x := x′.R (nondeterministic assignment)
A1 8 A2 (nondeterministic choice)
A1; A2 (sequential composition)
A1 � A2 (prioritised composition)

whereR is a predicate,x is a variable or a list of variables,
and A1 and A2 are actions. Semantically, an actionA is
defined by theweakest precondition for A to establish some
post-conditionQ, denotedwp(A,Q). In this paper, we re-
gard an actionA as being of the formg → S, whereg is the
guardof the action, given bygA =̂¬wp(A, false), andS is
theaction body. An action is said to beenabled, if its guard
is true, disabled otherwise. Actions are consideredatomic,
meaning that whenever one is selected for execution, it will
be completed without interference. In this paper, we assume
that all statements areconjunctive monotonic predicate trans-
formers, that is,∀p, q.wp(S, (p ∧ q)) = wp(S, p) ∧ wp(S, q).

Additionally, the quantified compositionof actions is
defined by

[∗i = 0 . . . n : Ai] =̂ A0 ∗A1 ∗ . . . An

where∗ can be any of the allowed operators.

3.1 Refinement

Action systems are meant to be designed in a stepwise man-
ner within therefinement calculusframework [7]. Therefine-
ment calculuspreserves the correctness of the actions during
refinement procedure.

The (atomic) actionA is said to be(correctly) refinedby
actionC, denotedA ≤ C, if

∀q.(wp(A, q) ⇒ wp(C, q))

holds. This is equivalent to the condition

∀p, q.((p A q) ⇒ (p C q))

which means that theconcreteactionC preserves every total
correctness property of theabstractactionA.

In the following paragraphs we introduce some rules based
on refinement relations.

Rule 1 – Data refinement. Assume two actionsA andC
with variablesa, u and c, u, respectively. LetR(a, c) be a
boolean relation between the variablesa andc, andI(c, u)
an invariant over the actionC on the variablesc andu. The
the abstract actionA is data-refinedby the concrete action
C using theabstraction relationR(a, c) ∧ I(c, u), denoted
A ≤R,I C, if

∀q.(R ∧ I ∧ wp(A, q) ⇒ wp(C,∃a.R ∧ I ∧ q) (1)

holds. The predicate∃a.R ∧ I ∧ q is a boolean condition on
the program variablesa andc.

Rule 2 – Prioritised composition. The prioritised compos-
ition defined in [8] offers us the possibility to concisely im-
pose precedence of some actions / action systems over others.

Briefly, the prioritised composition of two actions is ex-
pressed in terms of the non-deterministic choice as:A �
B =̂ A 8 ¬gA → B. The result of interest to us is the
fact that always, a nonprioritised compositionA 8 B can
be turned into a prioritised one by merely strengthening the
guard of the less important action. Hence, always:

A 8 B ≤ A � B (2)

Rule 3 – Distributivity of sequence over the choice. As
we confined ourselves to work with conjunctive, monotonic
predicate transformers, we may benefit, in our reasoning of
the following rule, describing the Distributivity of the se-
quence over the choice operator [7]:

(A 8 B); C = (A; C) 8 (B; C) (3)

There are several other rules that we will consider in the
forthcoming sections, such as the introduction of a local vari-
able or introduction of the removal of an empty statement, for
which we do not offer detailed exemplifications. They may
be found elsewhere [7, 9].

Execution of an Action System. Starting with the original
paper by Back and Kurki-Suonio [4], the sequential execu-
tion model was established as ade factoreasoning environ-
ment for AS designs. Parallel executions are modelled by
interleaving actions that have no read / write conflicts.

Thus, the execution of an action system assumes that the
system is observed by a virtual external entity - theexecu-
tion controller (controller in short) - which, at any moment
knows what actions, in which action systems, are enabled.
Nondeterministically, it selects one of them for execution.

The initialisation places the systems in a stable, starting
state. The controller then selects any of the enabled actions



for execution, after which the system moves to a new state.
We call this operation anexecution round. Notice that an
execution round is equivalent to the execution of an action.
After this, the controller evaluates the new state, observes the
enabled actions and starts another execution round.

UML Profile for Action Systems An UML profile for Ac-
tion Systems is a graphical design environment for Action
Systems. It is targeted to facilitate the designer’s burden by
illustrating the system under development. With this graph-
ical representation the designer can compose the system and
to manage large complex systems more easily. The operat-
ors connecting the actions are clearly visible in the graphical
representation and thus the overall functionality becomes ap-
parent. In the table 1 is shown part of the graphical notation
defined in [10].

In the notation labels of the arrows correspond to actions
in the textual representation. In the prioritised composition
the highest priority action goes with the farthermost arrow
from the operator symbol. The execution of the action system
starts from the arrow with a hollow start and terminates after
the end is reached after which a new round is started. The
end is marked with a dot inside a circle.

Table 1: Notation of actions and action sequences
Name Notation Meaning

Atomic Action A

Action Sequence A; B

Non-Atomic Action Sequence A; B

Non-Deterministic Composition A 8 B

Prioritised Composition A � B

4 Derivations

We start our design from a single segment bus, where we have
the descriptions of masters, the slaves and the bus arbiter. The
transformation towards a segmented bus is transparent except
for the arbiter, which becomes asegment arbiter. The SA
has to take into consideration now a higher priority master,
represented by the CA. It will also have to consider idling for
the period of time when the segment is just a transmission
line between a winning master and its selected slave, both
situated outside the boundaries of the specific SA segment.

In this section we concentrate on the granting activity only.
The notationsT andF stand for the boolean values oftrue
andfalse, respectively.

The segment arbiter. The operation of the arbiter on a
single bus system consists of two jobs. One is to grant the re-
questing masters the access to the bus, whenever the previous
owner finished the transfers. This is signalled by raising the
line gr (gr := T ). The second one is to supervise the current
owner so that the number of transfers does not exceed a limit.
When this limit is reached, the master is informed that it has
lost the control. Hence, the variablegr is reset (gr := F ).
With the help of the boolean variableack the arbiter also in-
forms the masters that the decision on the next owner of the
bus is taken. If requesting masters did not receive access to
the bus, they are supposed to keep on requesting.

While a granted master is transferring on the bus, the ar-
biter must not grant any other master. Hence, the supervision
activity must have a higher priority than granting.

4.1 TheGrant Action
We start from a single master system. Replicating the ac-
tion in a proper manner will eventually describe the granting
activity for a larger number of masters. Hence, our derivation
begins with theGrant action given below.

Grant =̂
(

req ∧ gr = F → (gr := T 8 skip); ack := T
)

; ¬req ∧ ack → ack := F

The above description specifies that, whenever a master
requests the bus (req) and it does have it (gr = F ), then the
arbiter may give access to resources (gr := T ) or not (skip).
After this, theack line is set totrue. It is set back tofalse
whenever the master also resets thereq signal. Following
this, a new granting cycle may start.

We apply Rule 3 to theGrant action above, and we obtain:

Grant1 =̂
(

req ∧ gr = F → (gr := T ; ack := T 8 skip; ack := T )
)

; ¬req ∧ ack → ack := F

Next, consider the relation

R(gr, grant) =̂
(
gr = F ⇔ (grant = F ∨ grant = Hold)) ∧

(gr = T ⇔ grant = T
)

The relationR specifies how we can replace the original
variablegr with the new variablegrant. From a two-valued
grant signal, we move now to a three-valued one. This is re-
quired because, when a local master requests an external seg-
ment access, the SA cannot grant it without asking the CA.
Hence, it will first place the corresponding grant line to a new
value,Hold and will forward the request to the CA. When
the CA grants the access, it informs the corresponding SA,
which now forwards the grant to the specific master. Using
R, we data refine the granting action (Grant1 ≤R Grant1)
to

Grant
1

=̂
(

req ∧ (grant = F ∨ grant = Hold) → grant := T ;

ack := T 8 req ∧ grant = F → grant := Hold;

ack := T
)
; ¬req ∧ ack → ack := F

We continue by introducing the variablesreqC andackC ,
which implement the communication with the CA. The first
one is updated by the SA, while the second is only read by the
SA and written by the CA. Hence, we have the description:

Grant
2

=̂
(

req ∧ (grant = F ∨ (grant = Hold ∧ ackC)) →
grant := T ; ack := T 8 req ∧ grant = F → grant :=

Hold; ack := T ; reqC := T
)
; ¬req ∧ ack → ack := F

The arbiter differentiates a local request from an external
one by reading the slave address lines (SAddr) provided by
the requesting master. The own address (lsegnr) is coded
inside the SA. For simplicity, we denotelocal =̂ SAddr =
lsegnr. TheGrant action is then refined by the following:

Grant
3

=̂
(

req ∧ ((local ∧ grant = F ) ∨ (grant = Hold ∧ ackC))

→ grant := T ; ack := T 8 req ∧ ¬local ∧ grant = F

→ grant := Hold; ack := T ; reqC := T
)
; ¬req ∧ ack →

ack := F

A master that needs to transfer data to / from a slave placed
in an external segment will wait considerably more than a
master requesting a local resource. In order to balance this
aspect, we decide to give higher priorities to such requests.
In the same step, we applyRule 3. We have:

Grant
4

=̂
( (

req ∧ grant = Hold ∧ ackC → grant := T ; ack := T

8 req ∧ ¬local ∧ grant = F → grant := Hold; reqC :=

T ; ack := T
)
; ¬req ∧ ack → ack := F

)
�

(
req ∧ local

∧grant = F → grant := T ; ack := T ; ¬req ∧ ack →

ack := F
)



Here is the point where we take into consideration the
existence of several masters within the segment. They are
numbered from0 to nom. Each masterj communicates with
the SA by means of a request signalreq[j], and slave ad-
dress linesSAddr[j]. The SA updates for each master a
grant signal,grant[j]. masters has also access to the unique
ack line used by the SA to signal termination of a granting
session. Thus, we replicate the granting activity following
a data refinement step which relates the initial variablesreq
andgrant to their “vectorised” versions;req[0 . . . nom] and
grant[0 . . . nom]. The abstraction relation is:

R1 =̂ (req = T ⇔ ∃j ∈ {0, . . . , nom}.req[j] = T )

∧ (req = F ⇔ ∀j ∈ {0, . . . , nom}.req[j] = F )

and we haveGrant4 ≤R1 Grant5, where:

Grant
5

=̂
( ( [

8 j := 0 . . . nom : req[j] ∧ grant[j] = Hold ∧ ackC

→ grant[j] := T ; ack := T
]

8
[

8 j := 0 . . . nom : req[j]

∧¬local ∧ grant[j] = F → grant[j] := Hold; ack := T ;

reqC := T
] )

; ¬req[j] ∧ ack → ack := F
)

�
( [

8 j :=

0 . . . nom : req[j] ∧ local ∧ grant[j] = F → grant[j] := T ;

ack := T ; ¬req[j] ∧ ack → ack := F
] )

Observe that there is one situation which is not yet exactly
reflected in the above description. It corresponds to the re-
quest coming from the CA to the SA, asking access rights for
another segment master either to pass through the segment or
to access a local resource. The channel devoted to this com-
munication is similar with the ones considered byGrant5:
the CA is just another local master from the point of view of
the SA. However, we just want to separately identify this spe-
cific master, as we intend to place it higher in the priority list.
We identify it as the “master[0]”. We assign to this master
the highest priority. Therefore, we haveGrant6:

Grant
6

=̂
( (

req[0] ∧ grant[0] = Hold ∧ ackC → grant[0] := T ;

ack := T �
[

8 j := 1 . . . nom : req[j] ∧ grant[j] = Hold

∧ackC → grant[j] := T ; ack := T
]

8 req[0] ∧ ¬local

∧grant[0] = F → grant[j] := Hold; ack := T ; reqC := T

�
[

8 j := 1 . . . nom : req[j] ∧ ¬local ∧ grant[j] = F →

grant[j] := Hold; ack := T ; reqC := T
] )

; ¬req[j] ∧ ack

→ ack := F
)

�
(

req[0] ∧ local ∧ grant[0] = F →

grant[0] := T ; ack := T �
[

8 j := 1 . . . nom : req[j] ∧

local ∧ grant[j] = F → grant[j] := T ; ack := T

; ¬req[j] ∧ ack → ack := F
] )

The last step in the derivation of SA is related to the
communication channel between the SA and the CA. Notice
that the CA does not provide requested segment addresses.
Hence, we may assume that it always requestslocal access,
therefore, the correspondinggrant line can not be placed on
Hold. At the same time, we rename the variablesreq[0] and
grant[0] asreqO andackO, respectively. Thus, we have:

Grant
7

=̂
( [

8 j := 1 . . . nom : req[j] ∧ grant[j] = Hold ∧ ackC →

grant[j] := T ; ack := T 8 req[j] ∧ ¬local ∧ grant[j] = F

→ grant[j] := Hold; ack := T ; reqC := T ; ¬req[j] ∧ ack

→ ack := F
] )

�
(

reqO ∧ ackO = F → ackO := T ; ack

:= T ; ¬reqO ∧ ack → ack := F �
[

8 j := 1 . . . nom : req[j]

∧local ∧ grant[j] = F → grant[j] := T ; ack := T ; ¬req[j]

∧ack → ack := F
] )

Next, we give names to the actions composing theGrant
operation. Thus, we identify:

LAckF =̂¬req[j] ∧ ack → ack := F

LAckFO =̂¬reqO ∧ ack → ack := F

RoAckC =̂ req[j] ∧ grant[j] = Hold ∧ ackC → grant[j] := T ; ack := T

RoGr =̂ req[j] ∧ ¬local ∧ grant[j] = F → grant[j] := Hold;

ack := T ; reqC := T

EGr =̂ reqO ∧ ackO = F → ackO := T ; ack := T

LGr =̂ req[j] ∧ local ∧ grant[j] = F → grant[j] := T ; ack := T

We rewrite the actionGrant7 considering the above nota-
tions. In the figure 3 is shown the graphical notation of the
Grant7 using the UML profile for Action Systems.

Grant
7

=
[

8 j := 1 . . . nom : (RoAckC 8 RoGr); LAckF
]

� EGr; LAckFO �
[

8 j := 1 . . . nom : LGr; LAckF
]

Figure 3: The graphical representation of theGrant7.

5 Conclusions

In this study we have shown how the action systems form-
alism is applied to correctly derive a segment arbiter spe-
cification from a single segment arbiter. The work is part of
a larger project that analyses the realisation of a segmented
bus, starting from high levels of abstraction down to imple-
mentation. The project also examines how a Unified Model-
ling Language (UML) can be firmly affiliated with the Action
Systems. And to adapt the techniques of the action systems
framework to the environment provided by the Object Con-
straint Language (OCL).
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