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Abstract—As the size of NoCs increases, power consumption
and fault/variation tolerance have become two of the most crucial
problems for system designers. To address these problems, we
propose a NoC architecture based on a hierarchy of monitoring
agents. By tracing the circuit properties at run time, the agents
at different architectural levels are able to monitor and control
over the whole NoC platform. This monitoring approach par-
titions various online diagnostic and management services onto
hierarchical implementation levels so as to provide scalability
and variability for large-scale NoC design. This paper explains
the monitoring interaction between agent levels, and focuses
on system optimization alternatives handled by different agent
levels. It further quantitatively analyzes the feasibility and design
alternatives in monitoring communication interconnection upon
regular tile-based NoC layout.

I. INTRODUCTION

Network-on-Chips (NoCs) have emerged as a promising
approach to integrate a large number of processing elements
(PEs) on a single chip, by introducing a network structure
similar to that in parallel computers[1]. It has gained wide
acceptance for the communication architecture in decentral-
ized designs such as Intel 80-core Teraflop[2], Tilera 64-
core[3], TRIPS[4], and RAW[5]. With the technology scaling,
the size of NoCs also increases. However, problems such as
power consumption [6] and fault/variation tolerance [7] pose
tough, if not stronger, constrains on design and implementation
methods. To achieve maximum power efficiency and variation
tolerance, dynamic online services should be integrated in
NoCs.

A few previous works have addressed system monitoring
services on NoC platforms [8, 9, 10]. From them, several
distinctive requirements for managing NoC structures in a
scalable manner can be identified. Firstly, local circuits need to
be provided with distributed monitoring modules. Distributed
monitoring reduces the local operation delay and interconnect
latency for urgent monitoring services, and it prevents the
appearance of communication bottleneck. However, despite
the system size, centralized monitoring is still an indispensable
complement to localized monitoring schemes. Theoretically,
a centralized monitor, with the knowledge of all on-chip
resources, is able to coordinate and balance the functioning of
all components with the aim of optimizing the overall system
performance. In practice, as an example, [11] adopts a single
processing unit for dynamic testing operations and a global-
level scheduler. For either distributed or centralized monitoring

scheme, the energy efficiency of monitoring services should
be maximized.

In this paper, a hierarchical agent based NoC with dy-
namic online services is proposed. In the conventional NoC
design methodology, there are two separate dimensions called
communication and computation. The separation of these two
dimensions is the key contribution of NoC, which allows lower
power consumption and higher scalability and performance.
In our design methodology, another dimension which we call
autonomous dimension is added onto the NoC platform. It
is implemented as the hierarchical monitoring agent architec-
ture. The motivation of this dimension is to autonomously
adjust the system in order to achieve low power consumption
and fault/variation tolerance. Agents are functional units that
monitor and control different architecture levels of the NoC
platform depending on their hierarchical levels. This architec-
ture aims at the enhancement of the system performance in
both power consumption and fault tolerance aspects. It also
provides a wide design and synthesis space for the realization
of agents at each level.

This paper examines the functional partition of agent levels
and a feasible implementation of the agents on a tile-based
NoC platform (Section II). Upon the proposed NoC archi-
tecture, we demonstrate the flexible incorporation of system
optimization techniques with agent monitoring architecture
in terms of power consumption and fault/variation tolerance
(Section III). As an extra communication layer upon existing
interconnect, alternatives in realizing agent communications
are examined quantitatively in Section IV, which reveals
an optimal design trade-off for monitoring communication
interconnects. Section V concludes the paper.

II. HIERARCHICAL MONITORING AGENT ARCHITECTURE

A. Agent Hierarchy

There are four levels of agents in the proposed NoC
architecture, namely, application agent, platform agent, cluster
agent and cell agent (Fig. 1). As the top level agent, the
application agent is unique in a NoC platform. An appli-
cation agent is a software module capturing the application
functionalities and run time performance requirements and
constraints. The platform agent is also unique in a NoC. Based
on the specification from the application agent and resource
availability, it (re)configures the network and PEs. The entire
NoC is divided into a number of clusters, each of which is



monitored and controlled by a cluster agent. A cluster is a
group of processors with accompanying components (caches,
scratchpad memories, switches, links, etc.). It is logically
divided into cells which are the basic units in our architecture,
consisting of a PE, a switch and the corresponding links. The
cells are equipped with their own local monitors, the cell
agents, which trace and adjust the local circuit conditions.
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Figure 1. Hierarchical Agent Approach

B. Hierarchical Agents Implementation on NoCs

Figure 2 illustrates a feasible implementation of the hierar-
chical agents on a tile-based regular mesh NoC structure. As
mentioned earlier, the basic monitored units are cells which
comprise of a PE, a NI, a switch and the corresponding links.
It is intuitive to allocate a cell agent for each cell by sharing
the physical area of the PE. Other cell level monitoring units
may be allocated at other particular places within a cell, such
as a power-gating sleep-transistors on the links. The cluster
agent is allocated at a fixed position during the design time.
Since a cluster agent has more sophisticated functionalities
and controlling algorithms than a cell agent, it requires more
resources such as area, power, communication bandwidth and
etc. Therefore, a cluster agent replaces one of the PEs in a
cluster. To minimize the communication latency and balance
the workload of the system, the platform agent and application
agent which monitor and control over the whole system are
located at the geographic center of the platform.

In order to offer scalability for extremely large scale NoC
systems, clusters can be further divided into hierarchical sub-
clusters and similar monitoring functional partition will be
applied. It conceptually originates from the manner a bio-
system or human society organizes its overwhelming amount
of resources.

III. HIERARCHICAL AGENT BASED ONLINE SERVICES ON
NOCS

Our proposed monitoring agent based architecture is
aimed at dynamically achieving low power consumption and
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Figure 2. Hierarchical Agent Implementation on NoCs

fault/variation tolerance. In this section, we will highlight these
online services on NoC systems.

A. Low-power Optimization with Agents

Although being under intensive research for decades, the
power consumption is still the most critical constraint to be
explored. The power consumption can be categorized into
dynamic power consumption and leakage power consumption.

One of the major dynamic power saving techniques is
DVFS (dynamic voltage and frequency scaling), which is
traditionally provided on a chip-wide domain [12]. But chip-
level single power domain is not able to utilize the local
traffic variation in exploiting the supply scaling potential, thus
per-core based DVFS is proposed [13]. In the cell-divided
NoC platform, a cell can be conveniently set with a supply
regulator with the cell agent in charge of the voltage and
frequency adjustment (Fig. 3(a)). The overhead for per-cell
based DVFS is significant. [14] reports 0.14mm2 area overhead
and 83.2% peak efficiency of a DC-DC converter in 90nm
technology. Each time the voltage is converted, extra energy
will be consumed for the power regulation.

To alleviate the per-core-based DVFS overhead, the concept
of voltage islands [15, 16] has been proposed. A voltage island
is a physical entity on the chip that has its own internal power
distribution network which is isolated from the primary chip
level power distribution network. Up-to-date, voltage islands
are statically determined at design time. To incorporate mul-
tiple voltage islands on the NoC platform, each cluster agent
determines the voltage and frequency for its own cluster (Fig.
3(b)). The area and energy overhead is reduced proportional
to the number of cells in a cluster. Per-cluster-based power
optimization, however, does not support the reconfiguration of
cells into different clusters at the run-time, though assigning
spares into clusters initially still provides cell replacement
possibilities against component failures.
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Figure 3. Power Optimization Services by Different Agent Levels

The granularity of monitoring services is a design choice
dependent on the size of the actual platform, the workload and
constraints of the application. In terms of power optimization,
per-cluster-based monitoring with lower implementation over-
head seems to be more feasible in the long term with smaller-
sized processing cores. In general, any monitoring service can
be configured at the design time or execution time (with the
support of reconfigurable platform) to be handled by different
level of agents, correspondingly in various granularities.

Besides dynamic power consumption, hierarchical monitor-
ing architecture aims to minimize the leakage consumption,
which grows exponentially with decrease of transistor size.
One process generation increases leakage by a factor of 6 to
10x. According to the current leakage trend, a microprocessor
in 100nm technology may dissipate up to 50% leakage power
[17]. To reduce the leakage power, dynamic power manage-
ment methods, such as turning off the non communication
intensive links, should be applied in the NoC platform by the
usage of hierarchical monitoring agents.

B. Fault/Variation Tolerance with Agents

The major causes affecting the reliability of the NoC
systems are the shrinking of the feature size and decreasing of
the supply voltage, which expose them to different faults of
permanent, transient or intermittent nature. Among the failure
mechanisms, we can enumerate factors such as crosstalk,
electromigration, electromagnetic interference, alpha particle

hits, and cosmic radiation [18]. These phenomena and system
variations can change the timing and functionalities of the
NoC fabrics and thus degrade their QoS or, eventually, lead to
failures of the whole NoC-based system. Providing resilience
from such faults and other PVT (process, voltage, temperature)
variations is mandatory for the NoCs.

The proposed monitoring agent based architecture can pro-
vide the fault/variation tolerance for NoC based systems, by
the joint effort of all levels of agents.

Before execution, the platform agent utilizes a number of
resources and configures the network based on the initial ap-
plication requirements with power and performance awareness
[19]. A number of resources are reserved as spares in case
of component failures. The initial configuration is enforced
from the platform agent to the cluster and then cell agents.
After the application starts running, the cell agents trace their
local circuit conditions such as failures and PVT variations.
They first attempt to fix the errors if feasible (for example
by retransmission in case of transient crosstalk-induced error
[20]). If the errors cannot be solved by the cell agent, they
have to be reported to the cluster agents. The cluster agents
allocate the spares to take the places of the faulty cells and
re-run the faulty instructions. In case that the errors cannot
be solved within a cluster, they have to resort to the platform
agents to re-map the application or reconfigure the system if
necessary.

The application agent and platform agent are also respon-
sible for the reconfiguration of the system to balance the
workload in order to maintain the circuit under relative low
temperature. This is of crucial importance due to the fact
that the circuit is more error-prone under high temperature.
Moreover, leakage currents also increase exponentially with
temperature.

Figure 4 shows a study case where we focus on the functions
of agent hierarchy to flexibly provide the trade-off on a fault-
tolerant NoC platform with a pool of DSP processors divided
into clusters. We simulate 64-point FFT/IFFT computation on
2-D mesh NoC, each processing element as a DSP unit running
at the same frequency, and initially with 30% redundancy. The
platform agent has two architecture alternatives, one exploring
more parallelism (thus finishing faster) while using more
processors [21] than the other [22]. The study case is simulated
by Matlab/SimuLink.

We assume that every DSP works at 600MHz with 16-bit
wide data, and one complex multiplication takes 6 cycles.
Fig. 4(a) shows that when the system is configured with
the architecture described in [21], the computation takes 6
processors and 8ms. If some components fail (Fig. 4(b)), the
platform agent will replace them with spare processors and
reconfigure the network. If the application agent specifies
tougher timing constraints, the platform agent may utilize
more available resources to achieve another performance/cost
tradeoff. In Fig. 4(c), with architecture alternative as in [22],
the computation time is reduced to 3 ms with the cost of
another 10 processors used (spare ones in the data flow are
only bypassed, not used in computation).
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IV. DESIGN TRADE-OFFS FOR AGENT COMMUNICATION

A. Monitoring Communication Interconnect Alternatives

Agents exchange monitoring information with their higher
or lower counterparts as illustrated in Fig. 1. The monitoring
communication needs to be reconfigurable so new cells can
be incorporated to certain clusters at the run-time. Some
conventional interconnection does not support reconfiguration
(for instance, the star-like network). Instead, we consider three
interconnect alternatives which all support run-time reconfig-
uration but have different area, energy and latency overheads.
Throughput is not a prioritized design constraint, since the
monitoring communication is low in data volume ([23] reports
8% and 5% debugging monitoring traffic overhead for two
streaming applications).

The first alternative is to realize monitoring communication
as TDM (Time-Division-Multiplexing)-based virtual channel
upon existing links. This option incurs design complexity in
virtual channel arbitration and allocation, increases the switch
latency of both monitoring interconnect and data communica-
tion. The virtual channel arbitration and allocation also incur
energy overhead. Wiring overhead, however, is kept to the
minimum though the switch area is moderately increased.
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Figure 5. Alternative Dedicated Monitoring Interconnect Architectures

The second alternative is to adopt a “unified dedicated mon-
itoring network” for monitoring communication (Fig. 5 on the
left side). It is called “unified” as monitoring communication
between both cluster-cell agents and platform-cluster agents is
transmitted on the same dedicated network. This option utilizes
more wiring resources but simplifies the switch arbitration
between data and monitoring communication, thus reducing
the communication energy and latency.

The third alternative is to adopt “separate dedicated moni-
toring networks” for monitoring communication (Fig. 5 on the
right side). Compared to the unified monitoring network, this
option adds another network connecting the single platform
agent to a small number of cluster agents. As a result, the
communication between platform and the cluster agents is
simplified with very limited wiring overhead.

B. Quantitative Analysis of Monitoring Interconnects

We simulate the energy and latency of the agent commu-
nication on an 8*8 network simulator. The locations of the
platform agent, cluster agents and cells (with cell agents) are
illustrated in Fig. 6. The switch is input-buffered with matrix
crossbar. Each link is 2mm long, and is modeled as segmented
wires with drivers and evenly inserted repeaters1. Data links
are 32 bits and monitoring links are 8-bit wide. The whole
NoC system is assumed to be mesochronous with network
frequency as 1GHz and the supply voltage as 1V.

We estimate the area and energy overhead of switches by
simulating with Orion [24], a widely-used on-chip switch
power simulator. The switch latency is estimated based on
[25]. The wires are modeled and simulated by Cadence. The
Orion simulator does not produce result for 65nm technology
directly, thus we apply scaling factors (based on [26]) to the
result of 70nm technology simulation using Orion. The scaling
factors for energy, area, and latency are 0.86, 0.86 and 0.93
respectively. The energy of wires are simulated by Cadence.
The latency in the switch buffer assumes an average 50%
occupancy ratio.

1wire width: 210nm; spacing: 210nm; repeater interval: 0.25mm; repeater
size: 10x minimal inverter size; driver size: 12x.
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Table I summarizes the average per-flit energy consumption
for monitoring communication in each interconnect architec-
ture. Table II summarizes the latency comparison for monitor-
ing communication in each interconnect architecture.

Table I
ONE-FLIT MONITORING COMMUNICATION ENERGY OF THREE

MONITORING INTERCONNECT ARCHITECTURES (NETWORK WORKING AT
1GHZ)

Interconnect Architecture Energy
(cluster <->
cell agents)

Energy
(platform <->
cluster agents)

TDM-based 12.92 pJ 12.92 pJ
Unified Dedicated Network 5.40 pJ 5.40 pJ

Separate Dedicated Networks 5.40 pJ 2.31 pJ

Table II
WORST-CASE MONITORING COMMUNICATION DELAY IN THREE

INTERCONNECT ARCHITECTURES

Interconnect Architecture Delay
(cluster <->
cell agents)

Delay (platform
<-> cluster

agents)
TDM-based 24 cycles 24 cycles

Unified Dedicated Network 16 cycles 16 cycles
Separate Dedicated Networks 16 cycles 8 cycles

C. Optimal Design Trade-off for Future NoCs

The estimated figures show that separate dedicated moni-
toring networks are the most energy-efficient and low-latency
interconnection for monitoring communication. Compared to
TDM-based interconnection, it reduces the latency by 66.7%
and energy consumption 82.1% for the communication be-
tween the platform and cluster agents, while achieving the
same latency and energy efficiency as unified dedicated net-
work for the communication between the cluster and cell
agents. However there is area penalty involved (Table III; the
chip area ia assumed to be 275mm2 2): the area overhead is
increased from 2.71% to 3.32%. Nonetheless the wiring area
overhead has become less of a design constraint as multi-layer
fabrication process provides quite abundant wiring potential

2the size of a TeraFLOPS chip

for on-chip systems ([10]; TILE64 processors incorporate 5
physically separate networks, each of them being 64-bit wide).
With transistor feature size and wire dimension continue to
decrease in the foreseeable future, the separate monitoring
networks will provide the most optimal trade-off exploiting the
on-chip wiring resources while minimizing the more critical
power consumption and global interconnect latency.

Table III
AREA OVERHEAD OF THREE MONITORING INTERCONNECT

ARCHITECTURES

Interconnect Architecture Area (mm2) Percentage (of
a chip area)

TDM-based 7.44 2.71%
Unified Dedicated Network 8.95 3.26%

Separate Dedicated Networks 9.11 3.32%

V. CONCLUSIONS

Hierarchical agent monitoring architecture provides great
scalability and design flexibility for future large-scale NoC
systems. With an extra monitoring layer comprised of four
levels of agents, the system is potentially able to achieve
maximized efficiency with online monitoring services. This
paper elaborately explains the hierarchical monitoring ap-
proaches enabled by the interactions of all levels of agents,
and examines the design alternatives for low-power opti-
mization of different granularities as an example of flexible
functional partitions among agent levels. Quantitative analy-
sis for agent interconnection alternatives suggests reasonable
trade-offs between area, energy and latency overhead, and
motivates separate dedicated monitoring networks for inter-
agent communication. This work demonstrates the potential
and feasibility of multi-level online monitoring layer upon the
overwhelming amount of on-chip resources, which provides a
great diversity of design options in a scalable manner.

At present, specific monitoring services on regular NoC
platform with the proposed architecture is under intensive
study and analysis.
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