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Abstract

The poor performance of web-based systems can negatively impact the prof-

itability and reputation of the companies that rely on them. Finding those user

scenarios which can significantly degrade the performance of a web application

is very important in order to take necessary countermeasures, for instance, allo-

cating additional resources. Furthermore, one would like to understand how the

system under test performs under increased workload triggered by the worst-

case user scenarios. In our previous work, we have formalized the expected

behavior of the users of web applications by using probabilistic workload mod-

els and we have shown how to use such models to generate load against the

system under test. As an extension, in this article, we suggest a performance

space exploration approach for inferring the worst-case user scenario in a given

workload model which has the potential to create the highest resource utiliza-

tion on the system under test with respect to a given resource. We propose two

alternative methods: one which identifies the exact worst-case user scenario of

the given workload model, but it does not scale up for models with a large num-

ber of loops, and one which provides an approximate solution which, in turn,

is more suitable for models with a large number of loops. We conduct several
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experiments to show that the identified user scenarios do provide in practice an

increased resource utilization on the system under test when compared to the

original models.

Keywords: Performance testing, Markov Chain, Genetic algorithms,

Graph-search algorithms

1. Introduction

A tremendous growth has been seen in the field of web technologies during

the last two decades. The role of the web applications has changed from the

traditional document presentation system to the feature-rich distributed appli-

cation that is accessible worldwide. Web applications are increasingly being5

utilized by a large number of companies to run critical business tasks. Thus,

ensuring the reliable and stable performance of web applications is imperative

for these companies. Poor performance makes the end-users abandon the use

of web applications and can cause reputational and financial damage to those

companies which rely on web-based platforms [1].10

Performance testing is the process of evaluating the responsiveness and scal-

ability of a system under test (SUT) when it is under a certain synthetic work-

load [2] corresponding to a specified number of concurrent virtual users. During

this process, different key performance indicators (KPIs) (e.g., CPU, memory

utilization) are monitored in order to determine the performance level of the15

SUT.

In order to raise the level of abstraction and to promote the reuse and faster

update of performance test specifications, in our previous work, we have in-

vestigated how the expected behavior of the users of web applications can be

specified by using probabilistic models [3, 4]. Such models capture the expected20

behavior of a set of users by encoding information about the order of their in-

teractions with the SUT, the delay (think time) between these interactions, and

the probability of a given sequence of interactions to occur. Each traversal of

the model graph simulates a timed sequence of interactions between the virtual
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user and the web application. By simulating concurrently one model for each25

virtual user, we can generate the corresponding synthetic workload using our

MBPeT model-based performance testing tool [3].

In many situations (e.g., stress testing) one would like to know, before the

performance testing session begins, the worst-case user scenario in a given work-

load model that will potentially trigger the highest utilization of a given resource30

on the SUT. Such scenario can then be used to benchmark the SUT for possi-

ble performance bottlenecks. In practice, this implies finding the path in the

workload model graph which will generate the sequence of interactions with the

highest resource utilization on the SUT over a sustained period of time.

In this article, we attempt to answer two research questions:35

1. RQ1: how can we identify the sequence of interactions in a given workload

model which causes the highest utilization of a given resource of the SUT

under a sustained period of time?

2. RQ2: what is the scalability of the proposed approach?

In order to answer RQ1, we propose two distinct methods for identifying40

the worst-case user scenario. The first method is based on graph-search algo-

rithms and provides the exact solution, whereas the second method provides a

near-optimal solution. For validation purposes, we run an example where the

solutions resulting from applying the two proposed methods are used to generate

synthetic workload against the SUT. We then compare the resource utilization45

they trigger on the SUT with the one triggered by the original workload model.

In order to answer RQ2, we analyze and compare the two methods with

respect to their complexity and, respectively, to the precision of the solution,

and discuss their benefits and drawbacks.

The rest of the paper is structured as follows: Section 2 provides background50

information on our proposed approach. We describe the process of load genera-

tion for performance testing in Section 3. Section 4 presents an overview of the

related work. In Section 5, we describe in detail the steps of our approach. We
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empirically validate and evaluate our approach in Section 6 , while we present

conclusions in Section 7.55

2. Using Markov Chains for Modeling the Workload

A Discrete Time Markov Chain (DTMC) [5] is a discrete time stochastic

process which has the property that given the current state, the future of the

process is conditionally independent of the previous states. Let Xn, n = 0, 1, 2, 3

be a stochastic process which takes on a finite number of states or values which

can be written as a set of non-negative integers {0, 1, 2, . . . }. If the process is

currently in state sn at time n, we denote it as Xn = sn. If we suppose that

whenever the process is in state sn, the process will change its state to sn+1 with

a fixed probability Psnsn+1
, then we can state the property of Markov chains as

P{Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, . . . X1 = s1, X0 = s0} = Psnsn+1

where Psnsn+1
denotes the probability of transitioning from one state to another

state in a single step (or one unit of time), and it is known as the one-step

transition probability.

We model the expected behavior of the users using a slightly modified version60

of DTMC model, which we formally define as a tuple M = (S, T, Ur, Utilr, sI)

where:

1. S = {s0, s1, . . . , sn} is a finite set of states;

2. T = {t0, t1, . . . , tn} is a finite set of transitions, such that ti = {〈si, sj〉|si, sj ∈

S} for all i, j 0 ≤ i, j ≤ n;65

3. Ur = {ur0, ur1, ..., urn} is a finite set of resource utilizations for a given re-

source r, and uri is in correspondence with si. Util
r is a mapping function

from si to uri so that Utilr(si) = uri ;

4. sI ∈ S is the start state.
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Informally, we extend DTMC with two additional labels on the edges: prob-70

ability value and think time. The probability value specifies the chances of that

particular edge being chosen according to a probability mass function, whereas

the think time represents the amount of time that a user waits between two

consecutive interactions. In addition, each state in the DTMC model is tagged

with an action specifying the interaction between the user and the SUT. An75

action specifies either an HTTP request or a set of HTTP requests that the

user sends to the SUT whenever the corresponding state is visited.

The DTMC model in Figure 1 shows a workload model of an auctioning web

application, which allows registered users to search, browse, and bid on auctions

that other users have created. For instance, after performing a browse(), the80

user can execute either get auctions() action with a probability of 0.87 (after

waiting for 3 seconds) or exit() with a probability of 0.03 after waiting for 2

seconds. In the model, start() and exit() are pseudo-states which are only used

to indicate the initial and the optional final state of the model, respectively, and

they cause no interaction with the SUT.85

Different works suggested that such workload models can be obtained from

either the requirements of the SUT or Service Level Agreements (SLAs) [4], or

by analyzing the historical usage of the system [6] [7] [8]. The workload model

in Figure 1 is built using the latter approach following the method described

in [6].90

3. Workload generation

In this paper, we use our MBPeT (Model-based Performance Testing) [3]

tool for load generation. MBPeT is an online performance testing tool, which

generates a synthetic semi-random workload against the SUT by simulating a

workload model, such as the one in Figure 1 for each concurrent virtual user.95

The simulation of a workload model for a virtual user begins from the start()

state. On each state, the tool chooses the next state according to the probability

mass function of the current state, while observing the think time values on the
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Figure 1: Markov Chain model of a user

visited edges. The simulation ends when the exit() state is reached. In short, a

sequence of states is generated and executed during the simulation. Whenever100

a state is visited, the corresponding action is executed against the SUT via a

test adapter.

There are different parameters of the testing process that can be provided

as command line parameters to the tool such as a ramp function (specifying the

amount of concurrent virtual users during a test session), duration of the test105

session, etc. The workload is generated in a distributed fashion, using multiple

load generating nodes, and applied in real-time to the SUT, while measuring

several key performance indicators, such as response time, throughput, error

rate, etc. At the end of the test session, a detailed test report is provided.

4. Related work110

A large number of previous studies (e.g., [9, 10, 11, 12]) have used perfor-

mance modeling for predicting and detecting the performance bottlenecks in

6



web applications. In these studies, the authors estimate the performance of

the system at design time using design specifications. In contrast, we evaluate

the performance of the system after it has been fully implemented and we use115

models which describe the expected behavior of the user.

Bogrdi et al. [13] modify the Mean-Value Analysis evaluation algorithm to

model the behavior of the thread pool. The proposed algorithm is applied to

performance prediction of web-based software systems in the ASP.NET environ-

ment. It is assumed in the paper that the thread pool attributes are dominant120

factors when considering the response time and throughput performance met-

rics of a web application. As opposed to our approach, the approach in [13] can

only be applied to specific web applications.

Gao et al. [14] model a composite web service using queuing networks for

performance analysis and bottleneck identification. A composite web service125

consists of several service centers and the internal control flow of those service

centers is represented by a Markov chain. In contrast, we use the Markov Chain

model as a workload model to capture the expected user behavior and, we try

to identify performance bottlenecks by finding the worst-case user scenario in

the workload model.130

Stewart and Shen [15] present a profile-driven performance model for cluster-

based multi-component online services. Application profiles are constructed

offline to characterize component resource needs and inter-component commu-

nications. The model is used to predict the system throughput by identifying

and quantifying the performance bottlenecks within different operating environ-135

ments. The primary objective of the approach is to predict system performance

according to a given component placement and replication strategy; however,

we aim to find the worst-case user scenario in a given workload model that can

significantly degrade the performance of the system.

Hernandez-Orallo and Vila-Carbó [16] propose a histogram-based workload140

model to describe any class of web traffic distribution. In order to reflect the

second-order statistics (long-range dependence and self-similarity) of the work-

load, this basic model has been extended using the Hurst parameter. The

7



authors introduce a set of procedures and operations that work with histograms

(histogram calculus) to define the web performance model. In this approach,145

the authors are interested in the arrival rate of the web traffic whereas we focus

on the user behavior and nature of the web traffic.

In recent years, the web applications have become very complex and there

are many factors to be considered when the performance of those applications

is concerned [17]. Thus, traditional performance models, which are built at the150

design phase during the software development life cycle, are not flexible and

comprehensives enough to be used for performance prediction in the complex

web systems. It is reported that supercomputers can predict natural phenomena

better than the performance of complex systems [18].

To summarize, even though a large amount of research work has been de-155

voted to investigating the methods for predicting the performance of web appli-

cations, we could not find any approach similar to the one discussed in this pa-

per, that is using workload (or user behavioral) models, instead of performance

models, to predict the performance of web applications. In this paper, on the

one hand, we improve our previous work (presented in [19]) with a more efficient160

heuristic algorithm. On the other hand, we propose an alternative method to

compute the exact solution of the worst-case user scenario. In both cases, we

take into account the think time between different actions when computing the

solution, which was not included in our previous work.

5. Identifying the worst-case user scenario165

As stated in the introduction, our goal is to identify a particular user scenario

in a workload model (as the one in Figure 1) that would create the highest

resource utilization on the SUT. In other words, we are looking for that sequence

of states that visited repeatedly over a considerable amount of time will cause

the highest resource utilization per state. For brevity, we denote this sequence170

of states as the worst path.

We define a path in workload model as a sequence of states of arbitrary
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length n starting in the initial state SI of the workload model, as follows:

Definition 1 (Path): Given a workload model M , a path p is a sequence of

transitions 〈t0, t1, . . . , tm〉, where 0 < m ≤ n, t0 = {〈s0, s1〉|s0 = SI}, ti 6= ti+1175

for all i, 0 ≤ i ≤ m, and m is the length of a path.

Each state in the workload model corresponds to an action executed by the

virtual user against the SUT, which will result at runtime in a certain utilization

level of the resources of the SUT. Therefore, we define the resource utilization

of a path with respect to a given resource as the sum of individual resource180

utilizations triggered on the SUT by each state of that path:

Definition 2 (Resource utilization of a path): Given a path p = 〈〈s0, s1〉,

〈s1, s2〉, . . . , 〈sm−1, sm〉〉, the resource utilization of a path p wrt. a given re-

source type r is defined as Ur
p = Utilr(s0) + Utilr(s1) + . . .+ Utilr(sm).

Definition 3 (Worst path): Given a workload model M , the worst path pw of

the model is the path with the highest resource utilization per state, such that

Ur
pw

= Max(Ur
pk
/|pk|)

where 0 < k ≤ N , N is the total number of paths in the model, and |pk|185

represents the length of path pk.

We address the problem of finding the worst path in a workload model as an

optimization problem and we propose two alternative methods to address this:

an exact method using graph-search algorithms and an approximate method

using genetic algorithms. Both methods require two common preliminary steps,190

as shown in Figure 2. These steps will be described in the following.

5.1. Perform preliminary benchmarking

In order to compute which path of the model will create the highest resource

utilization on the server, we need to know what is the average resource utilization

on the server corresponding to each state. For this purpose, we benchmark each195

action defined in a given workload model with respect to different resource

types (e.g., CPU, memory), by executing the model against the SUT for a

given period of time. For the approach presented in this article, we record
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Figure 2: Approach for identifying the worst-case user scenario

the resource utilization of each action via code instrumentation; however, other

means of collecting the resource utilization can be used in case one does not200

have access to the source code of the SUT. During the test session, each action

in the model will be executed several times. For each action, we calculate the

average utilization of the selected resource type for all its executions.

For instance, we have executed the workload model in Figure 1 for 60 sec-

onds against the implementation discussed in the previous sections. Table 1205

summarizes the resulting average CPU and memory utilization values for each

action in the model and the number of times each action has been executed

during the test session.

5.2. Incorporating the think time

Conceptually, the DTMC formalism imposes that a transition from one state210

to another is done in one unit of time. In our extended version of DTMC,

each transition can have a different think time value. In order to incorporate
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Table 1: CPU and Memory utilization with one concurrent user for Figure 1

Action CPU (sec) Memory (MB) Repetitions

get bids(id) 0.083 0.198 2324

search(string) 0.088 0.200 614

browse() 0.178 0.201 2185

get auction(id) 0.072 0.199 2416

bid(id,price,username,password) 0.578 0.202 1176

different think time values into DTMC according to its definition, we convert the

workload model into an intermediate format, by unfolding the think time of a

transition over several pseudo-states (i.e., nodes with zero resource utilization).215

In other words, we insert pseudo-states between two states, according to the

specified think time on the transition, each pseudo-state corresponding to one

time unit. We emphasize that adding pseudo-states in the DTMC will increase

the length of a path between any two nodes proportionally with the think time

value. However, it will not introduce additional loops or circuits in the model.220

For example, we obtain the workload model in Figure 3 after incorporat-

ing the think time in the original workload model shown in Figure 1. The

dotted circles in Figure 3 represent pseudo-states. For distinguishing between

pseudo-states in future examples, we have labeled each of them with a number.

Nevertheless, we would like to point out that the two models are semantically225

equivalent with respect to our performance testing process.

5.3. Method 1: Computing the worst path using graph-search algorithms

As a first alternative method, we suggest the use of graph-search algorithms

for computing the worst path, as described in Algorithm 1. Three input pa-

rameters are given: the workload model in an intermediate format as a directed230

graph (G), benchmarked resource utilization of each node (Ur) for a given re-

source type, and the initial node in the graph (INode). The output will provide

the worst path in the graph with respect to utilization of the selected resource

type. The algorithm is deterministic and always returns the exact solution.
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Algorithm 1 Graph-search based approach

1: procedure WorstPath(G,Ur, INode)

2: all circuits← FindAllElementaryCircuits(G) . Use Johnson’s

algorithm[20] to get a set of all elementary circuits

3: worst circuit← SelectMax({(c, CRU(Ur, c)) | c ∈ all circuits}) . Select the

circuit with the highest resource utilization

4: if INode /∈ worst circuit then

5: short paths← ShortestPathsFrom(G, INode) . Get all the shortest

paths from the initial node to all the other nodes using Dijkstra’s algorithm[21]

6: short paths to cir ← {p | p ∈ short paths ∧ p ∩ worst circuit 6= ∅}

7: min short path← SelectMinLen(short paths to cir) . Select the

shortest path with the minimal length

8: worst path←MergePaths(min short path, worst circuit)

9: else

10: worst path← worst circuit

11: end if

12: end procedure

13: function CRU(RU, Path) . Calculate resource utilization per node of the given

Path

14: return Sum({RU [n] | n ∈ Path})÷ | Path |

15: end function

16: function MergePaths(path, circuit) . Merge the given path with circuit

17: node joint← path ∩ circuit

18: Q← Queue(circuit)

19: top node← Q.dequeue()

20: while top node 6= node joint do

21: Q.Enqueue(top node)

22: top node← Q.dequeue()

23: end while

24: return path ∪Q

25: end function
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Figure 3: Incorporating think time into the workload model (shown in Figure 1)

The algorithm has three steps. In the first step (line 2 ), we find all the235

elementary circuits in the model by running Johnson’s algorithm [20] on the

given workload model. An elementary circuit is a path in which no node, except

the first and last, appears twice. To the best of our knowledge, Johnson’s

algorithm is the fastest algorithm to find the elementary circuits in a directed

graph.240

In the second step (line 3 ), we calculate the average resource utilization of
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each elementary circuit and we select the circuit which has the highest resource

utilization as the worst circuit. In the third step (lines 4 to 8 ), if the initial

node is present in the worst circuit, then the circuit corresponds to the worst

path in the workload model and we return it as a solution. If the initial node245

is not present in the worst circuit, we identify the shortest path from the initial

node to any node in the worst circuit. To this extent, we use Dijkstra’s [21]

algorithm to find all the shortest paths (lines 5–6 ) from the initial node to each

node in the worst circuit. Then, we select the path with the minimum length

among the identified the shortest paths (line 7 ). Finally, we merge (line 8 ) the250

selected shortest path with the worst circuit to get the worst path in the model.

The reason for combining the shortest path with the worst circuit is that we

want the virtual users to arrive at the worst circuit as quickly as possible during

load generation. As a result, the virtual users will spend the majority of their

simulation time in the worst circuit and generate more workload against the255

SUT.

When applied to the workload model in Figure 3 with respect to CPU utiliza-

tion, the algorithm discovers five elementary circuits and selects the following

circuit as the worst circuit in the model:

get bids(id)→ P23 → bid(id, price, username, password)→ P26 → get bids(id)

where P23 and P26 represent the pseudo-states in the workload model with label

23 and 26, receptively. Since the worst circuit does not contain the initial node,

the algorithm selects the following path as the shortest path from the initial

node to the worst circuit:

start()→ P1 → browse()→ P12 → P13 → get auction(id)→ P16 → P17

→ P18 → get bids(id)

By connecting the shortest path with the worst circuit and after folding back the

pseudo-states, we attain the following path as the worst path in the workload
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model in Figure 1 with respect to CPU utilization:

start()→ browse()→ get auction(id)→ get bids(id)

→ bid(id, price, username, password)→ get bids(id) (1)

Time Complexity Analysis of the Exact Method. Johnson’s algorithm

to find all the circuits in a directed graph has O((N + E)(C + 1)) [20] time

complexity, where N , E and C represent the number of nodes, edges, and

circuits in a given graph, respectively. The CRU function for selecting the260

worst circuit (line 3 ) has O(N) time complexity, which will be executed C

times to calculate the resource utilization. Then, we select a circuit which has

the highest resource utilization among all the circuits with the time complexity

of O(N). Therefore, the step at line 3 has O(CN) time complexity. In case

the worst circuit does not contain the initial node, we need to use the Dijkstra’s265

algorithm [21] (at the line number 5 ) with O(E + NlogN) time complexity to

calculate all the shortest paths from the initial node to all the other nodes in

the model.

A summary of the time complexity of each step of the algorithm is shown

in Table 2. Since the number of edges in a directed graph is upper bounded by270

|E| = O(|N |2), then we can conclude that the time complexity of the entire al-

gorithm is dominated by the time complexity of the step at line 2, i.e., O(N2C).

The time complexity is largely driven by the number of elementary circuits C

in the model, which can grow faster than the exponential 2N with respect to

N [20].275

As one can notice, even though this method produces the exact solution,

it does not scale well for graphs with a large number of elementary circuits.

Therefore, in the following section, we propose a heuristic method to compute

an approximate solution, but with better scalability.

5.4. Method 2: Computing the near-worst path using genetic algorithms280

As an alternative to the graph-search method, we propose the use of Genetic

algorithms (GA) [22] to infer an approximate solution, that is a near-worst path
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Table 2: Computational time complexity of Procedure WorstPath in Algorithm 1

Line number Time Complexity

2 O((N + E)(C + 1))

3 O(CN)

5 O(E +NlogN)

6 O(N3)

7 O(N2)

8 O(N)

in the DTMC with respect to resource utilization. GA is an optimization tech-

nique that is inspired by the natural evolution of species. The basic idea behind

GA is to imitate the evolution of potential solutions for a given optimization285

problem.

When using GA, a population of individuals is maintained. In our approach,

the individuals of the population are represented by workload models. Each

workload model in a population is encoded into a chromosome. Each chro-

mosome is a collection of genes. In our case, a gene encodes the probability

distribution of the outgoing edges of a given state in the workload model. For

instance, the model depicted in Figure 3 will be encoded into the following

chromosome (for brevity, we only show the probability distribution of the P1

pseudo-state whereas the other pseudo-states have been replaced with the ”. . . ”

symbol):

〈
start︷ ︸︸ ︷

〈0.60, 0.40〉,
P1︷︸︸︷
〈1.0〉,

browse︷ ︸︸ ︷
〈0.87, 0.10, 0.03〉, . . . ,

search︷ ︸︸ ︷
〈0.87, 0.10, 0.03〉, . . . ,

get auctions︷ ︸︸ ︷
〈0.20, 0.75, 0.05〉, . . . ,

get bids︷ ︸︸ ︷
〈0.30, 0.50, 0.20〉, . . . ,

bid︷ ︸︸ ︷
〈0.30, 0.25, 0.45〉

exit︷︸︸︷
〈〉 〉

where, for instance, genes 〈0.60, 0.40〉 and 〈0.87, 0.10, 0.03〉 describe the proba-

bility distributions of the start() and, respectively, browse() state.
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An evolution process allows creating new generations of the population. The

individuals of the first generation of the population are generated from the initial290

workload model by randomly changing the probability distributions of each state

under the constraint that the sum of the probabilities in a gene must be equal

to 1. From each generation, we select those individuals (workload models) based

on a fitness function which ranks the models by the amount of time they spend

in the states with high resource utilization. The next generation is obtained by295

applying genetic operators to the selected individuals to create new individuals.

We repeat this step for a fixed number of generations. In the end, we select

the individual with the highest fitness value in all populations as the proposed

solution. The solution will provide an approximate solution to finding the worst-

case user scenario, which we denote as the near-worst path.300

The method is based on the following steps, as illustrated in Algorithm 2.

Algorithm 2 Pseudocode of genetic algorithm

1: procedure GA(I, P,N,Cp,Mp,Mr, U
r)

2: Pop← CreatePopulation(P,N) . Randomly generate initial population of

size P where the length of each chromosome is N

3: for all Chromosome c ∈ Pop do

4: Fitness(c, Ur) . Calculate fitness of a chromosome

5: end for

6: for i← 1 to I do . Evolve the initial population for I generations

7: BinaryTournament(Pop) . Select chromosomes for the next generation

8: TwoPointCrossover(Pop,Cp) . Use to two-point crossover operator

based on Cp probability

9: Mutate(Pop,Mp,Mr) . Mutate the individuals based on Mp probability

10: for all Chromosome c ∈ Pop do

11: Fitness(c)

12: end for

13: end for

14: end procedure
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Evaluation of Fitness. A fitness value is computed (line 4 ) for each indi-

vidual in the population. This value correlates the expected level of resource

utilization that a given individual (i.e., DTMC model) will create on the SUT.

The fitness of an individual is computed in two steps. First, we create a tran-305

sition matrix from the probability values represented in a given chromosome,

then the fitness of the individual is calculated by the benchmarked resource

utilization values for the selected resource type.

The transition matrix is then used to compute the stationary distribution (SD)

of the given workload model. The stationary distribution of a DTMC with a

transition matrix P is some probability vector π, such that,

lim
n→∞

vPn = π

where v is any probability vector and n represents the power of matrix P.

This implies that, in the long run, no matter what the starting state was, the310

probability of the Markov Chain model to be in state i at any given moment

is approximately πi ∈ π for all i. In summary, computing the SD allows us to

deduce which states in the model will be visited more frequently than the others

based on their probability distributions.

We have used an iterative method, called the power method, to calculate the315

stationary distribution of a chromosome. Iterative methods are mostly used to

compute the stationary distribution of large Markov Chains [23]. Additionally,

these methods are less CPU and memory intensive [24, 23, 25]. The main dis-

advantage of using iterative methods is that they provide approximate solutions

and it is not certain how many iterations are required to converge to the exact320

solutions [23].

For instance, the stationary distribution vector π of the model in Figure 3 is

calculated to be as follows (for brevity, we only show the stationary distribution

of the P1 pseudo-state whereas the other pseudo-states have been omitted):

π = 〈
start︷ ︸︸ ︷
0.135,

P1︷ ︸︸ ︷
0.195,

browse︷ ︸︸ ︷
0.195 , . . .,

search︷ ︸︸ ︷
0.054, . . .,

get auctions︷ ︸︸ ︷
0.178 , . . .,

get bids︷ ︸︸ ︷
0.202 , . . .,

bid︷ ︸︸ ︷
0.097, . . .,

exit︷ ︸︸ ︷
0.135〉
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One should note, that the inclusion in the workload model of the pseudo-states325

corresponding to think time values will influence the probability distributions

of the other states in the model because, by inserting the pseudo-states, we

increase the length of the path between any two states.

Secondly, we combine the SD with the benchmark results of resource uti-

lization (discussed in Section 5.1) to calculate the fitness of a model. Let S be

a set of all the states in the model M and let vector Ur be the CPU utilization

of the action of each state s ∈ S with respect to resource r. Then we can define

the fitness of model M with respect to resource r as follows:

frM =
∑
s∈S

πsU
r
s

Considering as example the benchmarked utilization values for CPU included

in Table 1 and the intermediate model shown in Figure 3, the resource utilization

vector for CPU will be:

UCPU = 〈0.0, 0.0, 0.083, . . ., 0.088, . . ., 0.178, . . ., 0.072, . . ., 0.578, . . ., 0.0〉

Then, the fitness of the model would be the by-product of the two vectors:

fCPU
M = 0.135× 0.0 + 0.195× 0.0 + 0.195× 0.083 + . . .+ 0.054× 0.088 + . . .

+ 0.178× 0.178 + . . .+ 0.202× 0.072 + . . .+ 0.097× 0.578

+ . . .+ 0.135× 0.0 = 0.123

We remind the reader that a pseudo-state does not represent an interaction

between a user and the SUT. Since the resource utilization of a pseudo-state is330

always zero, it does not impact on the fitness value of an individual.

Applying the Selection operator. We use the binary tournament selection

method in which two individuals are randomly picked and, between them, the

individual with the larger fitness value is selected as the parent. Two chosen

parents will generate two offspring.335
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Applying the Crossover operator. We use the two-point crossover opera-

tor to create offspring. The chromosomes of two parents are cut at two random

points and the genes between the cut points are swapped to generate two off-

spring. The usage of the crossover operator is moderated by the crossover

operator probability (Cp), which specifies the probability of applying the opera-340

tor to the parents. For instance, by applying the two-point crossover operator

to the parent chromosomes V1 and V2 in Figure 4, we obtain two chromosomes

of their offspring, W1 and W2.

Applying the Mutation Operator. A mutation operator is applied to the

newly generated offspring in order to inject gene diversity in the population. The345

application of the operator is controlled by two parameters: mutation operator

rate (Mp), which defines the probability of applying the operator to a given

individual and mutation rate (Mr), which states the probability of modifying the

probability distribution of a state in a selected individual. The newly generated

offspring supersede the parents in the population.350

In Figure 4, the mutation operator is applied to the newborn offspring W1

and W2 to obtain the final set of children W1’ and W2’.

Calculating the near-worst path. Once the individuals of all generations

have been created the one with the highest fitness value in all generations is

selected as a solution. Its chromosome will provide the probability distributions355

of the workload model.

In order to find the near-worst case path in the model, we walk through the

model starting from the initial state and, in each state, we select the outgoing

edge with the highest probability. We stop when we arrive at a state which has

been already visited.360

For example, Figure 5 depicts a workload model in compact form (i.e., with-

out having the think times expanded into pseudo-states) which is the result of

applying our approximate method with respect to CPU utilization. In order to

extract the most probable path, we start our walk from initial state in the model,

start(). Then, we select an outgoing edge with the highest probability (i.e.,365
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Figure 4: Generic example of applying the two-point crossover and mutation operators

0.95) and move to browse(). After visiting get auctions(id), get bids(id), and

bid(id,price,username,password), we select the edge with the highest probability

0.92 in state bid(id,price,username,password) and we walk back to get bids(id)

state, which, being visited already, constitutes the final state of our walk. Hence,

the most probable path will be:370

start()→ browse()→ get auction(id)→ get bids(id)

→ bid(id, price, username, password)→ get bids(id)

As one may notice, using the approximate method has returned exactly the

same worst path as the exact method for this particular example. However, the

approximate method does not always result in the exact solution.

Time Complexity Analysis of Approximate Method. Generally, the over-

all time complexity of a genetic algorithm is dictated by the fitness function [26].375

Therefore, we only focus on the complexity of the fitness function when analyz-

ing the complexity of our approach.
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Figure 5: User model optimized for CPU utilization

We calculate the fitness of a workload model in two steps. Firstly, we trans-

form the model into a probability transition matrix of size N ∗N , in N number

of steps. Then, the power method is applied over the transition matrix to it-380

eratively compute the stationary distribution vector [23]. Each iteration of the

power method performs one matrix multiplication operation. The time complex-

ity of a matrix multiplication operation is O(N3) for dense matrices and O(EN)

for sparse ones [27], where E is the number of edges in the corresponding graph.

A matrix is considered sparse if |E| = O(|N |) [28], which lets us conclude that385

the matrix multiplication for sparse matrices has a time complexity of O(N2).

Two conclusions can be drawn from the reasoning above: (1) the time com-

plexity for calculating the approximate solution does not depend on the number

of elementary circuits in the graph which can grow faster than the exponential

2N with respect to N [20]; (2) the time complexity of the algorithm is bounded390

by O(N3) for dense graphs and by O(N2) for sparse ones. Both these conclu-

sions show a clear performance improvement over the algorithm used for the
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exact solution.

5.5. Tool support

All the steps of our approach presented in Figure 2 have been fully automated395

using existing open source libraries. The DEAP [29] evolutionary computation

framework has been used to deploy the genetic algorithm. For benchmarking

and for the evaluation of the approach we have used our MBPeT tool.

6. Experimental Validation and Evaluation

In this section, we perform several experiments to validate and evaluate our400

approach in order to answer the research questions posed in the introduction of

this article. We will use the same auction web application described in Section 2

as a SUT. The web application has a RESTful [30] interface, based on the

HTTP protocol. The web application is implemented using Python [31] and the

Django [32] framework.405

Validation. In the first experiment, we validate that the solutions identified by

our approach are able to create the highest resource utilization on the SUT by

comparing the resource utilization triggered by the worst path against the ini-

tial workload model and several random variants of the initial workload model.

For this purpose, we have applied both methods on the initial workload model410

in Figure 1 and, as discussed in the previous section, both methods identified

the same worst path. A new workload model was created to contain only the

worst path (i.e., the transitions marked in red and the corresponding states

in Figure 5), having all transition probabilities set to 1, known as the worst

path model. Additionally, we have generated nine random variants of the ini-415

tial workload model by randomly modifying the probability distribution of the

model.

We have used the MBPeT tool for load generation. The tool and the SUT

ran on different machines. Each machine featured an Intel® Core� i7-3770K

CPU, 16 GB of memory, 7200 rpm hard drive, and Ubuntu 14.04 operating420
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system. In order to reduce the network latency, the machines were connected

via a 1Gb Ethernet connection in an isolated environment. The SUT did not

support automatic scalability and had a fixed number of resources available.

We have used the worst path model, the initial workload model in Figure 1,

and nine random variants of the initial workload model to run 11 separate load425

generation sessions. Each session was run for 300 seconds. The ramp function

displayed as a black dotted-line in Figure 6 was used for each session. The ramp

specified that the tool kept increasing the number of virtual users to achieve 100

concurrent virtual users within 50 seconds and, after that, the number of virtual

users was kept constant until the end of the session.430

Figure 6 illustrates the results of all load generation sessions. The blue and

green line show the resulting CPU utilization, respectively, for the worst and

initial workload model. Additionally, the gray lines in the figure show the CPU

utilization of the random variants of the initial workload model. The average

CPU utilization was approximately 16% for the initial workload model and its435

random variants, and 54% the worst path model, which is almost three times

higher.
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The results of this experiment provide an empirical answer to RQ1 showing

that the solutions identified by both methods can identify the worst-case user

scenario with respect to the utilization of a given resource type.440

Evaluation. In the second experiment, we have evaluated the scalability of

each method. For this purpose, we have randomly generated several sparse

workload models with different number of nodes, as listed in Table 3. Each

transition in the generated models is labeled with a random think time value

and a dummy action, which triggers a certain amount of hypothetical resource445

utilization. For each generated model we calculated the number of elementary

circuits, which, as seen in Table 3, increases dramatically with the size of the

model. Each model was used to compute the worst path using both methods

on a machine that features an Intel® Core� i7-3770K CPU, 16 GB of memory

and Ubuntu 14.04 Operating System. We have used the following parameters450

for every GA run:

� Population size (P ) = 200

� Number of generations (I) = 50

� Crossover operator probability (Cp) = 0.3

� Mutation operator probability (Mp) = 0.5455

� Mutation rate (Mr) = 0.01

Figure 7 provides an overview of the scalability of both methods with respect

to their execution time. As it can be observed, the execution time of the exact

method increases sharply for models with more than 20 nodes. For instance, the

execution time for the model with 21 nodes was around 247 seconds, whereas,460

it took 31 minutes for the model with 22 nodes before crashing due to the

insufficient memory space of the system. At the time of the crash 68 368 711

elementary circuits were counted. Since we could not compute the exact solution

for the model with 22 nodes, we have neither listed the model in Table 3 nor

used it in any further experiments.465

In contrast, the approximate method performs better than the exact one,
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Table 3: Generated Sparse Models

Nodes Edges Elementary Circuits

10 23 25

12 42 270

14 50 2 030

16 73 53 211

18 85 189 776

19 95 907 861

20 103 6 141 014

21 111 12 764 464
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Figure 7: Execution times of the exact vs approximate method

being agnostic to the number of elementary circuits. The average execution time

of the approximate approach was around 40 seconds for all workload models.

In addition, one can further decrease the execution times of the approximate

method by reducing the total number of generations or the population size, at470

the expense of less accurate results.

In the third experiment, we have evaluated the accuracy of the approximate

method with respect to the exact method. For this purpose, we have measured

the quality of the solutions derived from our approximate method and the con-
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vergence rate of GA. We define the quality of a solution as the ratio between the475

fitness of an approximate solution estimated by the approximate method and

the fitness of the exact solution computed using the exact method. In short, we

will refer to it as the quality ratio of an approximate solution.

In the first step of the experiment, we have computed the exact solution

for each model listed in Table 3 using the exact method. In the second step,480

we have computed the corresponding approximate solutions for the same set of

models, using the same parameters for the GA as in the previous experiment.

In order to reduce the random bias caused by the GA, we have applied the

approximate method 10 times on each model listed in Table 3 while monitoring

the convergence rate of each GA run. We define the convergence rate of a GA485

run as the rate of change in the average quality ratio of a population over all

generations.

Figure 8 displays the convergence rate of 10 GA runs for every model listed

in Table 3. As one can observe, the approximate approach converges quickly, in

some cases, to the exact solution (i.e., with a quality ratio of 1). For instance,490

all GA runs for the models with 18 and 19 nodes converge to the exact solutions

just after 20 generations.

Figure 9 shows that 59 out of 80 GA runs converged to the exact solutions

(i.e., with a quality ratio of 1), in other words our approximate method returned

the exact solution 73% of the cases.495

The results of the second and third experiment provide an answer to our

RQ2 that the exact method exhibits poor scalability for those models which

contain a large number of elementary circuits, but produce the exact solution.

However, the approximate method can be used with the larger models at the

expense of producing an approximate solution.500

7. Conclusion

We have proposed an approach for performance testing of web applications

in which we identify the worst path (i.e., a sequence of user interactions) in a
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given workload model which will cause the highest utilization of a given resource

on the SUT. In order to answer RQ1, we have proposed an exact and an ap-505

proximate method for detecting the worst path in the workload model. Then,

in order to answer RQ2, we have analyzed both analytically and empirically the

performance of the two methods.

Moreover, we have noticed that in the case of models with a large number

of elementary circuits, the approximate method performs better. The reason is510

that the time complexity of the approximate method does not depend on the

number of elementary circuits in the model as in the case to the exact method.
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On the other hand, in the case of sparse models, the exact method will execute

faster than the approximate method and provide the exact solution.

As a final remark, the two proposed methods have both advantages and515

drawbacks. Thus, the most appropriate one should be chosen depending on the

configuration and complexity of the workload model under consideration.
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