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Multi-objective dynamic virtual machine consolidation in the

cloud using ant colony system

Adnan Ashraf∗ and Ivan Porres

Faculty of Natural Sciences and Technology, Åbo Akademi University, Finland

In this paper, we present a novel multi-objective ant colony system algorithm for virtual ma-
chine (VM) consolidation in cloud data centers. The proposed algorithm builds VM migration
plans, which are then used to minimize over-provisioning of physical machines (PMs) by con-
solidating VMs on under-utilized PMs. It optimizes two objectives that are ordered by their
importance. The first and foremost objective in the proposed algorithm is to maximize the
number of released PMs. Moreover, since VM migration is a resource-intensive operation, it
also tries to minimize the number of VM migrations. The proposed algorithm is empirically
evaluated in a series of experiments. The experimental results show that the proposed algo-
rithm provides an efficient solution for VM consolidation in cloud data centers. Moreover,
it outperforms two existing ant colony optimization based VM consolidation algorithms in
terms of number of released PMs and number of VM migrations.

Keywords: virtual machines; consolidation; metaheuristic; ant colony system; cloud
computing

1. Introduction

Cloud data centers comprise thousands of physical machines (PMs) and networking
devices. These resources and their cooling infrastructure incur huge energy foot-
prints. High energy consumption not only translates into a high operating cost,
but also leads to huge carbon emissions [1, 2]. Therefore, energy footprint of data
centers is a major concern for cloud providers. The high energy consumption of
data centers can partly be attributed to the large-scale installations of computing
and cooling infrastructures, but more importantly it is due to the inefficient use of
the computing resources [3].

Hardware virtualization technologies allow to share a PM among multiple,
performance-isolated virtual machines (VMs) to improve resource utilization. Fur-
ther improvement in resource utilization and reduction in energy consumption can
be achieved by consolidating VMs on PMs and switching idle PMs off or to a
low-power mode. VM consolidation has emerged as one of the most effective and
promising techniques to reduce energy footprint of cloud data centers [3, 4]. A VM
consolidation approach uses live VM migration to consolidate VMs on a reduced
set of PMs. Thereby, allowing some of the underutilized PMs to be turned-off or
switched to a low-power mode to conserve energy.

There is currently an increasing amount of interest on developing and evaluating
efficient VM consolidation approaches for cloud data centers. Over the past few
years, researchers have used a multitude of ways to develop novel VM consolidation
approaches [3, 5–15]. Some of these approaches have also been reported in recent
literature reviews [16, 17].

The main output of a VM consolidation algorithm is a VM migration plan, which
is implemented by first migrating VMs from one PM to another and then shutting
down or allocating new work to the idle PMs. The quality of a VM consolidation
algorithm can be evaluated according to different criteria, including the number of
released PMs (to be maximized), the number of VM migrations from one PM to
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another (to be minimized), and the algorithm execution time (to be minimized).
Moreover, since a migration plan with a higher number of released PMs is always
preferred to a migration plan with a lower number of VM migrations, maximizing
the number of released PMs takes precedence over minimizing the number of VM
migrations.

The VM consolidation problem is an NP-hard combinatorial optimization prob-
lem [18]. Therefore, it requires advanced strategies in order to be viable in practice.
One way to address this problem is to use the exact optimization techniques, such as
mixed-integer linear programming, which find optimal solutions with exponential
runtime complexity. However, such techniques are mostly impractical for realistic,
large-sized problem instances. Moreover, the currently available commercial, exact
optimization tools, such as IBM ILOG CPLEX1, do not provide support for multi-
objective optimization problems. A widely-used alternative approach to solve dif-
ficult combinatorial optimization problems involves the use of metaheuristics [19].
Metaheuristics are high-level procedures that efficiently explore the search-space of
available solutions with the aim to find near-optimal solutions with a polynomial
time complexity [20].

Some of the recent works [4, 18, 21, 22] on VM consolidation use a highly adaptive
metaheuristic called ant colony optimization (ACO) [23]. The existing ACO-based
VM consolidation approaches [4, 18, 21, 22] tend to use single-objective, single-
colony algorithms with an aggregate objective function (AOF) that tries to combine
multiple objectives. The benefit of the AOF approach is that it reduces complexity
and may improve the runtime of the algorithm by limiting the search to a subspace
of the feasible solutions. However, the main drawback is that a correct combination
of the objectives requires certain weights to be assigned to each objective, which
often requires an in-depth knowledge of the problem domain [17]. Therefore, the
assignment of the weights is essentially subjective [24]. Moreover, an AOF may not
combine the optimization objectives in an appropriate manner. For instance, the
AOFs in the existing ACO-based VM consolidation approaches [4, 18, 21, 22] do
not allow to order the objectives by their importance.

In this paper, we present a novel multi-objective ACO-based VM consolidation
algorithm for cloud data centers that, according to our evaluation, outperforms
the existing ACO-based VM consolidation algorithms [4, 18, 21, 22]. It uses ant
colony system (ACS) [25], which is currently one of the best performing ACO al-
gorithms. The proposed multi-objective ACS algorithm for VM consolidation is
called MOACS and it optimizes two objectives. The first and foremost objective in
MOACS is to maximize the number of released PMs. Moreover, since VM migra-
tion is a resource-intensive operation, MOACS also tries to minimize the number of
VM migrations. We adapt and use a multi-objective, multi-colony ACS algorithm
by Gambardella et al. [26], which orders the objectives by their importance. The
proposed algorithm is not dependent on a particular deployment architecture or
system topology. Therefore, it can be implemented in centralized as well as de-
centralized deployment architectures and system topologies, as the one proposed
in [21].

1.1 Contributions

The main task of the proposed MOACS algorithm is to find a VM migration plan
that maximizes the number of released PMs while minimizing the number of VM

1www.ibm.com/software/commerce/optimization/cplex-optimizer
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migrations. In the rest of this section, we summarize the main contributions of this
paper.

Improved Multi-Objective, Multi-Colony Optimization

MOACS advances the state of the art on ACO-based VM consolidation by im-
plementing a multi-objective, multi-colony ACS algorithm. It extends our previous
single-objective, single-colony ACO algorithm for VM consolidation [4, 18] and
similar works by other researchers [21, 22] that implement single-objective, single-
colony ACO algorithms. The proposed multi-objective, multi-colony approach elim-
inates the need for an AOF and allows to combine the optimization objectives in
an appropriate manner.

Improved Reduction of Search Space

Since VM consolidation is an NP-hard problem, it requires fast and scalable
algorithms. In order to improve the runtime performance of the proposed algorithm,
we present three simple constraints in Section 3. These constraints determine which
PMs and VM migrations can be excluded from the consolidation process without
compromising on the quality of the solutions. We refine two constraints from our
previous work [4, 18] and complement them with a new constraint concerning
neighborhoods of PMs.

Improved Experimental Results

We have implemented the proposed MOACS algorithm in Java and have com-
pared it with two existing ACO-based VM consolidation algorithms. The first one
is the single-objective, single-colony max-min ant system VM consolidation algo-
rithm by Feller et al. [21], that we name Feller-ACO for evaluation. We selected
the Feller-ACO algorithm for comparison due to its excellent overall performance
in many aspects as shown by its authors [21]. The second one is our previously
published single-objective, single-colony ACS VM consolidation algorithm [4], that
we refer to as ACS for evaluation. The ACS algorithm was selected as baseline
for our work since it outperformed many other existing algorithms at the time of
publication, as shown in [4]. Our results show that the proposed MOACS algo-
rithm outperforms Feller-ACO in all attributes: number of released PMs, number
of VM migrations, packing efficiency, and algorithm execution time. Similarly, it
outperforms ACS [4] in all attributes except in execution time.

We proceed as follows. Section 2 provides background and discusses important
related works. The proposed MOACS algorithm is described in detail in Section 3
while its experimental evaluation is presented in Section 4. Finally, we present our
conclusions in Section 5.

2. Background and Related Work

Ant colony optimization (ACO) metaheuristic is inspired from the foraging be-
havior of real ant colonies [23]. While transporting food from the food source to
their nest, ants deposit and follow trails of a chemical substance on their paths
called pheromone. It allows them to indirectly communicate with one another to
find better paths between their nest and the food source. Empirical results from
previous research on ACO has shown that the simple pheromone trail following
behavior of ants can give rise to the emergence of the shortest paths.

Each ant finds a complete path or solution, but high quality solutions emerge
from the indirect communication and global cooperation among multiple concur-
rent ants [4]. Ants must also avoid stagnation, which is a premature convergence to
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a suboptimal solution. It is achieved by using pheromone evaporation and stochas-
tic state transitions. There are a number of ACO algorithms, such as ant system
(AS), ant colony system (ACS), and max-min ant system (MMAS) [23]. ACS [25]
is currently one of the best performing ant algorithms. Therefore, in this paper, we
apply ACS to the VM consolidation problem.

The existing ACO-based resource allocation, VM placement, and VM consoli-
dation approaches include [4, 18, 21, 22, 27–30]. Yin and Wang [28] applied ACO
to the nonlinear resource allocation problem, which seeks to find an optimal al-
location of a limited amount of resources to a number of tasks. Chaharsooghi
and Kermani [29] proposed a modified version of ACO for the multi-objective
resource allocation problem. Feller et al. [21] applied the single-objective, single-
colony MMAS algorithm to the VM consolidation problem in the context of cloud
computing. Ferdaus et al. [22] integrated ACS with a vector algebra-based server
resource utilization capturing technique [31]. In our previous work [27], we ap-
plied the original single-objective, single-colony ACS algorithm [25] to the web
application consolidation problem. Similarly, in our previous work [4, 18], we used
the original ACS algorithm [25] for energy-aware VM consolidation in cloud data
centers.

Gao et al. [30] used a multi-objective ACS algorithm with two equally important
objectives: minimize energy consumption and minimize resource wastage. In their
approach, both energy consumption and resource wastage are derived from the
number of PMs used for the placement of VMs. Their approach only provides an
initial placement of VMs on PMs. It does not migrate VMs from one PM to another.
Therefore, it can not be used to consolidate VMs or to minimize the number of
VM migrations. The output of Gao et al.’s algorithm is a Pareto set of solutions,
from which a solution is randomly selected. A drawback of this approach is that the
objectives can not be ordered by their importance. Moreover, the randomly selected
solution may not be the most desired solution. To the best of our knowledge, none
of the existing ACO-based VM consolidation approaches use a multi-objective ACS
algorithm that orders the objectives by their importance.

The main difference between the existing ACO-based VM consolidation ap-
proaches [4, 18, 21, 22] and our proposed MOACS algorithm is that the existing ap-
proaches tend to use a single-objective, single-colony ACO algorithm with an AOF
that tries to combine multiple objectives, whereas MOACS uses a multi-objective
ACS algorithm with two independent ant colonies. The first colony maximizes the
number of released PMs, while the second colony minimizes the number of VM
migrations. We adapt and use a multi-objective, multi-colony ACS algorithm by
Gambardella et al. [26], which was originally proposed for the vehicle routing prob-
lem with time windows.

3. Multi-Objective ACS Algorithm for VM Consolidation

In this section, we present our proposed multi-objective ACS-based VM consoli-
dation algorithm (MOACS). As its first objective, MOACS maximizes the number
of released PMs |PR|. Moreover, its second objective is to minimize the number of
VM migrations nM . Since a global best migration plan Ψ+ with a higher number
of released PMs |PR| is always preferred to a Ψ+ with a lower |PR| even if the
number of VM migrations nM is higher in the former Ψ+, maximizing |PR| takes
precedence over minimizing nM . For the sake of clarity, important concepts and
notations used in the following sections are tabulated in Table 1.

Figure 1 illustrates MOACS architecture. MOACS coordinates the operations of
two ACS-based ant colonies, which simultaneously optimize their respective objec-
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Table 1.: Summary of concepts and their notations

M set of migration plans
P set of PMs
PR set of PMs that are released when a migration plan Ψ is enforced
T set of tuples
Tk set of tuples not yet traversed by ant k
V set of VMs
Vp set of VMs running on a PM p
Cpde total capacity vector of the destination PM pde
N a neighborhood of PMs
pde destination PM in a tuple
pso source PM in a tuple
q a uniformly distributed random variable
S a random variable selected according to (7)
Scrk thus far best score of ant k
Upde used capacity vector of the destination PM pde
Upso used capacity vector of the source PM pso
Uv used capacity vector of the VM v
η heuristic value
τ amount of pheromone
τ0 initial pheromone level
Ψ a migration plan
Ψ+ the global best migration plan
Ψ+
nM thus far best migration plan from ACSnM

Ψ+
PR thus far best migration plan from ACS|PR|

Ψk ant-specific migration plan of ant k
Ψm
k ant-specific temporary migration plan of ant k

∆nM
τs additional pheromone amount given to the tuples in Ψ+

nM
∆PR
τs additional pheromone amount given to the tuples in Ψ+

PR

α pheromone decay parameter in the global updating rule
β parameter to determine the relative importance of η
ρ pheromone decay parameter in the local updating rule
q0 parameter to determine relative importance of exploitation
nA number of ants that concurrently build their migration plans
nI number of ant generations
nM number of VM migrations
f(Ψ) objective function in (3) concerning number of released PMs
g(Ψ) objective function in (13) concerning number of VM migrations

tives. The first objective concerning the number of released PMs |PR| is optimized
by the first colony called ACS|PR|. Similarly, the second colony called ACSnM op-
timizes the second objective concerning the number of VM migrations nM . Both
colonies work independently and use independent pheromone and heuristic ma-
trices. However, they collaborate on the global best migration plan Ψ+, which is
maintained by MOACS.

In the VM consolidation problem, each PM p ∈ P hosts multiple VMs v ∈ V .
Each PM that hosts at least one VM is a potential source PM. Both the source
PM and the VM are characterized by their resource utilizations, such as CPU
utilization and memory utilization. MOACS uses a notion of neighborhoods of
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Figure 1.: MOACS architecture

PMs. Neighborhoods are mutually exclusive subsets of P . A neighborhood is an
abstract entity that represents a set of closely-located PMs in a cloud data center.
For example, the PMs in a data center rack may constitute a neighborhood of PMs.
A VM can be migrated to any other PM located in any neighborhood N . Therefore,
every other PM within as well as outside the neighborhood of the source PM is a
potential destination PM, which is also characterized by its resource utilizations.
Thus, MOACS makes a set of tuples T , where each tuple t ∈ T consists of three
elements: source PM pso, VM v, and destination PM pde

t := (pso, v, pde) (1)

The computation time of the proposed VM consolidation algorithm is primarily
based on the number of tuples |T |. Therefore, in order to reduce the computation
time, MOACS applies three constraints, which result in a reduced set of tuples by
removing some least important and unwanted tuples. The first constraint ensures
that only under-utilized PMs are used as the source PMs. Similarly, the second con-
straint allows only under-utilized PMs to be considered as the destination PMs. In
other words, migrations from and to well-utilized PMs are excluded. The rationale
is that a well-utilized PM should not become part of the consolidation process
because migrating to a well-utilized PM may result in its overloading. Similarly,
migrating from a well-utilized PM is less likely to result in the termination of the
source PM and thus it would not reduce the total number of required PMs. The
third constraint further restricts the size of the set of tuples |T | by preventing
inter-neighborhood migrations. Therefore, as a general rule, a VM can only be
migrated to another PM within the neighborhood of its source PM. The only ex-
ception to this rule is when a neighborhood has only one PM in it. In this case, the
VMs from the lone PM can be migrated to any other PM in any neighborhood.
By applying these three simple constraints in a series of preliminary experiments,
we observed that the computation time of the algorithm was significantly reduced
without compromising on the quality of the solutions.

The space complexity of the proposed algorithm is O(|T |), where |T | is the
number of tuples. Moreover, the worst-case space complexity corresponds to a
VM consolidation scenario that does not involve any well-utilized PMs. In such
a scenario, each PM is considered as a source as well as a destination PM. The
maximum number of tuples in the worst-case is computed as

maximum |T | := |P | · |V | · (|N | − 1) (2)

where |P | is the number of PMs, |V | is the number of VMs, and |N | is the neigh-
borhood size. Since real VM consolidation scenarios usually involve one or more
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well-utilized PMs and the proposed algorithm excludes migrations from and to well-
utilized PMs, the actual number of tuples |T | in a real scenario is often smaller
than that of the worst-case scenario.

The pseudocode of the proposed MOACS algorithm is presented in Algorithm 1.
Initially, the global best migration plan Ψ+ is not known. Therefore, Ψ+ is empty
(line 2). The main loop in line 1 iterates until a stopping criterion is met. For in-
stance, when all remaining PMs are well-utilized or when no further improvements
are achieved in a given number of consecutive iterations [26]. In each iteration of
the main loop, the two ACS-based colonies ACS|PR| and ACSnM try to find the

global best migration plan Ψ+ according to their respective objectives. ACS|PR|
tries to find a migration plan with a higher number of released PMs |PR| (line 3).
Similarly, ACSnM tries to find a migration plan with fewer VM migrations (line 4).
The global best migration plan Ψ+ is updated every time an improved migration
plan is found. If ACS|PR| finds a migration plan with a higher number of released

PMs (line 5), Ψ+ is updated according to the thus far best migration plan from
ACS|PR| denoted as Ψ+

PR (line 6). Likewise, when ACSnM finds a migration plan

with fewer VM migrations, but with at least as many released PMs PR as in Ψ+

(lines 8–9), Ψ+ is updated according to the thus far best migration plan from
ACSnM denoted as Ψ+

nM (line 10). Finally, at the end of each iteration of the main
loop, VMs are consolidated according to the global best migration plan Ψ+ and
the released PMs are terminated (line 13).

3.1 ACS-based Colony to Maximize the Number of Released PMs

The ACS|PR| colony optimizes the first objective concerning the number of released
PMs |PR|. Therefore, the objective function for the ACS|PR| algorithm is

maximize f(Ψ) := |PR| (3)

where Ψ is the migration plan and PR is the set of PMs that will be released when
Ψ is enforced. Since the primary objective of VM consolidation is to minimize the
number of active PMs, the objective function is defined in terms of number of
released PMs |PR|. Moreover, when a migration plan is enforced, we apply a con-
straint which reduces the number of VM migrations nM by restricting migrations

Algorithm 1 Multi-objective ACS algorithm for VM consolidation (MOACS)

1: while until a stopping criterion is met do
2: Ψ+ := ∅
3: Ψ+

PR := ACS|PR|
4: Ψ+

nM := ACSnM
5: if Ψ+ = ∅ ∨ f(Ψ+

PR) > f(Ψ+) then
6: Ψ+ := Ψ+

PR
7: end if
8: if f(Ψ+

nM ) ≥ f(Ψ+) then
9: if g(Ψ+

nM ) > g(Ψ+) then
10: Ψ+ := Ψ+

nM
11: end if
12: end if
13: consolidate VMs according to Ψ+ and terminate released PMs
14: end while
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to only those PMs that are not included in the set of released PMs PR, that is

∀ pde ∈ P | pde /∈ PR (4)

In our approach, a PM can only be considered as released when all VMs migrate
from it. Therefore, the set of released PMs PR is defined as

PR := {∀p ∈ P |Vp = ∅} (5)

where Vp is the set of VMs running on a PM p. Thus, a PM can only be included
in the set of released PMs PR when it no longer hosts any VMs.

Since there is no notion of path in the VM consolidation problem, ants deposit
pheromone on the tuples defined in (1). Each of the nA ants uses a stochastic state
transition rule to choose the next tuple to traverse. The state transition rule in
ACS|PR| is called pseudo-random-proportional-rule [25]. According to this rule, an
ant k chooses a tuple s to traverse next by applying

s :=

{
arg maxu ∈ Tk{[τu] · [ηu]β}, if q ≤ q0

S, otherwise
(6)

where τ denotes the amount of pheromone and η represents the heuristic value
associated with a particular tuple. β is a parameter to determine the relative im-
portance of the heuristic value with respect to the pheromone value. The expression
arg max returns the tuple for which [τ ] · [η]β attains its maximum value. Tk ⊂ T
is the set of tuples that remain to be traversed by ant k. q ∈ [0, 1] is a uniformly
distributed random variable and q0 ∈ [0, 1] is a parameter. S is a random variable
selected according to the probability distribution given in (7), where the probability
probs of an ant k to choose tuple s to traverse next is defined as

probs :=


[τs]·[ηs]β∑

u ∈ Tk

[τu]·[ηu]β , if s ∈ Tk

0, otherwise
(7)

The heuristic value ηs of a tuple s is defined as

ηs :=

{
Upde+Uv
Cpde

, if Upde + Uv ≤ Cpde
0, otherwise

(8)

where Cpde is the total capacity vector of the destination PM pde, Upde is the
used capacity vector of pde, and likewise Uv is the used capacity vector of the
VM v in tuple s. The heuristic value η is based on the ratio of (Upde + Uv) to
Cpde . Therefore, destination PMs with the minimum unused capacity receive the
highest amount of heuristic value. Thus, the heuristic value favors VM migrations
that would result in a reduced under-utilization of PMs. Moreover, the constraint
Upde + Uv ≤ Cpde prevents VM migrations that would result in the overloading
of the destination PM pde. In the proposed algorithm, we assumed two resource
dimensions, which represent CPU utilization and memory utilization. However, if
necessary, it is possible to add more dimensions in the total and used capacity
vectors.

The stochastic state transition rule in (6) and (7) prefers tuples with a higher
pheromone concentration and which result in a higher number of released PMs.
The first case in (6) where q ≤ q0 is called exploitation [25]. It chooses the best
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tuple that attains the maximum value of [τ ] · [η]β. The second case, called biased
exploration, selects a tuple according to (7). The exploitation helps the ants to
quickly converge to a high quality solution, while at the same time, the biased
exploration helps them to avoid stagnation by allowing a wider exploration of the
search space. In addition to the stochastic state transition rule, ACS|PR| also uses
a global and a local pheromone trail evaporation rule. The global pheromone trail
evaporation rule is applied towards the end of an iteration after all ants complete
their migration plans. It is defined as

τs := (1− α) · τs + α ·∆PR
τs (9)

where α ∈ (0, 1] is the pheromone decay parameter and ∆PR
τs is the additional

pheromone amount that is given only to those tuples that belong to the thus far
best migration plan from ACS|PR| denoted as Ψ+

PR in order to reward them. It is
defined as

∆PR
τs :=

{
|PR|, if s ∈ Ψ+

PR

0, otherwise
(10)

The local pheromone trail update rule is applied on a tuple when an ant traverses
the tuple while making its migration plan. It is defined as

τs := (1− ρ) · τs + ρ · τ0 (11)

where ρ ∈ (0, 1] is similar to α and τ0 is the initial pheromone level, which is
computed as the multiplicative inverse of the product of the number of PMs |P |
and the approximate optimal |Ψ|

τ0 := (|Ψ| · |P |)−1 (12)

Here, any very rough approximation of the optimal |Ψ| suffices [25]. The pseudo-
random-proportional-rule in ACS|PR| and the global pheromone trail update rule
are intended to make the search more directed. The pseudo-random-proportional-
rule prefers tuples with a higher pheromone level and a higher heuristic value.
Therefore, the ants try to search other high quality solutions in the close proximity
of the thus far global best solution. On the other hand, the local pheromone trail
update rule complements exploration of other high quality solutions that may exist
far form the thus far global best solution. This is because whenever an ant traverses
a tuple and applies the local pheromone trail update rule, the tuple looses some of
its pheromone and thus becomes less attractive for other ants. Therefore, it helps
in avoiding stagnation where all ants end up finding the same solution or where
they prematurely converge to a suboptimal solution.

The pseudocode of the ACS|PR| algorithm is given as Algorithm 2. The algorithm
makes a set of tuples T using (1) and sets the pheromone value of each tuple to the
initial pheromone level τ0 by using (12) (line 2). Then, it iterates over nI iterations
(line 3), where each iteration i ∈ nI creates a new generation of nA ants that
concurrently build their migration plans (lines 4–20). Each ant k ∈ nA iterates
over |T | tuples (lines 6–18). It computes the probability of choosing the next tuple
to traverse by using (7) (line 7). Afterwards, based on the computed probabilities
and the stochastic state transition rule in (6) and (7), each ant chooses a tuple t
to traverse (line 8) and adds t to its temporary migration plan Ψm

k (line 9). The
local pheromone trail update rule in (11) and (12) is applied on t (line 10). If the
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Algorithm 2 ACS-based colony to maximize the number of released PMs
(ACS|PR|)

1: Ψ+
PR := ∅, M := ∅

2: ∀t ∈ T |τt := τ0

3: for i ∈ [1, nI] do
4: for k ∈ [1, nA] do
5: Ψm

k := ∅,Ψk := ∅, Scrk := 0
6: while |Ψm

k | < |T | do
7: compute probs ∀s ∈ T by using (7)
8: choose a tuple t ∈ T to traverse by using (6)
9: Ψm

k := Ψm
k ∪ {t}

10: apply local update rule in (11) on t
11: if the migration in t does not overload destination PM pde then
12: update used capacity vectors Upso and Upde in t
13: if f(Ψm

k ) > Scrk then
14: Scrk := f(Ψm

k )
15: Ψk := Ψk ∪ {t}
16: end if
17: end if
18: end while
19: M := M ∪ {Ψk}
20: end for
21: Ψ+

PR := arg maxΨk ∈M{f(Ψk)}
22: apply global update rule in (9) on all s ∈ T
23: end for
24: return Ψ+

PR

migration in t does not overload the destination PM pde, the used capacity vectors
at the source PM Upso and the destination PM Upde in t are updated to reflect the
impact of the migration (line 12). Then, the objective function in (3) is applied on
Ψm
k . If it yields a score higher than the ant’s thus far best score Scrk (line 13), t

is added to the ant-specific migration plan Ψk (line 15). Afterwards, when all ants
complete their migration plans, all ant-specific migration plans are added to the
set of migration plans M (line 19), each migration plan Ψk ∈ M is evaluated by
applying the objective function in (3), the thus far global best VM migration plan
Ψ+ is selected (line 21), and the global pheromone trail update rule in (9) and (10)
is applied on all tuples (line 22). Finally, when all iterations i ∈ nI complete,
ACS|PR| returns the thus far best migration plan from ACS|PR| denoted as Ψ+

PR
(line 24).

The time complexity of the ACS|PR| algorithm is O(nI · |T |2), where nI is the
number of ant generations and |T | is the number of tuples. It can be derived from
the pseudocode in Algorithm 2. The main loop in line 3 iterates over nI. The second
loop in line 4 does not add to the time complexity because the ants concurrently
build their migration plans. The while loop in line 6 iterates over |T |. Finally, the
probability calculation in line 7 requires an iteration over |T |.

3.2 ACS-based Colony to Minimize the Number of VM Migrations

The ACSnM algorithm tries to find a migration plan with fewer VM migrations,
but with at least as many released PMs PR as in Ψ+. Thus, the objective function
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for ACSnM is

maximize g(Ψ) := (nM)−1 (13)

where Ψ is the migration plan and nM is the number of VM migrations. Since VM
migration is a resource-intensive operation, the objective function for ACSnM is
defined as the multiplicative inverse of the number of VM migrations nM .

The ants in the ACSnM colony use the same pseudo-random-proportional-rule as
in (6) and (7) to choose the next tuple to traverse. Moreover, as a general rule, the
heuristic value ηs in (8) favors tuples with a greater VM used capacity vector Uv.
Therefore, the VM migrations that are more likely to result in a reduced number
of VM migrations receive a higher amount of heuristic value ηs. Thus, the heuristic
value ηs in (8) supports the objective function of ACSnM in (13).

The ACSnM colony also uses the same local pheromone trail update rule as
in (11). However, the global pheromone trail evaporation rule in ACSnM is defined
as

τs := (1− α) · τs + α ·∆nM
τs (14)

where ∆nM
τs is the additional pheromone amount that is given only to those tuples

that belong to the thus far best migration plan from ACSnM denoted as Ψ+
nM in

order to reward them. It is defined as

∆nM
τs :=

{
(nM)−1, if s ∈ Ψ+

nM

0, otherwise
(15)

The pseudocode of the ACSnM algorithm is given as Algorithm 3. Most of the
steps in ACSnM are similar to those in the ACS|PR| colony in Algorithm 2 (lines 1–
12). Similarly, in line 13, the algorithm uses the objective function concerning
the number of released PMs |PR| defined in (3) instead of the objective function
concerning the number of VM migrations nM defined in (13) because at this step it
is important to find a migration plan with a higher number of released PMs |PR|.
However, when selecting the thus far best migration plan from ACSnM denoted
as Ψ+

nM (line 21), all ant-specific migration plans Ψk ∈ M are evaluated first by
applying the objective function concerning the number of released PMs |PR| defined
in (3) and then by the objective function concerning the number of VM migrations
nM defined in (13). Therefore, the migration plan with the highest number of
released PMs |PR| and a lower number of VM migrations nM is selected as the best
migration plan Ψ+

nM . Afterwards, the algorithm applies the global pheromone trail
update rule of the ACSnM colony defined in (14) and (15) on all tuples (line 22).
Finally, it returns Ψ+

nM (line 24).
The time complexity of the ACSnM algorithm is similar to that of the ACS|PR|

algorithm. Since the ACS|PR| and ACSnM colonies work concurrently and indepen-
dently, the overall time complexity of the proposed MOACS algorithm for finding
the global best migration plan Ψ+ is O(nI · |T |2).

4. Evaluation

In this section, we describe the experimental evaluation of the proposed MOACS
algorithm and its comparison with the single-objective, single-colony MMAS VM
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Algorithm 3 ACS-based colony to minimize the number of VM migrations
(ACSnM )

1: Ψ+
nM := ∅, M := ∅

2: ∀t ∈ T |τt := τ0

3: for i ∈ [1, nI] do
4: for k ∈ [1, nA] do
5: Ψm

k := ∅,Ψk := ∅, Scrk := 0
6: while |Ψm

k | < |T | do
7: compute probs ∀s ∈ T by using (7)
8: choose a tuple t ∈ T to traverse by using (6)
9: Ψm

k := Ψm
k ∪ {t}

10: apply local update rule in (11) on t
11: if the migration in t does not overload destination PM pde then
12: update used capacity vectors Upso and Upde in t
13: if f(Ψm

k ) > Scrk then
14: Scrk := f(Ψm

k )
15: Ψk := Ψk ∪ {t}
16: end if
17: end if
18: end while
19: M := M ∪ {Ψk}
20: end for
21: Ψ+

nM := arg maxΨk ∈M{f(Ψk)} ∧ arg maxΨk ∈M{g(Ψk)}
22: apply global update rule in (14) on all s ∈ T
23: end for
24: return Ψ+

nM

consolidation algorithm (Feller-ACO) by Feller et al. [21] and our previously pub-
lished single-objective, single-colony ACS VM consolidation algorithm (ACS) [4].

We have implemented our proposed MOACS algorithm as a Java program called
the MOACS Solver. It is available online under an open-source license1. We have
also developed Java solvers for the Feller-ACO [21] and ACS [4] algorithms.

4.1 Experimental Design

The objective of the experiment was to compare the performance of the three im-
plemented solvers: ACS, MOACS, and Feller-ACO. The input of these algorithms
is a VM consolidation problem that can be characterized by the following parame-
ters: number of PMs, number of VMs to consolidate, CPU utilization of each VM,
memory requirements of each VM, and the current location of each VM. We used
a factorial experiment design [32], in which the three solvers were tested in four
different scenarios: (1) low CPU and small memory requirements with respect to
the capacity of the PMs, (2) high CPU and large memory requirements, (3) high
CPU and small memory requirements, and (4) low CPU and large memory require-
ments. The experiment used randomly generated workloads, homogeneous VMs,
and homogeneous PMs. The experimental parameters are summarized in Table 2
and Table 3. For Scenario 1, the number of VMs to consolidate was 1000 and the
number of PMs was 100 (ratio 10:1), while in the other 3 scenarios there were 1000
VMs and 200 PMs (ratio 5:1). The neighborhood size was set to 5 and the neigh-

1https://github.com/SELAB-AA/moacs-wac



Multi-objective dynamic virtual machine consolidation in the cloud using ant colony system 13

Table 2.: Experiment design

Algorithm
ACS, MOACS, Feller-ACO

CPU Utilization
Low High

Memory

Small

Scenario 1
|V |=1000
|P |=100
|N |=5
Number of runs=10

Scenario 3
|V |=1000
|P |=200
|N |=5
Number of runs=10

Large

Scenario 4
|V |=1000
|P |=200
|N |=5
Number of runs=10

Scenario 2
|V |=1000
|P |=200
|N |=5
Number of runs=10

Table 3.: ACO parameters

α β ρ q0 nA nI
0.1 2.0 0.1 0.9 10 2

bors were chosen randomly. The ACO parameters used in the ACS, MOACS, and
Feller-ACO solvers are tabulated in Table 3. These parameter values were obtained
in a series of preliminary experiments. The dependent variables of the experiment
were:

• Number of released PMs after consolidation, to be maximized.

• Packing efficiency, defined as the ratio between the number of released PMs and
the total number of PMs, to be maximized.

• Number of VM migrations during consolidation, to be minimized.

• Solver execution time, to be minimized.

4.2 Execution

The three solvers under evaluation used approximated algorithms. Therefore, we
ran each solver ten times for each scenario, every time with a different random seed.
Consequently, the experiment comprised a total of 40 test runs for each solver.
The experiments were run on an Intel Core i7-4790 processor with 16 gigabytes of
memory.

4.3 Results

4.3.1 Number of Released PMs and Packing Efficiency

Figure 2 presents the number of released PMs by the ACS, MOACS, and Feller-
ACO solvers for the different scenarios as box plots. Moreover, Table 4 provides a
summary of the results in the numerical form. The table also provides the packing
efficiency achieved by each solver. This variable is derived easily from the number
of released PMs.

The results show that the MOACS solver was able to release 25% to 37% more
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Figure 2.: Number of released PMs

PMs than the Feller-ACO solver, depending on the scenario. For example, in Sce-
nario 1, MOACS released 15 PMs (median of 10 test runs) while Feller-ACO re-
leased only 11 PMs (median of 10 test runs). Since the packing efficiency is derived
from the number of released PMs, it follows a similar trend. The difference in the
number of released PMs between the MOACS and Feller-ACO solvers is statisti-
cally significant (Wilcoxon Signed-Rank Test, p-value = 0.005).

4.3.2 Number of VM Migrations

The third dependent variable of interest in our experiment was the number of
VM migrations, which should be minimized. Figure 3 presents the results for this
variable for the three solvers in the graphical form while Table 5 provides a sum-
mary of the results in the numerical form.

Again, we can observe that MOACS outperforms Feller-ACO for this objective.
The results show that the MOACS solver was required to perform only 82% to
83% of the number of migrations required by the Feller-ACO solver to achieve
an even better packing efficiency. For example, in Scenario 1, MOACS required
189 migrations (median of 10 test runs) while Feller-ACO required 226 migrations
(median of 10 test runs). The difference in the number of migrations per solver is
statistically significant (Wilcoxon Signed-Rank Test, p-value = 0.006).
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Figure 3.: Number of VM migrations

4.3.3 Execution Time and Scalability

The last comparison attribute is the execution time required by each solver to find
a near-optimal, global best migration plan. Ideally, the solvers should use as less
time as possible. Figure 4 presents the execution time for the ACS, MOACS, and
Feller-ACO solvers when solving problems based on Scenario 2 with the number of
PMs varying from 50 to 500 in increments of 50 and the number of VMs varying
from 250 to 2500 in increments of 250.

We can observe in the figure that MOACS performed better than Feller-ACO.
Moreover, ACS performed better than MOACS but, to be fair, it used a single-
objective algorithm while MOACS explored the search-space for two different ob-
jectives.

For reference, we also report the execution times to solve Scenario 1 with |P |=100
and |V |=1000 in Table 6. For this scenario, ACS required a bit more than one
minute. In contrast, MOACS required almost 2 minutes while Feller-ACO required
almost 6 minutes. We report the median value for 10 test runs. However, we have
observed that the standard deviation for the time variable was rather small for all
solvers. The difference in the execution time between the MOACS and Feller-ACO
solver is statistically significant (Wilcoxon Signed-Rank Test, p-value = 0.002).
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Table 4.: Number of released PMs

ACS MOACS Feller-ACO Change p-value

Scenario 1

Median Released 9 15 11 136% 0.005
Sd Released 0.63 0.52 0.82
Packing
Efficiency %

9% 15% 11%

Scenario 2

Median Released 7 11 8 137% 0.005
Sd Released 0.67 0.67 0.99
Packing
Efficiency %

3.5% 5.5% 4%

Scenario 3

Median Released 7 10 8 125% 0.004
Sd Released 0.67 0.52 0.82
Packing
Efficiency %

3.5% 5% 4%

Scenario 4

Median Released 7 11 8 137% 0.005
Sd Released 0.88 0.88 0.74
Packing
Efficiency %

3.5% 5.5% 4%

Table 5.: Number of VM migrations

ACS MOACS Feller-ACO Change p-value

Scenario 1
Median Migrations 201.5 189 226 83% 0.002
Sd Migrations 3.13 4.77 5.23

Scenario 2
Median Migrations 176 154.5 186 83% 0.006
Sd Migrations 3.37 2.31 4.52

Scenario 3
Median Migrations 173 154.5 187.5 82% 0.005
Sd Migrations 3.34 2.58 2.35

Scenario 4
Median Migrations 171 154 186 83% 0.006
Sd Migrations 3.14 2.07 0.74

4.4 Analysis

We can observe that the proposed MOACS algorithm and its corresponding solver
outperformed Feller-ACO in all the measured variables: number of released PMs
and packing efficiency (change 125%), number of VM migrations (change 82%),
and execution time (speedup 2.97X). The solvers were exercised in four different
scenarios involving different VM requirements. Each scenario was evaluated in 10
independent test runs. The differences were statistically significant for all variables
(Wilcoxon Signed-Rank Test, p-values less than or equal to 0.006).

The differences in the performance can be explained by the design of each al-
gorithm. Feller-ACO uses a single-objective, single-colony MMAS algorithm with
an AOF that combines two different objectives concerning the number of released

Table 6.: Execution time (in minutes) for the three solvers for Scenario 1

ACS MOACS Feller-ACO Speedup p-value

|P | · |V |=100000
Median Time 1.03 1.99 5.92 2.97X 0.002
Sd Time 0.03 0.08 0.17



Multi-objective dynamic virtual machine consolidation in the cloud using ant colony system 17

●● ● ● ●
●

●
●

●

●

0

1000

2000

3000

4000

5000

0 250000 500000 750000 1000000 1250000
|P|·|V| (before consolidation)

se
co

nd
s Solver

● ACS

MOACS

Feller−ACO

Execution Time

Figure 4.: Scalability of the ACS, MOACS, and Feller-ACO solvers

PMs and the number of VM migrations, whereas MOACS uses a multi-objective
algorithm with two independent ant colonies for optimizing the two objectives. The
AOF approach in Feller-ACO uses several parameters to determine the relative im-
portance of the two objectives in the overall optimization process. We consider that
this approach has two drawbacks: (1) it is difficult to find appropriate values for
the different parameters in an AOF and (2) an AOF may not combine the differ-
ent objectives in an appropriate manner. For instance, as described in Section 3,
maximizing the number of released PMs takes precedence in MOACS over mini-
mizing the number of VM migrations. However, the AOF in Feller-ACO does not
support precedence of one objective over another. Finally, MOACS uses additional
constraints over its search-space, which significantly reduce the algorithm execu-
tion time without compromising on the quality of the solutions. The experimental
evaluation clearly showed that these design decisions have an actual impact on the
performance of the solvers.

It was also interesting to compare MOACS to ACS. MOACS clearly released
more PMs and required less VM migrations than ACS. However, it was slower than
ACS. When comparing ACS and Feller-ACO, we observed that ACS was faster and
required less VM migrations than Feller-ACO, although it did not achieve the same
packing efficiency. Still, ACS was the fastest of the three solvers and it can be a
good alternative to consider when execution time is critical.

5. Conclusion

We presented a novel multi-objective ant colony system algorithm for virtual ma-
chine (VM) consolidation in cloud data centers. The proposed algorithm builds VM
migration plans, which are then used to reduce the number of required physical
machines (PMs) by migrating and consolidating VMs on under-utilized PMs. It
optimizes two objectives that are ordered by their importance. The first and fore-
most objective in the proposed algorithm is to maximize the number of released
PMs. Moreover, since VM migration is a resource-intensive operation, it also tries
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to minimize the number of VM migrations.
The proposed algorithm was evaluated in a series of experiments. The experi-

mental evaluation compared the proposed algorithm with two previously published
ant colony optimization based VM consolidation algorithms, which were chosen for
comparison due to their excellent performance with respect to different attributes.
We considered four different scenarios of interest to test the three algorithms under
different VM configurations. The experimental results showed that the proposed
algorithm provided an efficient solution for VM consolidation in cloud data cen-
ters. Moreover, it outperformed the two existing ant colony optimization based VM
consolidation algorithms in terms of number of released PMs, packing efficiency,
and number of VM migrations.
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