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Abstract

Reaction systems is a new mathematical formalism inspired by the biological
cell, which focuses on an abstract set-based representation of chemical reactions
via facilitation and inhibition. In this article we focus on the property of mass
conservation for reaction systems. We show that conservation of sets gives rise
to a relation between the species, which we capture in the concept of the con-
servation dependency graph. We then describe an application of this relation to
the problem of listing all conserved sets. We further give a sufficient negative
polynomial criterion which can be used for proving that a set is not conserved.
Finally, we present a simulator of reaction systems, which also includes an im-
plementation of the algorithm for listing the conserved sets of a given reaction
system.
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1. Introduction

Reaction systems is a framework inspired by the functioning of the living
cells, which was originally introduced in [1]. This formalism focuses on reac-
tions exclusively and only considers two basic ways in which they can interact:
promotion and inhibition. Reaction systems are based upon two fundamental
principles. The first one, referred to as the “threshold principle”, states that,
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whenever a resource is available, it is available in unlimited amount. This im-
plies in particular that no competition for resources takes place. The second
principle, referred to as the “no-permanency principle”, states that unless a re-
source is explicitly sustained by a process, it will vanish and thus it will not be
present in the next state of the system.

One of the central features of reaction systems is that they are explicitly con-
ceived as open-ended systems: the influence of the environment is represented
as an inflow of resources (the context).

The research topics investigated in the domain of reaction systems are var-
ious [2], but they can generally be classified along two lines. The first line
comprises the research focusing on the mathematical properties of reaction sys-
tems: the set functions they can implement, their state sequences, connections
to Boolean functions, etc. (e.g., [3, 4, 5, 6, 7]). The second main line of re-
search regards reaction systems as an instrument for biological modeling (e.g.,
[8, 9, 10]). Quite naturally, investigations along this second line led to the study
of model checking for reaction systems. For example, in [11], the authors in-
troduce a temporal logic to define and subsequently verify certain properties
of reaction systems. They prove that the general model checking problem is
PSPACE-complete. On the other hand, [8] starts with defining a series of bio-
logically inspired properties for reaction systems and shows that checking some
of them, while still intractable, is a problem of lower computational complexity.

In this paper we conduct a detailed study of the biologically inspired property
of mass conservation in reaction systems, originally introduced and shown to be
coNP-complete in [8]. We get a new insight into the connection between the
internal structure of the reaction system and mass conservation by revealing a
relation that the latter induces between the species, and we capture this relation
by defining the conservation dependency graph. We then present an application
of this graph to the inherently difficult problem of listing the conserved sets and
show that, in certain cases, the algorithm we devise to solve this problem is
capable of performing better than the naive exponential approach. We continue
by regarding mass conservation from a yet another perspective and formulate a
sufficient polynomial criterion which allows one to quickly decide that a given
set of species is not conserved. Finally, we present the reaction system simulator
we have developed with the goal of automating the process of running reaction
systems, and which is also capable of building the conservation dependency
graph of a reaction system and of using it to list the conserved sets.

This paper is structured as follows. In Section 2 we remind the basic notions
of reaction systems, as well as the notion of mass conservation. In Section 3
we discuss the relationship between mass conservation and the inner structure
of the reaction system, and introduce the conservation dependency graph. In
Section 4 we describe the algorithm for listing the conserved sets, which is based
on the conservation dependency graph. In Section 5 we provide a negative poly-
nomial heuristics for mass conservation, as well as for a generalized conservation
problem. Finally, in Section 6 we give a short presentation of our reaction sys-
tems simulator. We conclude the paper in Section 7 with a discussion of our
work.
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2. Preliminaries

In this section we remind the notion of a reaction system as well as some
related concepts capturing the static structure and the dynamic aspects of the
model. For the original introduction the reader is referred to [1] and [3].

Definition 2.1 ([1]). Let S be a finite set, whose elements will be referred
to as species (very often in the reaction systems literature they are also called
entities). A reaction a in S is a triplet of finite sets a = (Ra, Ia, Pa), where
Ra, Ia, Pa ⊆ S and Ra ∩ Ia = ∅. We say that Ra, Ia, and Pa are the sets of
reactants, inhibitors, and products of a, respectively. The set of all reactions
in S is denoted by rac(S).

A reaction system (RS) is an ordered pair A = (S,A), where S is a finite
set of species and A ⊆ rac(S). The set S is called the background (set) of A.

We use the following notations of [8]:

R =
⋃
a∈A

Ra,P =
⋃
a∈A

Pa, and supp(A) = R∪ P.

The set supp(A) will be called the support set of A.

The following definition introduces the result of a reaction and of a reaction
system.

Definition 2.2 ([1]). Let A = (S,A) be a reaction system, W ⊆ S a set of
species, and a ∈ A a reaction. We say that a is enabled by W , denoted by
ena(W ), if Ra ⊆W and Ia ∩W = ∅.

(1) The result of a on W is defined as follows:

resa(W ) =

{
Pa, if ena(W ),
∅, otherwise.

(2) The result of A on W is defined as follows:

resA(W ) =
⋃
a∈A

resa(W ).

Next, we introduce a running example for this section, as well as Sections 3
and 4.

Example 2.1. One of the best preserved defense mechanisms in the living cell is
the heat shock response. Whenever the cell is exposed to environmental stress,
its proteins start to misfold, which may eventually lead to cell death. The heat
shock response mechanism causes an increase in the production of molecular
chaperons called the heat shock response proteins (hsp). These chaperons bind
to misfolded proteins and facilitate their refolding. A different group of proteins,
the heat shock factors (hsf), control hsp expression by binding to the promoter
site of the hsp-encoding gene (the heat-shock element hse) and thus activate the
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transcription of hsp. A molecular model of such a mechanism is proposed in [12]
and its corresponding reaction system based model is presented in [9]. In this
paper we will consider the following simplified version of the model from [9]:

S = {hsf,hsp,hse,hsp:hsf,hsf:hse,dI}
A = {({hsf}, {hsp}, {hsf}),

({hsp,hsf}, {dI}, {hsp:hsf}),
({hsp:hsf}, {dI}, {hsp,hsf}),
({hse}, {hsf}, {hse}),
({hsf,hse}, {hsp}, {hsf:hse}),
({hsf:hse}, {hsp}, {hsf:hse,hsp}),
({hsp,hsf,hse}, {dI}, {hsp:hsf,hse}),
({hsp,hsf:hse}, {dI}, {hsp:hsf,hse})}

For this particular example, the support set contains all the species except for dI:

supp(A) = {hsf,hsp,hse,hsp:hsf,hsf:hse}

We now recall the notion of mass conservation in reaction systems.

Definition 2.3 ([8]). Let A = (S,A) be a reaction system. We say that a set
M ⊆ supp(A) is conserved if for any W ⊆ supp(A), M ∩W 6= ∅ if and only if
M ∩ resA(W ) 6= ∅.

The biological intuition behind a set M being conserved is that the entities
in M represent different forms of the same species (or of several closely related
species), e.g., a gene promoter region G and the same promoter region G bound
to a transcription factor T . The fact that M is conserved is thus interpreted as
follows: if the group of species encoded by M is present in the system (i.e. at
least one entity from M is present), then it will be present in the next state as
well (possibly via different entities of M). Furthermore, elements from M are
not produced by the system in the next state unless some entity ofM is already
present in the current state.

Note that mass conservation has been defined with respect to the support
set so as to exclude elements of the background set which can only be provided
via the context, with the intuition that such species would inevitably hinder the
satisfaction of conservation properties for reaction systems. We define here a
generalization of mass conservation that allows one to consider a different set of
elements that can be reasonably excluded from the sets tested for conservation.

Definition 2.4 (Parameterized conservation). Let A = (S,A) be a reaction
system and T ⊆ S a set of species. A set M ⊆ T is conserved with respect to T
if, for any W ⊆ T , it holds that M ∩W 6= ∅ if and only if M ∩ resA(W ) 6= ∅.
We use cons(A, T ) to refer to all sets that are conserved with respect to T .
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Note that the original definition of mass conservation (Definition 2.3) corre-
sponds to parameterized conservation with respect to T = supp(A).

Furthermore, it can be shown that in order to compute the conserved sets
with respect to a given T we can, instead, find conserved sets with respect to
the background set in a different RS. We start by defining the projection of a
reaction system.

Definition 2.5. Let A = (S,A) be a reaction system and T ⊆ S a set of species.
For a reaction a ∈ A that satisfies Ra ⊆ T , we define its projection onto T as
projT (a) = (Ra, Ia ∩ T, Pa ∩ T ).

We define the projection of A onto T as projT (A) = (T,A′) where:

A′ = {projT (a) | a ∈ A ∧Ra ⊆ T}

Lemma 2.1. Let A = (S,A) be a reaction system, T ⊆ S a set of species and
A′ = projT (A) the projection of A onto T . Then, for any set W ⊆ T , we have
that resA′(W ) = resA(W ) ∩ T .

Proof. Consider an arbitrary reaction a ∈ A and a set W ⊆ T . If Ra 6⊆ T , then
a has no corresponding reaction in A′, since projT (a) is not defined. But in this
case note that a is not enabled for W in A, since W ⊆ T and Ra 6⊆ T .

If Ra ⊆ T , then consider a′ = projT (a) and note that ena(W ) = ena′(W ).
Indeed, since W ⊆ T , we have that W ∩ Ia = ∅⇔W ∩ (Ia ∩T ) = ∅. Since the
reaction a′ only produces Pa ∩ T rather than Pa, we obtain the desired result
resA′(W ) = resA(W ) ∩ T .

Note that the meaning of Lemma 2.1 is that the projection of a reaction sys-
tem onto a set T preserves the behavior of the result function with respect to T .
This property enables us to reduce the problem of parameterized conservation
to computing conserved sets with respect to the full background set.

Theorem 2.2. For any reaction system A = (S,A) and any set of species
T ⊆ S, we have that cons(A, T ) = cons(projT (A), T ).

Proof. Let A′ = projT (A). Based on Lemma 2.1, we have thatM ∩ resA′(W ) =
M ∩ resA(W ), for any M ⊆ T , so the conserved sets with respect to T are the
same in the two reaction systems, i.e. cons(A, T ) = cons(A′, T ).

Note that, for any reaction system A = (S,A), its projection onto a set
T ⊆ S uses T as background set. Based on this, we will consider, throughout
the rest of this paper, only the problem of finding sets that are conserved with
respect to the background set (denoted by cons(A) instead of cons(A, S)), but
having all results implicitly applicable both for the parameterized conservation
with respect to arbitrary sets T (by relying on Theorem 2.2) as well as for the
original definition of mass conservation (by taking T = supp(A) in Theorem
2.2).

It should be noted, though, that the projection A′ = projT (A) may include
reactions with empty inhibitor or product sets, even if A does not have them.
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Therefore, in this paper we remove the usual requirement that all the three sets
defining reactions need to be nonempty [9, 2]. This is in line with the observation
that reactions that cannot be inhibited by the sets taken into consideration (e.g.
subsets of the support set) are crucial for mass conservation [8].

Going back to Example 2.1, let us consider the projection of the reaction
system onto its support set. This translates in this case to the removal of dI

from the inhibitor sets. We obtain projsupp(A)(A) = (S′, A′), where:

S′ = {hsf,hsp,hse,hsp:hsf,hsf:hse}
A′ = {({hsf}, {hsp}, {hsf}),

({hsp,hsf}, {}, {hsp:hsf}),
({hsp:hsf}, {}, {hsp,hsf}),
({hse}, {hsf}, {hse}),
({hsf,hse}, {hsp}, {hsf:hse}),
({hsf:hse}, {hsp}, {hsf:hse,hsp}),
({hsp,hsf,hse}, {}, {hsp:hsf,hse}),
({hsp,hsf:hse}, {}, {hsp:hsf,hse})}

Notice that indeed we now have empty inhibitor sets for some of the re-
actions. This is consistent with the use of dI in [2] as a so called “dummy
inhibitor” meant only to ensure compliance with the more restrictive version of
the definition of reaction systems.

3. From Mass Conservation Relations to Dependency Graphs

In this section we aim to gain a better understanding of mass conservation in
reaction systems by relating it to the inner structure induced by reactions. We
start by first translating the reactions to a graph that completely characterizes
the behavior of the system.

Definition 3.1. Let A = (S,A) be a reaction system. The behavior graph of A
is defined as Gb = (Vb, Eb), with Vb = 2S and Eb =

{(
W, resA(W )

)
|W ⊆ S

}
.

Note that the behavior graph is in fact the phase space of the reaction
system, i.e. it contains all the possible states that the system can be in, with
edges denoting the transition from one state to another. Moreover, the behavior
graph only encodes the result function resA. In particular, it is possible to
have different reaction systems that translate to the same behavior graph (such
systems are said to be functionally equivalent [1]). For the reaction system from
Example 2.1 the behavior graph is depicted in Figure 1.

Consider now a conserved set M . For any state W we have that M either
intersects both W and resA(W ) or is disjoint from both of them. A similar
property can be formulated for M with respect to the connected components of
the behavior graph. Before showing how this can be achieved, we give several
graph-theoretic definitions.
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{hsp} ∅

{hsp:hsf}

{hsf,hsp} {hsf,hsp:hsf}

{hsp,hsp:hsf}

{hsf,hsp,hse,hsp:hsf,hsf:hse}

{hsf,hsp,hse,hsp:hsf}{hsp,hsp:hsf,hsf:hse}

{hsp,hse,hsp:hsf,hsf:hse}

{hsf,hsp,hsp:hsf,hsf:hse}

{hsf}

{hsp,hse}

{hse}

{hsf,hsp,hsp:hsf}

{hsf:hse} {hse,hsp:hsf,hsf:hse} {hsp,hse,hsf:hse}

{hse,hsf:hse}

{hsp,hse,hsp:hsf}

{hsp,hsf:hse} {hsf,hsp,hse,hsf:hse} {hse,hsp:hsf} {hsf,hsp,hse}

{hsf,hse} {hsf,hse,hsp:hsf,hsf:hse} {hsf,hsp,hsf:hse} {hsf,hse,hsf:hse}

{hsf,hsf:hse} {hsf,hsp:hsf,hsf:hse} {hsf,hse,hsp:hsf} {hsp:hsf,hsf:hse}

Figure 1: Behavior graph for the HSR model (Example 2.1). Double line borders
correspond to singleton sets and to the empty set.

Definition 3.2. Let G = (V,E) be a directed graph. We say that a node v is
connected to a node u if there is a (possibly degenerate) undirected path from
u to v in G. Connectedness defined in this way is an equivalence relation. We
refer to its equivalence classes as connected components and we use CCG(u) to
denote the connected component that contains u. Furthermore, we denote the
set of all connected components of G by CCSG = {CCG(u) | u ∈ V }.
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Note that our notion of connected components differs slightly from its stan-
dard use in the sense that we only refer to sets of nodes instead of induced
subgraphs. For a further introduction to graph theory, we refer the reader
to [13].

In the following definition we introduce a formal notation for saying that a
given set M intersects all (or none) of the sets from a collection of sets C.

Definition 3.3. Let S be an arbitrary finite set and consider a set M ⊆ S and
a collection of sets C ⊆ 2S. We use the notation M u C = {T ∈ C |M ∩ T 6= ∅}
to refer to the collection of those sets in C which intersect M .

We say that M intersects C if M intersects every element of C, i.e. M uC =
C. We say that M is disjoint from C if M is disjoint from every element of C,
i.e. M u C = ∅. We say that M is consistent with C if M intersects C or is
disjoint from C.

Proposition 3.1. Let A = (S,A) be a reaction system and Gb = (Vb, Eb) its
behavior graph. For any setM ⊆ S, the following two statements are equivalent:

(1) M is conserved,

(2) M is consistent with every connected component C ∈ CCSGb
.

Proof. The implication (2)⇒ (1) follows from the fact that, for every setW ⊆ S,
we have resA(W ) ∈ CCGb

(W ).
We now prove that (1) ⇒ (2). Let C be a connected component of the

behavior graph Gb. Assume that M is a conserved set for which there exist
W1,W2 ∈ C such that M ∩W1 = ∅ and M ∩W2 6= ∅. Since W1 and W2 are
in the same connected component, there is a path of nodes connecting them,
i.e., there exist V1, . . . , Vn such that V1 = W1, Vn = W2 and, for all i with
1 ≤ i ≤ n− 1, (Vi, Vi+1) ∈ E or (Vi+1, Vi) ∈ E. But then, in both cases, it must
be that M ∩ Vi 6= ∅⇔M ∩ Vi+1 6= ∅, so we can via transitivity conclude that
M ∩W1 6= ∅⇔M ∩W2 6= ∅, which contradicts our assumption and completes
the proof.

Note that, by the result presented in Proposition 3.1, the conservation of a
given set M only depends on the connected components of the behavior graph
and not on its edges or their direction. This means that even fairly different
reaction systems may end up having the same conserved sets or, in other words,
equivalence with respect to conserved sets is a lot weaker than functional equiv-
alence.

For the heat shock response model, one conserved set is M = {hsf:hse,hse}.
To see that indeed this is the case, by Proposition 3.1, note in Figure 1 that the
connected components of ∅, {hsf}, {hsp:hsf} and {hsf,hsp,hsp:hsf} intersect
M , whereas the other connected components of the behavior graph are disjoint
from M .
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3.1. Conservation dependency graph
In what follows we aim to further investigate the properties of conserved sets

in relation with the connected components of the behavior graph.

Proposition 3.2. Let A = (S,A) be a reaction system and Gb = (Vb, Eb) its
behavior graph. Consider an arbitrary element x ∈ S and let Cx be the connected
component that contains the singleton set {x}, i.e. Cx = CCGb

({x}). Similarly,
take C∅ = CCGb

(∅). We denote, for any collection C, cover(C) =
⋃

T∈C T .

(1) If x ∈ cover(C∅), then x is not contained in any conserved set of A, i.e.
{x} u cons(A) = ∅.

(2) If cover(Cx) = S, then x is contained in all nonempty conserved sets of A,
i.e. {x} u cons(A) = cons(A) \ {∅}.

(3) For every y ∈ cover(Cx) and for every conserved set M , if x 6∈ M , then
y 6∈ M , (or, equivalently, y ∈ M implies x ∈ M), i.e. {y} u cons(A) ⊆
{x} u cons(A).

Proof. (1) Let M be an arbitrary conserved set. Then, from Proposition 3.1,
it follows that M must be consistent with C∅. Since ∅ ∈ C∅ and M ∩ ∅ = ∅,
it must be that M u C∅ = ∅. In particular, we must also have M ∩ {x} = ∅,
which means that x 6∈M .

(2) Let M be a nonempty conserved set. Then, since M ∩ S 6= ∅, it must
be that M intersects a set from Cx. But from Proposition 3.1 we know that
M must be consistent with Cx and, thus, it must be that M u Cx = Cx. In
particular, we must also have M ∩ {x} 6= ∅, which is equivalent to x ∈M .

(3) Let M be a conserved set such that x 6∈ M . Then M ∩ {x} = ∅ and,
since M must be consistent with Cx, it must be that M uCx = ∅, which implies
that M ∩ cover(Cx) = ∅. In particular, this means that y 6∈M .

As we have seen, the conserved sets of a given RS only depend on the con-
nected components of the behavior graph, i.e. on the partition induced by the
reactions on the state space. In this context, Proposition 3.2 extracts properties
of conserved sets by examining particular states and their connected compo-
nents.

For example, the first two statements give us sufficient conditions for an
element x to be in no conserved set, respectively in all nonempty conserved sets.
Note that there is also an interesting interplay between the two statements when
there exists an x such that cover(Cx) = S and ∅ ∈ Cx. Indeed, the latter is
equivalent to having Cx = C∅, which means that cover(C∅) = S, so no element
of S can be part of a conserved set. On the other hand, the former property,
cover(Cx) = S, which translates to x being part of all nonempty conserved sets,
is still (trivially) true since the only conserved set in this case is the empty set.

The more important implication of the previous remark is that, for the stan-
dard definition of reaction systems, where empty inhibitor sets are not allowed
in reactions, there can be no nonempty conserved set at all. Indeed, for such
reaction systems it holds that resA(S) = ∅, which leads to cover(C∅) = S.
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For the reaction system of Example 2.1, we have 7 connected components.
In particular, note that C∅ = {∅, {hsp}}, which means that hsp cannot be
part of any conserved set. Furthermore, we have that cover(Chsf:hse) is the full
background set, so hsf:hse will be part of every nonempty conserved set.

The third claim of Proposition 3.2 defines a dependency relation between
the elements of the reaction system with respect to mass conservation. The
statement implies that, for a pair of species (x, y) such that y ∈ cover(Cx), a
conserved set that does not contain x cannot contain y or, equivalently, any
conserved set that contains y must contain x as well. We can capture this
dependency between species in a directed graph.

Definition 3.4. Let A = (S,A) be a reaction system and Gb = (Vb, Eb) its
behavior graph. The conservation dependency graph Gcd = (Vcd, Ecd) of A is
given by Vcd = S and Ecd = {(x, y) | x ∈ S ∧ y ∈ cover(Cx)}.

Consider again our running example. Based on the connected components
of singleton sets, highlighted with double borders in Figure 1, we can compute
the conservation dependency graph. The result is shown in Figure 2.

Intuitively, every conserved set should satisfy all the constraints that are
encoded by the conservation dependency graph. Alternatively, we can focus
on the conservation dependency graph alone and consider all the sets that are
consistent with the aforementioned constraints. In what follows, we capture the
constraints of Proposition 3.2 (3), for arbitrary directed graphs, via the concept
of source sets.

hsf hsp hse

hsp:hsf hsf:hse

Figure 2: Conservation dependency graph for the HSR model (Example 2.1).

Definition 3.5. Let G = (V,E) be a directed graph. A set S ⊆ V is a source
set of G if E ∩ (V \ S)× S = ∅, i.e. all edges of G that cross S (if any) do so
from S to V \ S. We denote the set of all source sets of G by σ(G).

It follows immediately from the definition that, for any graph G = (V,E),
both ∅ and V are source sets of G. The correspondence between the conserved
sets of a reaction system and the source sets of its conservation dependency
graph is given in Proposition 3.3.

Proposition 3.3. Any conserved set M of a reaction system A is a source set
in the conservation dependency graph of A.
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Proof. The result follows from claim (3) of Proposition 3.2 and the definition of
the conservation dependency graph.

3.2. Computing the source sets of a directed graph
In this subsection we are concerned with the computation of source sets for

general directed graphs. We start by investigating the interplay between source
sets and the graph structure.

In what follows, we will say that a node u is an ancestor of a node v or,
equivalently, that v is a descendant of u, if there exists a directed path from u
to v.

Proposition 3.4. Let G = (V,E) be a directed graph and let S be an arbitrary
source set of G.

(1) The parent of a node that is in S is also in S, i.e. for every two nodes u
and v we have v ∈ S ∧ (u, v) ∈ E ⇒ u ∈ S.

(2) The child of a node that is not in S cannot be in S either, i.e. for every
two nodes u and v we have u 6∈ S ∧ (u, v) ∈ E ⇒ v 6∈ S.

(3) The ancestor of a node that is in S is also in S.

(4) The descendant of a node that is not in S is not in S either.

Proof. The negation of either (1) or (2) directly violates the definition of source
sets by providing an edge (u, v) that goes from V \ S to S. Furthermore, (3)
and (4) can be proved by induction from (1) and (2), respectively.

We are going to relate source sets to the strongly connected components of
the graph under consideration.

Definition 3.6. Let G = (V,E) be a directed graph. Two nodes u, v ∈ V are
said to be strongly connected if there exist in G a directed path from u to v
and a directed path from v to u. Strong connectedness defined in this way is an
equivalence relation. We refer to its equivalence classes as strongly connected
components and use SCCG(u) to refer to the strongly connected component that
contains u. Furthermore, we denote the set of all strongly connected components
of G by SCCSG, i.e. SCCSG = {SCCG(u) | u ∈ V }.

Note that, by definition, the strongly connected components of a directed
graph are disjoint sets. It is not difficult to see by Proposition 3.4 that the
source sets cannot split the strongly connected components of a graph.

Proposition 3.5. Let G = (V,E) be a directed graph, C ∈ SCCSG a strongly
connected component of G and S a source set of G. If C ∩ S 6= ∅, then C ⊆ S.

Proof. Choose u ∈ C ∩ S. From Proposition 3.4 it follows that all ancestors of
u must be in S as well. In particular, this implies that C ⊆ S.
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Corollary 3.6. Any source set of a graph G is a union of (disjoint) strongly
connected components of G.

Proof. Let S be an arbitrary source set of G. For every u ∈ S, we have by
Proposition 3.5 that SCCG(u) ⊆ S, so we can write S =

⋃
u∈S SCCG(u).

Thus, we have seen that all source sets are unions of strongly connected
components. In order to see exactly which of such unions are source sets, we
will refer to the condensation of G, i.e. the graph obtained by replacing each
strongly connected component of G with a single node.

Definition 3.7. Let G = (V,E) be a directed graph. The condensation of
G is the directed graph G̃ = (Ṽ , Ẽ) whose nodes are the strongly connected
components of G, i.e. Ṽ = SCCSG, and whose edges are defined as follows:
Ẽ = {(U,W ) ∈ Ṽ × Ṽ | U 6= W ∧ ∃u ∈ U,∃w ∈ W, (u,w) ∈ E}, i.e. there is an
edge (U,W ) in G̃ iff there is an edge in G from an element of U to an element
of W .

Note that the condensation graph is a directed acyclic graph (DAG). We
illustrate the concept by showing, in Figure 3, the condensation of the conser-
vation dependency graph for our running example. Note that for this particular
case the condensation is almost identical to the original graph, only the nodes
correspond now to singleton sets and the self-loops are no longer present. This
very close similarity is due to the fact that the conservation dependency graph,
shown in Figure 2, does not contain any cycles aside from self-loops.

{hsf} {hsp} {hse}

{hsp:hsf} {hsf:hse}

Figure 3: Condensation of the conservation dependency graph for the HSR
model (Example 2.1).

Proposition 3.7. Let G = (V,E) be a directed graph and G̃ = (Ṽ , Ẽ) its
condensation. A set S ⊆ V is a source set of G iff there exists a set S̃ ⊆ Ṽ such
that S = cover(S̃) and S̃ is a source set of G̃.

Proof. We start with the forward implication. We know already from Corol-
lary 3.6 that there exists S̃ ⊆ Ṽ such that S = cover(S̃). Assume that S̃ is not
a source set in G̃. Then there exist U ∈ S̃ andW ∈ Ṽ \ S̃ such that (W,U) ∈ Ẽ,
which means that there exist u ∈ U and w ∈W such that (w, u) ∈ E. But this
contradicts the fact that S is a source set, since u ∈ S and w ∈ V \ S. Thus, it
must be that S̃ is a source set of G̃.
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For the reverse implication, consider a source set S̃ of the condensation graph
G̃ and let S = cover(S̃). Assume that S is not a source set of G. Then there
exist two nodes u ∈ S and w ∈ V \ S such that (w, u) ∈ E. Since strongly
connected components are either fully contained in a source set or disjoint from
it (by Proposition 3.5), it must be that SCCG(u) ∈ S̃ and SCCG(w) ∈ Ṽ \ S̃.
Furthermore, since (w, u) ∈ E, we have (SCCG(w), SCCG(u)) ∈ Ẽ, which
contradicts the fact that S̃ is a source set of G̃. Thus, it must be that S is a
source set of G.

The practical conclusion we can draw from Proposition 3.7 is that it suffices
to have an algorithm for computing the source sets of directed acyclic graphs
(DAG’s) and use it on the condensation graph.

In what follows, we will use G ↓S to denote the restriction of the graph
G = (V,E) to a subset of nodes S ⊆ V , i.e. G↓S= (S,E ∩ (S × S)). We will
also use descG(S) to refer to the set containing all the nodes from S and all
their descendants. Similarly, we will use ancG(S) to refer to the set containing
all nodes from S and all their ancestors in G.

Theorem 3.8. Let G = (V,E) be a directed graph, T ⊆ V an arbitrary set of
nodes and s ∈ V an arbitrary node from G.

(1) A source set S includes a set T if and only if S \ ancG(T ) is a source set
of G↓V \ancG(T ) and, in addition, S contains all the ancestors of elements
from T :

S ∈ σ(G) ∧ T ⊆ S ⇔ S \ ancG(T ) ∈ σ(G↓V \ancG(T )) ∧ ancG(T ) ⊆ S.

(2) A source set S does not intersect a set T if and only if S is a source
set in the graph obtained from G by removing all elements of T and their
descendants:

S ∈ σ(G) ∧ S ∩ T = ∅⇔ S ∈ σ(G↓V \descG(T )).

(3) Given a node s, all source sets of G can be computed recursively by relying
on subgraphs of G that do not contain s:

σ(G) = σ(G↓V \descG({s})) ∪ {S ∪ ancG({s}) | S ∈ σ(G↓V \ancG({s}))}.

Proof. (1) We have:

S ∈ σ(G) ∧ T ⊆ S
⇔E ∩ (V \ S)× S = ∅ ∧ ancG(T ) ⊆ S
⇔E ∩ (V \ S)× (S \ ancG(T )) = ∅ ∧ ancG(T ) ⊆ S
⇔E ∩

(
(V \ ancG(T )) \ (S \ ancG(T ))

)
× (S \ ancG(T )) = ∅ ∧ ancG(T ) ⊆ S

⇔S \ ancG(T ) ∈ σ(G↓V \ancG(T )) ∧ ancG(T ) ⊆ S.

13



The first equivalence follows from the definition of conserved sets and Proposi-
tion 3.4. The second one follows from the definition of ancG(T ), as there can be
no edges of G going into this set. The third equivalence relies on the relation
A \B = (A \X) \ (B \X), which holds whenever X ⊆ B ⊆ A. Finally, the last
step is a direct application of the definition of source sets.

(2) We follow a similar approach and we have:

S ∈ σ(G) ∧ S ∩ T = ∅
⇔E ∩ (V \ S)× S = ∅ ∧ S ∩ descG(T ) = ∅
⇔E ∩ ((V \ descG(T )) \ S)× S = ∅ ∧ S ∩ descG(T ) = ∅
⇔S ∈ σ(G↓V \descG(T )).

Just as before, the first equivalence follows directly from the definition of source
sets and from Proposition 3.4. The second equivalence relies on the definition
of descG(T ), as there can be no edges of G going out of this set. Finally, we use
the definition again to get the desired result.

(3) The result follows from (1) and (2) by noting that we can partition the
source sets of G into those that contain s and those that do not contain it. We
can thus write:

S ∈ σ(G) ∧ s ∈ S ⇔ S \ ancG({s}) ∈ σ(G↓V \ancG({s})) ∧ ancG({s}) ⊆ S,
S ∈ σ(G) ∧ s 6∈ S ⇔ S ∈ σ(G↓V \descG({s})).

These statements lead to the desired result.

We can immediately apply the third claim of Theorem 3.8 to a source node
of G (a node with no parents) and write an even simpler decomposition of the
source sets of G into two parts.

Corollary 3.9. Let G = (V,E) be a directed graph and let s ∈ V be a source
node. Then we have:

σ(G) = σ(G↓V \descG({s})) ∪ {S ∪ {s} | S ∈ σ(G↓V \{s})}.

We can translate the previous formal result into an algorithm for computing
the source sets of a directed acyclic graph.

Algorithm 3.1 (source sets of a DAG). Let G = (V,E) be a DAG. If the graph
contains no nodes, return the empty set as the only source set. Otherwise choose
a source node s ∈ V , compute the source sets of G↓V \{s} and G↓V \descG({s}),
then aggregate them according to Corollary 3.9 to obtain the source sets of G.

Note that the fact that the graph is acyclic is required for the existence of
the source node s.

4. Enumerating the Conserved Sets of a Reaction System

In this section we propose and discuss the advantages of an algorithm that
relies on the conservation dependency graph to list all the conserved sets of a
given reaction system.
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4.1. An algorithm for enumerating all conserved sets
We provide here an algorithm for listing all conserved sets of a reaction

system. The actual test for conservation relies on Proposition 3.1, whereas the
candidate sets to be tested are computed using Algorithm 3.1, as well as the
additional information coming from Proposition 3.2.

Algorithm 4.1 (compute all conserved sets). Let A = (S,A) be a reaction
system.

1. Compute the behavior graph Gb of A.

2. Compute the connected components of Gb and collect the following infor-
mation:

(a) compute Pout = cover(C∅),
(b) compute Pin = {x ∈ S | cover(Cx) = S}.

3. Compute the conservation dependency graph Gcd of A.

4. Compute the strongly connected components of Gcd and the condensation
graph G̃cd. Collect the following additional information:

(a) compute the set P̃out of nodes from G̃cd which contain elements of
Pout, i.e. P̃out = {SCCGcd

(x) | x ∈ Pout},
(b) compute the set P̃in of nodes from G̃cd which contain elements of Pin,

i.e. P̃in = {SCCGcd
(x) | x ∈ Pin}.

5. Compute the reduced condensation graph G̃′cd by removing from G̃cd all
nodes from P̃out with their descendants and all nodes from P̃in with their
ancestors:

(a) compute the set P̃ ′out = descG̃cd
(P̃out),

(b) compute the set P̃ ′in = ancG̃cd
(P̃in),

(c) compute the reduced condensation graph G̃′cd = G̃cd↓Ṽcd\(P̃ ′
out∪P̃ ′

in)
.

6. Compute the source sets of G̃′cd using Algorithm 3.1.

7. For each source set T̃ ∈ σ(G̃′cd), compute the corresponding source set of
Gcd as T = cover(T̃ ∪ P̃ ′in).

8. For each source set T computed in step 7, test whether T is a conserved
set by checking that it is consistent with all connected components of the
behavior graph Gb.

9. Add ∅ to the list of conserved sets, if it was not obtained in the previous
step.

Theorem 4.1. Algorithm 4.1 computes all conserved sets correctly.
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Proof. First, let us see that steps 1 − 3 compute the data structures required
for the rest of the algorithm, i.e. Pin, Pout and Gcd. Furthermore, steps 4 − 6
translate to computing exactly the source sets of Gcd which include Pin and are
disjoint from Pout. Indeed, in order to find all the source sets which are disjoint
from Pout, we can rely on Proposition 3.7 to conclude that we also need to ex-
clude the full strongly connected components of elements from Pout, then based
on Theorem 3.8 (2) we must also exclude descendant strongly connected com-
ponents. This translates to steps 4(a) and 5(a) of the algorithm, respectively.
A similar justification holds for steps 4(b) and 5(b).

Now note that this algorithm relies on testing for conservation using Proposi-
tion 3.1, but only examines a reduced set of candidates by relying on Proposition
3.2 and Proposition 3.3.

The last step is required in order to ensure that the empty set is also included
in the list of conserved sets since, whenever Pin 6= ∅, all the candidate sets tested
in step 8 are nonempty.

Remark that the decision problem for conserved sets is coNP-complete [8]. As
such, we know already that we cannot test for conservation in polynomial time
unless P = NP. On the other hand, we focus here on finding all conserved sets,
which means that we can make use of aggregate information from the original
reaction system in order to speed up the test for conservation. In particular,
once we have the connected components of the behavior graph, we can simply
forget about the reactions. Moreover, the analysis of the connected components
of the empty set and singleton sets, together with the constraints encoded in
the conservation dependency graph, enable us to reduce the actual number of
candidates that we need to verify.

4.2. Efficiency of the algorithm
To understand the benefit of the strategy employed in Algorithm 4.1 and

also the nature of the reactions systems for which it is efficient, we discuss in
this subsection several examples.

We first consider the running example of the previous sections, the HSR
model from Example 2.1. Recall that we have already seen the behavior graph in
Figure 1, the conservation dependency graph in Figure 2, and the condensation
of the conservation dependency graph in Figure 3. These graphs correspond to
the execution of steps 1, 3 and 4 of the algorithm, respectively.

The result for step 2 is that Pout = {hsp} and Pin = {hsf:hse}. Thus, when
running step 5(a), we remove node {hsp} from the condensation graph (there
are no descendants to remove in this case). Similarly, node {hsf:hse} is removed
in step 5(b). The resulting graph is presented in Figure 4.

{hsf} {hse}{hsp:hsf}

Figure 4: Reduced condensation graph for the HSR model (Example 2.1).
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The reduced condensation graph has six source sets, which are shown be-
low, together with the corresponding source sets of the original conservation
dependency graph.

T̃1 = ∅ T1 = {hsf:hse}
T̃2 = {{hsp:hsf}} T2 = {hsf:hse,hsp:hsf}
T̃3 = {{hsp:hsf}, {hsf}} T3 = {hsf:hse,hsp:hsf,hsf}
T̃4 = {{hse}} T4 = {hsf:hse,hse}
T̃5 = {{hsp:hsf}, {hse}} T5 = {hsf:hse,hsp:hsf,hse}
T̃6 = {{hsp:hsf}, {hsf}, {hse}} T6 = {hsf:hse,hsp:hsf,hsf,hse}

Of the six source sets of the conservation dependency graph, only T3, T4 and
T6 are conserved. Note that T3 corresponds to all the forms (free and occupied)
of gene promoters (hse). Similarly, T4 corresponds to the conservation of the
total amount of heat shock factors (free, bound to the promoter or bound to
the heat shock protein). The third conserved set, T6, is in fact the union of the
other two, so it does not bring additional information, since it is in general the
case that the union of two conserved sets is also conserved.

Note that, out of the 32 possible sets, the algorithm enabled us to only test
6 candidates for conservation.

Example 4.1. Consider the following reaction system:

S = {x, y, z};
A = {({x}, {z}, {y, z}), ({y},∅, {x}), ({x, z},∅, {y}), ({y}, {z}, {y})} .

The corresponding behavior graph Gb can be computed by finding resA(W ) for
all W ⊆ S. The graph is illustrated in Figure 5.

∅ {x} {y, z}

{y} {x, y} {x, y, z}{x, z}

{z}

Figure 5: Behavior graph for the reaction system from Example 4.1.

The relevant connected components for our algorithm are:

Cx = {{x}, {y, z}} ;

Cy = {{y}, {x, y}, {x, z}, {x, y, z}} ;

Cz = {{z},∅} = C∅.
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x y z

(a)

{x, y} {z}

(b)

Figure 6: (a) Conservation dependency graph and (b) its condensation, for the
reaction system from Example 4.1.

The corresponding conservation dependency graph is presented in Figure 6a.
In step 5 of the algorithm we rely on Pout = {z} and Pin = {x, y} (computed

in steps 2(a) and 2(b), respectively) to obtain that all nonempty conserved sets
must contain x and y and cannot contain z, which means that M = {x, y} is
the only nonempty conserved set for this reaction system. In particular, note
that the algorithm will work on an empty graph at step 6.

Furthermore, let us see that in this case the conservation dependency graph
has only three source sets, namely ∅, {x, y} and S. Thus, even if we are to
consider the full condensation of the conservation dependency graph, i.e. skip
step 5 of the algorithm, we would still obtain a significant improvement since we
need to examine only 3 out of the total number of 8 candidates.

While the previous example is rather simple, it still reveals the main im-
provements that come from the approach. On the other hand, consider also the
case where the behavior and conservation dependency graphs do not provide
any useful information, i.e. Pout = ∅, Pin = ∅ and Gcd only has self-loops for
each node, meaning that all sets are source sets.

Example 4.2. Consider the reaction system A = (S,A) given by:

S = {x1, x2, . . . , xn}
A = {({xi},∅, {xi}) | xi ∈ S}

In this case the result function satisfies resA(W ) = W for all states W ⊆ S,
i.e. all states are isolated and connected components contain a single state. In
particular, C∅ = {∅} and Cxi

= {{xi}} for all xi ∈ S.
Thus, for this example we have Pout = Pin = ∅ and the conservation depen-

dency graph has only self-loop edges Ecd = {(xi, xi) | xi ∈ S}. This means that
every subset of S is a source set, i.e. we need to examine all candidates. But in
this case note that in fact all subsets of S are conserved.

Example 4.3. Consider the reaction system A = (S,A) given by:

S = {x1, x2, . . . , xn}
A = {({xi}, S \ {xi}, {xi}) | xi ∈ S}
∪ {({xi, xj},∅, S) | xi, xj ∈ S ∧ xi 6= xj}
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The result function resA satisfies:

resA(W ) =

{
W, if |W | ≤ 1 ,

S, if |W | ≥ 2 .

Just as in Example 4.2, this reaction system does not give useful information
for reducing the number of candidates examined in Algorithm 4.1. Instead, we
analyze the behavior graph in relation to Proposition 3.1.

Based on the result function, the behavior graph has n+ 2 connected compo-
nents in this case: C∅ = {∅}, Cxi

= {{xi}} for each xi ∈ S, and one connected
component containing all the other states, call it CS.

We know that any conserved set M must be consistent with all connected
components of the behavior graph. For CC’s that contain a single set, this holds
trivially, so we only need to worry about CS. The empty set is always conserved,
so we focus on M 6= ∅. Then M ∩ S 6= ∅, so it must be that M u CS = CS, i.e.
M intersects all the elements of CS.

If more than two elements of S are missing from M , then we can find xi,
xj such that M ∩ {xi, xj} = ∅, but resA({xi, xj}) = S, so M is not conserved.
If at most one element is missing, on the other hand, M is consistent with CS
and, thus, it is conserved.

Therefore, for this reaction system, the conserved sets are

cons(A) = {∅, S} ∪ {S \ {xi} | xi ∈ S},

for a total of n + 2 sets. However, the number of candidates that we need to
examine is 2n.

Note that in Example 4.2 and Example 4.3 we end up examining all possible
states, but there is a fundamental difference between the two. While for the
former we actually do need to examine all sets since all are conserved, for the
latter the number of conserved sets is n + 2 out of the 2n candidates. On the
other hand, remark that the reaction system from Example 4.3 has a number
of reactions quadratic in the number of species.

In what follows we aim to characterize the improvement provided by our al-
gorithm over the naive approach. Let us first note that the test for conservation
goes through the full behavior graph. Since the number of states of the behavior
graph is exponential with respect to the number of species in the reaction sys-
tem, the running time of our algorithm is not polynomially bounded. Moreover,
we have seen in Example 4.2 that it is possible to have an exponential number
of conserved sets for a given reaction system. Thus, the number of candidates
that are tested for conservation is not polynomially bounded either. Therefore,
we are going to assess the “quality” of our algorithm with respect to the number
of non-conserved source sets, i.e. the candidate sets which are tested in addition
to the conserved sets.

In the general case, one reaction (Ra, Ia, Pa) is enabled for all states W such
that Ra ⊆ W ⊆ S \ Ia. Thus, a reaction that involves only a few species as
reactants or inhibitors will have an impact on a significant subset of the edges
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of the behavior graph. Put differently, the edges of Gb are strongly interrelated
and breaking this interdependence, to decouple for example the singleton states
from the rest of the graph, requires an increased number of reactions. Thus, we
expect that reaction systems for which the number of reactions is linear in the
number of species will reveal enough structural information in the conservation
dependency graph so that the number of source sets is very close to the number
of actual conserved sets. We formulate this idea as a conjecture below.

Conjecture. Increasing the number of reactions linearly with respect to the
number of species, the number of non-conserved source sets increases at most
polynomially with respect to the number of species.

4.3. Flexibility of the algorithm
Testing whether a set is conserved or not is a coNP-complete problem (see,

e.g., [8]). Thus, even with our conjectured expectation that for a class of reaction
systems we only need to examine a polynomial number of extra candidates, it
is still likely that larger reaction systems will render the application of our
algorithm infeasible. However, we show in this subsection that Algorithm 4.1
can be customized to take advantage of available resources, as well as additional
knowledge about the reaction system or, more generally, about the model that
the RS encodes.

First, let us notice that the computations which identify the actual conserved
sets happen at the very end of the algorithm, essentially in step 8, relying on the
already computed set of candidates and on Proposition 3.1 for the conservation
test. For running the test, in addition to the candidates, we also need the
behavior graph (more precisely, its connected components).

The computation of the candidates covers steps 4 to 7. This part of the
algorithm uses the sets Pout and Pin, and the conservation dependency graph
Gcd as inputs. The output consists of the source sets of Gcd which include Pin

and do not intersect Pout. Another way to interpret this output is to consider
that all three inputs are in fact sets of constraints and the obtained candidates
are simply the sets of species that satisfy all the input constraints:

• Pout contains species that should not be part of any candidate set;

• Pin contains species that should be present in every candidate set;

• Gcd encodes constraints of the form “if x is in, then so is y” or, alternatively,
“if y is not in, then neither is x”.

For example, it only matters that we add to Pin species that are included in
all conserved sets (or, more precisely, in all conserved sets that we are interested
to compute).

Steps 2 and 3 of the algorithm compute the input constraints based on
the behavior graph and rely on Proposition 3.2. The flow of the algorithm is
schematically summarized in Figure 7, where each block (also referred to as
module) is identified by its output and incoming edges stand for inputs.
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behavior graph

candidatesconstraints conserved sets

Figure 7: Schematic flowchart of Algorithm 4.1.

Note from the diagram that the behavior graph is required not only for
computing the constraints to be satisfied by the candidate sets, but also for the
conservation test. Thus, if the size of the reaction system is such that storing the
behavior graph is impractical, we need to provide alternative implementations
for the two modules. The test for conservation can rely on running the reaction
system for each state, instead of the connected components of the behavior
graph. Furthermore, we can also make use of the polynomial criterion from
the next section in order to obtain a negative answer faster for the candidates.
Moreover, note that each candidate set is tested separately, so this module is
highly parallelizable.

For the constraints part, we can also rely on running the reaction system.
Since we are under the assumption that the behavior graph is too large to fit in
working memory, it may also be the case that it is not feasible to run the RS from
an initial state up to identifying the first repeating state. Nevertheless, even by
running the system a limited number of steps from particular initial states, we
can partially recover the constraints that were obtained in Proposition 3.2 from
the connected components of the behavior graph:

• any element of states that are reachable from ∅ will be in Pout;

• any singleton state reachable from S will be included in Pin;

• elements y of states reachable from singletons {x} will contribute edges
(x, y) for Gcd.

Note that, in addition to the constraints derived from the behavior graph
(or by running the reaction system as suggested above), we can include other
constraints as well, either by exploiting the particular structure of the reaction
system under consideration, or by relying on available knowledge about the
model that is described by the RS. For example, if we know a priori that a
particular element x should be in all conserved sets (or, alternatively, if we are
only interested to find those conserved sets that contain x) we can add this
constraint by including x in Pin.

As long as all additional constraints that we put in are still provably satisfied
by any conserved set of the input reaction system, we are going to obtain the
full list of conserved sets as the output of the algorithm. If extra constraints
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are added which come from the biological model or simply from the need to
speed up the algorithm, then we will only obtain a subset of the conserved sets,
namely those which satisfy all the constraints.

5. Negative Polynomial Heuristics for Formula Correspondence

In this section we give a simple polynomial (in size of the formulae and
number of reactions) heuristics which can help decide whether a given set M
is not conserved. The provided heuristics will be sufficient, but not necessary.
We will provide two negative criteria for a more general problem first, and then
show how they can be applied to mass conservation.

Note that, since deciding whether a given set of species M is conserved in a
reaction system is coNP-complete [8], we could not expect to give such a polyno-
mial criterion which would be both sufficient and necessary. This section shows,
nevertheless, that analyzing some static properties of the reaction system may
help conclude thatM is not conserved in polynomial time, without enumerating
all subsets of species.

We recall first that a Boolean formula ϕ is said to be over an alphabet S if all
its variable names are from S. In the following we assume all Boolean formulae
to be given in a disjunctive normal form. A subset W ⊆ S is said to satisfy
the Boolean formula ϕ over S if the expression for ϕ contains a conjunction
x1 ∧ . . . ∧ xn ∧ ȳ1 ∧ . . . ∧ ȳm such that

(1) {xi | 1 ≤ i ≤ n} ⊆W , and

(2) {yj | 1 ≤ i ≤ m} ∩W = ∅.

By convention, we write ϕ(W ) = 1, or simply ϕ(W ), if the subset W satisfies
ϕ, and ϕ(W ) = 0 otherwise. For more details about the relationship between
reaction systems and Boolean functions we refer to [2] and [1].

The paper [8] generalizes mass conservation in the form of two formula cor-
respondence problems. Given a reaction system A = (S,A) and two Boolean
formulae φ and ψ over S, the formula correspondence problems consist in de-
ciding whether the following relations hold for every set W ⊆ supp(A):

φ(W ) ⇒ ψ(resA(W )),
φ(W ) ⇔ ψ(resA(W )).

It is shown in [8] that deciding either of these questions is coNP-complete.
We can parameterize the formula correspondence problems for a subset T

of the background set in the same way as we parameterized mass conservation
in Section 2. In such a case, we would define the formulae φ and ψ over T , and
would require φ(W )⇒ ψ(resA(W )) (respectively, φ(W )⇔ ψ(resA(W ))) for all
subsets W of T , instead of the support of A. It turns out that, just as with
parameterized mass conservation, checking formula correspondence against a
subset T ⊆ S can be reduced to testing the same formulae against the projection
A′ = projT (A). Indeed, recall that, for any set W ⊆ T , we have resA′(W ) =
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resA(W ) ∩ T . Since ψ is over T as well, the elements from the potentially
nonempty resA(W ) \ T will have no influence upon the satisfiability of ψ, i.e.
ψ(resA(W )) ⇔ ψ(resA(W ) ∩ T ). This implies that formula correspondence in
A with respect to T holds if and only if it holds in A′ with respect to its full
background set.

Seeing that conventional formula correspondence can be expressed as param-
eterized correspondence over T = supp(A) is a matter of remarking that φ and
ψ in the conventional formulation can be restricted to the alphabet supp(A),
without losing generality. Indeed, having φ include x̄, with x ∈ S \ supp(A), for
example, is redundant since we are only checking the correspondence against
the subsets of supp(A) anyway. If, on the other hand, φ employs x in its non-
negated form, then no subset of supp(A) will satisfy φ. Similar arguments can
be given for ψ and the result set resA(W ).

In view of the fact that any case of parameterized formula correspondence,
and, in particular, the conventional correspondence, is reducible to formula
correspondence over the full background set, we only focus on the latter problem.

For a given conjunction φ1 = x1 ∧ . . . ∧ xn ∧ ȳ1 ∧ . . . ∧ ȳm, we will use the
following shortcut notations:

pos(φ1) = {x1, . . . , xn},
neg(φ1) = {y1, . . . , yn}.

Suppose now that the first formula φ over S is given in a disjunctive normal
form, φ =

∨n
i=1 φi, and consider a reaction a = (Ra, Ia, Pa) over the same

alphabet S. We would like to know the conditions for a to be enabled on at
least one subset satisfying φ.

Lemma 5.1. For a reaction system A = (A,S), a reaction a = (Ra, Ia, Pa) ∈ A,
and a Boolean formula φ =

n∨
i=1

φi, both over the same alphabet S, the following

conditions are equivalent:

(1) ∃W ⊆ S, φ(W ) ∧ ena(W ), and

(2) ∃i ∈ {1, . . . , n}, Ra ∩ neg(φi) = Ia ∩ pos(φi) = ∅.

Proof. (1)⇒(2): Suppose there exists a subset W which both satisfies φ and
enables a. This means that Ra ⊆W and Ia ∩W = ∅, but also that φ contains
a conjunction φi such that pos(φi) ⊆ W and neg(φi) ∩ W = ∅. Therefore,
Ia ∩ pos(φi) ⊆ Ia ∩W = ∅ and Ra ∩ neg(φi) ⊆W ∩ neg(φi) = ∅, which lead to
⇒ Ia ∩ pos(φi) = ∅ and Ra ∩ neg(φi) = ∅, respectively.

(2)⇒(1): Suppose that φ contains a conjunction φi such that Ra∩neg(φi) =
Ia ∩ pos(φi) = ∅ and consider the set W = Ra ∪ pos(φi). Clearly, φi(W ) holds,
because pos(φi) ⊆ W , and because Ra ∩ neg(φi) = pos(φi) ∩ neg(φi) = ∅. On
the other hand, we also know that Ra ⊆ W and Ia ∩ Ra = Ia ∩ pos(φi) = ∅,
so the reaction a is enabled on Ra ∪ pos(φi). We have therefore successfully
constructed a set satisfying the statement (1).
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We will write ena(φ) = 1, or just ena(φ), to refer to the fact that a is enabled
on a set satisfying φ.

The following two observations give negative heuristic criteria for formula
correspondence. Both cases are formulated in the setting of a reaction system

A = (S,A) and two Boolean formulae ϕ =
n∨

i=1

φi and ψ =
m∨
j=1

ψj over S.

Lemma 5.2. If A contains a reaction a such that ena(φ), but Pa∩neg(ψj) 6= ∅,
for all 1 ≤ j ≤ m, then there exists a subset W ⊆ S for which φ(W ) 6⇒
ψ(resA(W )).

Proof. Since we know that ena(φ), there exists such a subset W ⊆ S that φ(W )
and ena(W ). The hypothesis that the product set of a intersects all neg(ψj)
means that resA(W ) intersects all neg(ψj) as well, and therefore ψ(resA(W ))
does not hold.

Verifying the condition of the previous lemma requires going through both
φ and ψ for every reaction of A. The time complexity of such a procedure is in
O
(
|φ1| · |ψ| · (NR +NI +NP )

)
, where |φ| is the number of atomic terms in the

disjunctive normal form of φ, while NR, NI , and NP are the total sizes of the
reactant, inhibitor, and product sets of the reactions in A:

NR =
∑
a∈A
|Ra|, NI =

∑
a∈A
|Ia|, NP =

∑
a∈A
|Pa|.

Lemma 5.3. Consider the set B = {b | b ∈ A, enb(φ)} and take the union of
the products of the reactions in this set: P̄ =

⋃
b∈B

Pb. If, for any conjunction ψj

of Ψ, it is true that pos(ψj) 6⊆ P , then there exists a subset W ⊆ S for which
φ(W ) 6⇒ ψ(resA(W )).

Proof. Consider a set W such that φ(W ). Then, by definition of the set B,
resA(W ) ⊆ P̄ . But, since formula ψ contains no conjunction ψj such that
pos(ψj) ⊆ P̄ , this means that resA(W ) satisfies no conjunction of ψ and there-
fore does not satisfy ψ.

Verifying the condition of this lemma requires going through φ for every
reaction in the system (O

(
|φ| · (NR +NI)

)
steps), putting together the product

sets of certain reactions (O(NP ) steps), and then checking if the non-negated
variables of a conjunction of ψ form a subset of this union (O(|ψ| ·NP ) steps).
The time complexity of such a procedure can therefore be estimated to belong
to O

(
|φ| · (NR +NI) + |ψ| ·NP

)
.

To formulate a heuristic criterion for mass conservation, we will rewrite this
problem in Boolean formulae. The arguments in Section 2 allow us to consider
mass conservation over the full background set. For a set M ⊆ S, the sets W
satisfying the conditionM ∩W 6= ∅ are exactly the sets satisfying the following
Boolean formula:

φ =
∨

x∈M
x.
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The property of M being conserved can then be written as follows (cf. [8]):

∀W ⊆ S, φ(W )⇔ φ(resA(W )).

Applying the statement of Lemma 5.2 to this particular instance of the
formula correspondence problem is ineffective, because no conjunction in ψ con-
tains negated variables. However, instantiating the statement of Lemma 5.3
(and that of Lemma 5.1) yields the following negative heuristics for mass con-
servation.

Corollary 5.4. Consider a reaction system A = (S,A), a subset of species
M ⊆ S, and a subset of reactions B =

{
b | b = (Rb, Ib, Pb) ∈ A,M \ Ib 6= ∅

}
.

If it is true that M ∩
⋃
b∈B

Pb = ∅, then M is not conserved in A.

Example 5.1. Consider the reaction system A = (S,A), with S = {x, y} and

A = {({x}, {y}, {y}), ({y}, {x}, {x})}.

A conserves no nonempty sets, because resA(S) = ∅. Take M1 = {x}, then
B1 = {({x}, {y}, {y})}. Since M1 ∩

⋃
b∈B1

Pb = {x} ∩ {y} = ∅, the previous

corollary allows us to correctly conclude that M1 is not conserved. Consider, on
the other hand, the set M2 = {x, y}. Then B2 = A, M2 ∩

⋃
b∈B2

Pb = {x, y} ∩

{x, y} = {x, y} 6= ∅, and the criterion does not allow us to conclude whether
M2 is conserved or not.

6. Reaction System Simulator

Even though it is relatively easy to write out an interactive process of a
reaction system given a context sequence, doing this by hand quickly becomes
tedious and error-prone. To automate the task, we developed a reaction system
simulator, brsim. This is a stand-alone software tool which reads the description
of a reaction system and a sequence of contexts from a file, runs the system with
the supplied contexts, and then outputs the sequence of results. The simulator
includes the option of annotating the evolution, in which case, for each evolution
step, it will show the previous result, the context added at the current step, as
well as the reactions enabled in the current state. Interactively running the
reaction system is also supported, in which case the simulator will ask for the
new context at each step.

Besides being able to run a reaction system for a given context sequence, the
simulator can also show its conservation dependency graph as well as compute
and list the conserved sets using an implementation of the algorithm shown in
Section 4.

The source code of the simulator is licensed under GPLv3 and is available
at [14]. We also provide a web interface to brsim at [15].

The input format of the simulator is similar to the notations conventionally
used to write reactions. For example, a reaction system containing the reactions
({a}, {b, x}, {a}) and ({b}, {a, x}, {b}) would be described as follows:
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a, b x, a
b, a x, b

The context sequence C0 = {a, b}, C1 = ∅, C2 = {a, x} would be represented
in the following way:

a b
.
a x

For further details about using the simulator as a stand-alone application or via
its web interface we refer the reader to [14, 15].

7. Conclusion

In this paper we focused on the biologically inspired property of mass con-
servation in reaction systems and unveiled the conservation dependency relation
it induces between the species. It turned out that relying on the conservation
dependency graph makes it possible to design an algorithm for listing the con-
served sets which, in certain cases, performs better than the naive approach.
Because conserved sets can well be exponential in number (cf. [8]), we cannot
expect to build an algorithm which would always work in subexponential time.
Yet, the fact that using the conservation dependency graph allows reducing the
number of computational steps in some cases serves as an example of how ob-
serving certain structural properties of a reaction system can help to answer
difficult questions more efficiently.

Several bibliographical references indicate that, in various biochemical net-
works, the number of reactions is linear in the number of involved species. For
example, the metabolic networks of the bacteria E. coli, H. influenzae, H. pylori,
and G. sulfurreducens employ 660, 296, 291, and 588 genes, and 720, 488, 288,
and 523 reactions respectively [16]. It is equally noteworthy that the stoichio-
metric matrices of biochemical networks are generally sparse, since only a few
species usually participate in a reaction [17]. In view of these observations, the
conjecture proposed in Section 4 would imply that, for reaction system models
of real-life biochemical networks, Algorithm 4.1 will only produce a polynomial
number of non-conserved candidate sets (in terms of the number of species).

In Section 5 we also provided a sufficient polynomial criterion which can be
used to prove that a given set of species is not conserved. The criterion is built
around a different series of observations revealing yet other connections between
the inner structure of the reaction system and the sets it conserves. Because
deciding the conservation of a set is coNP-complete, we could not hope to have
a sufficient and necessary criterion which would also be polynomial.

While we do show an important application of the conservation dependency
graph to listing the conserved sets of a reaction system, we expect that a number
of other properties of this graph remain to be further explored. A promising
research direction would be that of establishing in which way the conservation
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dependency graph is related to other conservation properties, like invariant sets,
or the formula correspondence problems (see [8] for the definitions).

Lastly, in Section 6, we presented the simulator brsim which automates the
process of running a reaction system with a given sequence of contexts, but also
supports listing the conserved sets using an implementation of Algorithm 4.1.
Since it is possible to both run the simulator as a stand-alone application and
work with it via a web interface, we hope that it will be useful to the actively
growing community of researchers working in the domain of reaction systems.
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