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Abstract. Action systems are used to extend program
development methods for sequential programs to the
design of parallel and reactive systems. They provide a
general description of reactive systems capable of
modelling terminating, possibly aborting and infinitely
repeating systems. We show how to use the action system
model to develop modular systems. A module may export
and import variables, it may provide access procedures for
other modules, and it may itself access procedures of other
modules. Modules may have autonomous internal activity
and may execute in parallel or in sequence. Modules may
be nested within each other. They may communicate by
shared variables, shared actions, a generalized form of
remote procedure calls and persistent data structures. Both
synchronous and asynchronous communication between
modules is supported. The paper shows how a single
framework can be used for the specification of large
systems, the modular decomposition of the system into
smaller units, and the transformation of the modules into
program modules that can be described in a standard
programming language and executed on standard hardware.
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1. Introduction

An important issue in programming language design is
to identify methods for program composition which
permit the replacement of one component with little or
no regard for the rest of the program. A program that is
structured in a way that permits this is loosely said to
be modular, and the composition method is called a
modularization mechanism. Here we will study three
important modularization mechanisms: procedures,
parallel composition and data encapsulation. These are

common mechanisms that are found in many
programming languages and have proved to be
indespensable in mastering the complexity of
constructing large programs.

The modularization facilities that we put forward
here are based on the action system approach,
introduced by Back and Kurki-Suonio [5, 6]. An action
system describes the behaviour of a parallel system in
terms of the atomic actions that can take place during
the execution of the system. Action systems provide a
general description of reactive systems capable of
modelling systems that may or may not terminate and
where atomic actions need not terminate themselves.
Arbitrary sequential program statements can be used to
describe an atomic action. Related formalisms, like the
UNITY approach [12] and the IP-language [14], lack
most of the modularization facilities described here.

The focus in this paper is on describing how
modular constructs can be modelled in an action
system framework. We show how a single framework
can be used for the specification of large systems, the
modular decomposition of the system into smaller
units, and the transformation of the modules into
program constructs that can be described in a standard
programming language and executed on standard
hardware.

Overview

We show how to extend a simple base language with
modularization mechanisms, to support the
development of large programs. We take the guarded
commands language of Dijkstra [13] as our basis. First
we describe the extensions to this language that permit
convenient expression of high-level specifications.
Then we extend it with a standard block construct to
permit the use of local variables in program
stamenents. This is our base language.
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Our first extension of the base language is to permit
local constants and variables in a block. This allows
us to model parameterless procedures. We explain the
meaning of constants by syntactic reduction, i.e., by
showing how a statement with constants can be
reduced to an equivalent statement in the base language
(which has no constants).

Procedures with parameters require an extension of
statements and, in particular, of the block construct.
We extend blocks with formal parameter declarations
and define an adaption operation, which takes a block
with formal parameters and a list of actual parameters
and constructs a standard block without formal
parameters that serves as an ordinary program
statement. Adaption models parameter passing and is
again defined by syntactic reduction.

Our next extension is to add parallellism to our
language in the form of action systems. An action
system is basically a block with some local variables
and with a single iteration that can be executed in a
parallel fashion under appropriate atomicity
constraints. However, any parallel execution of the
iteration statement is equivalent in effect to some
sequential nondeterministic execution. Hence, from a
logical point of view, it suffices to treat action
systems as ordinary sequential statements.

We define parallel composition of action systems in
order to model reactive systems. The definition is
again by syntactic reduction, showing how any parallel
composition of action systems can be reduced to a
single action system. To get more flexibility in
forming parallel composition, we generalize the block
construct by permitting local variables to be exported
(or revealed), so that they can be accessed from other
action systems in a parallel composition. We also
make the distinction between local variables that are
created at block entry and destroyed at block exit, and
local variables that exist before block entry and
continue to exist after the action system has
terminated. The latter models persistent data structures.

With these extensions, we have in fact a module
description language where, in addition to parallel
composition of modules, we also define sequential
composition of modules and nested modules with
hiding. The modules that we define in this way provide
both data encapsulation and parallel processing.

Having defined the module facility, we finally show
how these modules communicate with each other.
Communication between modules does not need any
further extension of the language; it is a consequence
of features already defined. Basically, we show that
different ways of partitioning an action system into
parallel components corresponds to different kinds of
communication mechanisms. We exemplify three such
mechanisms: shared variable communication, shared

action communication (of which CSP/Occam
communication is a special case [16, 17) and remote
procedure calls (of which, e.g., Ada rendezvous is a
special case [22]). A fourth communication
mechanism is provided by persistent variables in
sequential composition of action systems.

We end this treatment with a short discussion on
how to extend an existing modular programming
language to provide the features that we have defined
here. We choose the Oberon language [23] for this
purpose, as it is a very simple language, has certain
basic design decissions that are very close to what we
need, and does not have any explicit facilities for
parallellism.

We describe the modularization facilities as a
sequence of syntactic and semantic extensions of a
simple base language because this is a simple way of
presenting the underlying ideas. This should not be
treated as a concrete language definition because we
have simplified a number of issues and omitted a
number of restrictions that would be needed in order to
turn the proposal into a rigorous language definition.

2. Guarded Command

Statements § in the guarded command language of
Dijkstra [13] are defined by the following syntax:

S ::= abort {abortion, nontermination }
skip {empty statement}

w:=e {(multiple) assignment}
S1; 82 {sequential composition }
if Afi {conditional composition}
do A od ({iterative composition}

A= g—> 8§ {guarded command, action}
I A, [JA; {nondeterministic choice}

Here w = wy, ..., w, is a list of program variables and
e =ey, ..., e, a corresponding list of expressions (n >
0). Also, g is a boolean expression. Each variable w; is
associated with a type that restricts the values that the
variable can take. We do not define the syntactic
classes of variables, types and expressions here; any
standard definition of their syntax may be assumed.

Sequential composition of statements and
nondeterministic choice are associative, so we may
write S1; S2; ...; S, and A1 [JA, ] ... 1 A, without
explicit bracketing. Nondeterministic choice is also
commutative, so the order in which the alternatives are
listed is not important. We write gA for the guard g
and sA for the body S of an action A =g — S.

A statement operates on a set of program variables.
It describes how a program state is changed. The
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program state is determined by the values of the
variables that are manipulated by the statements. We
write S : v when we want to explicitly indicate that
the variables v are the program variables in the state
that S operates on.

The abort statement will be considered equivalent to
a nonterminating loop. The skip statement has no ef-
fect on the state. The assignment statement is well de-
fined if w; is a variable and ¢; and w; have the same
type, { = 1, ... n. The effect is to first compute the
values ¢;, i = 1, ..., n and then assign w; the value e¢;,
for i = 1, ..., n. Sequential composition Sy; S7; ...; Sy,
is executed by first executing S; and, if S; terminates,
continuing by executing S,, and so on, executing S,
last.

An action A; = g; — §; in the conditional statement
A1l ... DA, fiis said to be enabled in a given state if
the guard g; is true in that state. The conditional
statement is executed by choosing some enabled action
A; and executing its body S;. If no action is enabled in
the state, then the conditional statement behaves as an
abort statement. If more than one action is enabled,
then one of these is chosen nondeterministically. The
nondeterminism is demonic in the sense that there is
no way of influencing which action is chosen.

The iteration statement do A1 [] ... [A, od is
executed by first choosing an enabled action A; = g; —
S;, executing its body S;, and then repeating this until
a state is reached where no action is enabled anymore
and the iteration stops. If there is more than one action
for which the guard is satisfied, then the choice is
nondeterministic in the same way as for the
conditional statement.

The iteration statement terminates only if a state is
eventually reached where no action is enabled.
Otherwise, the execution goes on forever. If no action
is enabled initially, iteration terminates immediately
and the iteration statement behaves as a skip
statement.

The precise semantics of guarded commands can be
defined in terms of weakest preconditions, as is done in
the original work by Dijkstra [13]; or we can give
operational semantics for these constructs, essentially
describing the sequence of states that an execution of a
guarded command gives rise to. The specific choice of
semantic definition does not matter here; the essential
point to note is that the semantic meaning of guarded
commands can be given in a simple and precise
manner.

Example

The following statement is intended to sort the values
of the variables x = x1, x2, ..., x5 into nondecreasing
order according to the variable index:

SORTO :: do x1 > x2 — x1, x2 := x2, x1 {EX1}
[x2 >x3 = x2, x3 :=x3, x2 {EX2}
0x3 > x4 — x3, x4 := x4, x3 {EX3}
(x4 > x5 - x4, x5 := x5, x4 {EX4}
od

The only actions that can take place are exchanging
two neighbouring values when they are in the wrong
order. Termination is guaranteed because each executed
action decreases the number of pairs that are in the
wrong order. Upon termination, the values of the
variables have been sorted. Execution is
nondeterministic because two actions may be enabled
at the same time. This nondeterminism, however, does
not affect the outcome of the execution.

3. Specification Facilities

The following extensions to guarded command
language make the language considerably more
powerful as a specification language. These are the
nondeterministic assignment [1] (called specification
statement in [19]) and miraculous statements [4, 19,
20, 21]. We can include them in the language by the
following extensions to the syntax:

S o=
I w:=w'.Q
| A

{nondeterministic assignment}
{action}

Here Q is a predicate on the initial and final values of
the state variables.

An example of a nondeterministic assignment
statement is:

xy=x,y.(x'=x+l Ay<y).

This statement assigns new values x', y' to the
variables x and y, where the values satisfy the
condition x'=x+ 1 Ay <y'. The statement would
abort if no such values x', y' exist. If there is more
than one choice for the values x' and y', then the choice
is nondeterministic.

Permitting an action as a statement means that a
statement about to be executed in a sequential
composition need not be enabled, e.g., as in

x=x+l @zl -5 x=y).

If the action is reached in a state where the guard does
not hold, then the statement is considered to terminate
miraculously in the weakest precondition semantics, in
the sense that it will establish any postcondition that
we want. A statement is said to be enabled when it can
avoid miraculous termination. In the example above,
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the whole statement is enabled if x # 0 (because then x
# 1 when the second part is about to be executed).
Thus, this statement is in fact equivalent to the
statement

x20->x=x+1;x:=y,

which is an action of the form permitted by the
ordinary guarded commands language.

Operationally, we can view a statement that is not
enabled in a certain state as being deadlocked, i.e.,
execution cannot proceed because executing the
statement is not permitted. We assume that the system
tries to avoid this kind of deadlock, so that when it
reaches a deadlock, it will backtrack and try to execute
some alternative statement. Only when all alternatives
have been tried does the system actually recognize that
it is in a real deadlock. Consider as an example the
statement

=x+Lxzlo>x=y) 0@x=0->x:=y).

Here the first alternative is chosen if x # 0, while the
second alternative is chosen when x = 0. Although
both alternatives can deadlock, the combined statement
does not deadlock because the system will choose the
alternative that does not deadlock.

Neither a nondeterministic assignment statement
nor a naked guarded command are in general executable
on areal computer. However, they are executable in an
idealized sense and do not present any difficulties in a
logical analysis of program correctness. Hence, they
are included in the specification language as
abstractions that are convenient during program
specification and development, but which need to be
removed during the program development process in
order to get an executable program.

4. Blocks with Local Variables

The block construct allows local variables to be
introduced in guarded commands. We extend the syntax
of guarded commands as follows:

S o= {block}

D =< empty > {empty declaration}
fvarw:=e {local variable declaration}
| Dy; Dy {declaration composition }

B :=begin D; Send  {block}.

The types of local variables in a block construct have
to be indicated explicitly if they cannot be inferred
from the expression e. Composition of declarations is
associative.

The block begin D; S end is executed by adding the
new local variables declared in D to the state,
initializing their values to the given expressions
respectively, then executing S and, upon termination
of S, deleting the local variables. We assume that the
local variables in a declaration are all distinct from
each other. They also have to be different from the
global variables of a block; i.e., redeclaration of
variables is not allowed. The initialization expressions
may not refer to any local variables introduced in the
block. The local variables declared in a block are only
accessible to statements inside the block.

We choose the guarded commands language extended
with nondeterministic assignment, actions and blocks
as our basic statement language. Extending the
weakest precondition semantics of Dijkstra's guarded
commands to incorporate these extensions is
straightforward (see, e.g., [2, 8]) as is the extension of
an operational semantics of guarded commands with
these constructs. Thus, in the sequel we assume that
the semantics of the basic statements is well defined
and well understood. We describe the meaning of
subsequent extensions to the basic statement language
by showing how to reduce the extended statements to
these basic statements.

5. Constants

We extend the block construct by also permitting
declaration of local constants in blocks, in addition to
local variables. We extend the syntax as follows:

Su=..lc {constant}

D ::=..1constc=C {local constant declaration}

Here c is an indentifier that stands for the value C. The
constant ¢ can be used anywhere in the program where
C can be used. The constant may denote an expression,
statement, action or block. Above we extended
statements by also permitting constants as statements.
The syntax of expressions also needs to be extended in
a similar way.

We treat constants as mere syntactic sugar, which
can be removed by simple rewriting (macro
expansion):

begin D; const ¢ = C; D; S end
= begin D; D; S[Cl/c] end.

The reduction substitutes C for each occurrence of the
identifier ¢ in S. The semantics of programs with
constants is thus explained by showing how to reduce
such a program to another, equivalent program that
does not have any constants. We refer to a definition of
this form as a syntactic reduction.
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A (parameterless) procedure is a special case of a
constant. The procedure declaration const p =S is
usually written as proc p = S. A procedure call p is
handled by substituting the body S for each call p. We
assume that recursive calls are disallowed, so the
substitution eliminates the procedure calls. Recursive
procedures do not present any real difficulty, but
require a fixpoint operator on statements [2] which, for
simplicity, we choose not to introduce here.

Because redeclaration of global variables in a block
is not permitted, dynamic and static scoping will be
the same. Hence, substitution does give the correct
binding for global variables.

6 . Parameters and Adaption

Procedures with parameters are also a special case of
constant declarations, but we need to introduce (formal)
parameter declarations and a new statement construct
called adaption to handle parameter passing. Hence we
extend the syntax of our language as follows:

S:u=..1B(e,x,y) {adaption}
D=
| val w {value parameter}
lupd w {update parameter}
| res wi= wy {result parameter}

The values wg are default values for the result
parameters. The formal parameters are considered as
local declarations of a block. These need to be
instantiated to actual parameters e, x, y in an adaption
statement before the block can be used as an ordinary
statement.

To conform with standard practice, we usually write
a procedure declaration

const p = begin val v; upd w; res r := rg; D; T end,

where D contains no parameter declarations, in the
form

proc p (val v; upd w; res r := rg;) = begin D; T end.

We define adaption of a block B with (formal)
parameters to an actual parameter list (e, x, y) by
syntactic reduction, as follows:

begin val v; upd w; res r :=rg, D; Tend (e, x, y)

= begin varv,w, r:=e,x,rg, D; T; x,y :=w, r end.

All parameters become local variables after the
reduction. The value parameters are assigned the actual
parameter values on block entry, and the update

parameters are assigned the values of the variables that
they are bound to. The actual result parameter is
assigned its value at block exit. Note that we have a
default value for the result parameter on block entry.
This means that the result parameter will have a well-
defined value even if it is never assigned to.

A procedure declaration is eliminated in the same
way as before: each procedure identifier is replaced by
the block that it denotes. If the procedure has
parameters, then adaption is subsequently required for
parameter passing.

Example
We could write the sort program SORTO using a local
procedure as follows:

SORTOQ' :: begin const swap =
beginupd !/, r; l; r:=r, lend
doxl >x2 —> swap(xl, x2)
0x2 >x3 > swap(x2, x3)
0x3 > x4 > swap(x3, x4)
0x4 >x5 > swap(x4, x5)
od end.

Syntactic substitution expands the call swap(x1, x2) as
follows:

swap(xl, x2)
= {substitute definition of swap for the identifier}
begin upd I, r; I, r :=r, l end (x1,x2)
= {adaption}
begin var [, r:=x1,x2; [, r:=r, l; x1,x2 :=1, rend
= {simplification}
x1, x2 :=x2, x1.

Removing the procedure declaration will thus reduce
SORTU' to the equivalent program SORTO.

7. Action System

We will model parallel and reactive systems as guarded
commands of a special form, which we refer to as
action systems A

Au=begin D;do Aj [] ... JA,, od end {action system}

The local variables declared in D and the global
variables together form the state variables of the action
system. The set of state variables accessed in action A
is denoted vA and the set of variables declared in D is
denoted vD. The action system may also declare
constants, such as procedures. For simplicity, we
assume here that there are no parameter declarations in
an action system.
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Figure 1. Access relation for SORTO.

In the absence of local declarations, the action system
reduces to a simple iteration statement. The sorting
program SORTO of the previous section is an example
of such an action system.

An action system provides a global description of
the system behavior. The state variables determine the
state space of the system. The actions determine what
can happen during an execution. The execution
terminates when no action is enabled anymore.

Access Relation

Let us denote by rA the variables that are read by
action A (the read access of A) and by wA the variables
that are written by A (the write access of A). Thus vA
=rA U wA.

Figure 1 shows the access graph of the system
SORTO. The actions and variables of the system form
the nodes in this graph. An edge connects action A to
variable x if x € vA. A read access is denoted by an
arrow from x to A and a write access by an arrow from
A to x. A read-write access is denoted by an undirected
edge.

Sequential and Parallel Execution.
The semantics given to guarded commands above
prescribes a sequential execution for action systems.
This gives us the interleaving semantics, where only
one action is executed at a time, in a nondeterministic
order constrained only by the enabledness of actions.
However, action systems are intended to describe
parallel systems. Hence, we permit the execution of
actions to proceed in parallel also; i.e., we permit
overlapping action executions.
Consider again our simple sorting program. If both
actions

x2>x3 > x2,x3:=x3,x2 and
x4 > x5 — x4, x5 = x5, x4

are enabled, then either one could be executed next.

Because the two actions do not share any variables, the

effect is the same if we execute the actions one after

the other, in either order, or if we execute them in

parallel, so that the executions are in fact overlapping.
On the other hand, even if the actions

x1>x2 5 x1,x2:=x2,x1 and
x2>x3 5 x2,x3 :=x3,x2

are both enabled, we do not want to execute them in
parallel because their simultaneous execution could
interfere with each other, as they both access variable
x2.

Atomicity Constraint

Two actions are said to be in conflict with each other if
they both refer to a common variable, and one of them
may update this variable. More precisely, actions A
and B are in conflict with each other, if

VANwBz#T or wANvBzJd.

There is a write-write conflict between A and B if wA
N wB # &, and there is a read-write conflict between
these actions if rA " wB # QorwA N rB + &.
Actions that are not in conflict with each other are said
to be independent.

We permit parallel execution of independent actions.
We assume that the actions are started one by one, but
in such a way that an enabled action is only started if
it does not conflict with any action that is already
being executed. We say that a parallel execution of an
action system respects atomicity if it satisfies this
constraint.

Correctness of Parallel Execution

When atomicity is respected, an interleaving semantics
is also an appropriate abstraction for parallel execution.
Parallel execution of actions gives the same result as a
nondeterministic sequential execution. A parallel
execution is guaranteed to terminate if and only if the
sequential execution is guaranteed to terminate. It will
be guaranteed to establish a certain postcondition if and
only if the purely sequential execution is guaranteed to
establish the same postcondition. We can therefore
reason about a parallel execution of a guarded command
as if it was a purely sequential execution. As long as
the parallel execution of the guarded command respects
atomicity, any total correctness results that hold for the
purely sequential program will also hold for any
parallel execution of it. (Note that we do not assume
fairness of action system execution.)

Note that even under such a parallel execution
regime, there may still be nondeterministic choices
that have to be made. This occurs when there are two
actions that both become enabled as the result of some
other action terminating, but which are in conflict
with each other. In this case, we nondeterministically
choose either one for execution. Once this action is
being executed, it prevents the other action from being
started.
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8. Parallel Composition of Action
Systems

Action systems provide us with a model for parallel
program execution. In the same way as procedures
provide a mechanism for modularizing sequential
programs, we want a mechanism for modularizing
parallel programs or action systems. The standard way
of achieving this modularization is by parallel
composition of process. We follow this same
paradigm, considering action systems as processes and
defining parallel composition of action systems.

We extend the language of action systems by a
parallel composition operation:

A= 141 4 {parallel composition}
We define the meaning of parallel composition by
syntactic reduction:

begin D; do A od end Il begin D'; do A' od end
= begin D; D'; do A []A’ od end.

The parallel composition is defined when the local
constant, variable and procedure names in D and D' are
all disjoint (so that D; D' is a proper declaration). This
can always be achieved by renaming inside the block,
prior to forming the composition. Parallel
composition thus merges local variables and constants
as well as the actions of the two systems.

Any parallel construct may be reduced away by
syntactic reduction, resulting in a program without
parallel composition. Combining this with the
definition of procedures, we can thus reduce any
program with parallel composition and procedures to a
simple guarded command in our base languge.

Parallel composition is associative and
commutative because the ordering of the variable
declarations and actions does not affect the meaning of
the action system. Hence parallel composition
generalizes directly to composition of more than two
action systems.

Example
We can describe the sorting program as a parallel
composition of two smaller action systems:

SORTQ" :: LOWO Il HIGHO
LOWO :: doxl1>x2—x1,x2:=x2,x1 {EX1}
0x2>x3 > x2, x3 :=x3, x2 {EX2}
od
HIGHO :: do x3 > x4 - x3, x4 :==x4, x3 {EX3}
(x4 > x5 — x4, x5 :=x5,x4 {EX4)}
od.

Carrying out the (trivial) syntactic reduction shows
that SORTQ" = SORTO.

Arbitrary Partitioning

The parallel composition of a collection of action
systems yields a new action system which is the union
of the original systems. Thus parallel composition can
be seen as a partitioning of the whole system into a
number of parts (action systems), assigning each local
variable and procedure to some part. Graphically,
parallel composition corresponds to a partitioning of
the access graph of an action system into a collection
of subgraphs, where each subgraph forms an action
system of its own.

An interesting question is now whether every
partitioning of an action system (or, equivalently, of
the access graph) can be described as a parallel
composition of some action systems. In fact, it is easy
to see that this is not the case. If we have an action
that accesses a given local variable, then we cannot put
that action in one part and the local variable in
another, because the scope rules for blocks will then
prevent the action from accessing the local variable.

In order to permit arbitrary parallel decomposition
of action systems, we need to make the scope rules of
blocks more permissive. In the next section we show
how to do this in a way that permits any partitioning
of an action system to be described as a parallel
composition of component action systems.

9. Variables and Scopes

We relax the rigid scope rules of blocks by permitting
identifiers to be exported from and imported to blocks,
thus making these more like modules in the Modula-2
or Oberon sense. Besides partitioning local variables
among processes, we also partition global variables
and constants such as procedures among these. The
first allows us to model persistency of data, while the
second allows modelling encapsulation of data and
remote procedure calls between processes.

The block notation begin var w := wq; S end wraps
a number of different things into a single construct:

(i) It associates the variables w with the statement
S.

(ii) It creates new variables w on entry to the block.

(iii) It initializes the variables w to wy.

(iv) It hides the variables w from the environment.

(v) It destroys the variables w on exiting the block.

To gain more flexibility in parallel composition, and
in order to be able to model distributed systems in a
realistic fashion, we need to take these different aspects
apart. We do this by generalizing the block construct
as described below.
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Hiding and Revealing

For parallel composition, it is useful to permit an
identifier declared inside one action system to be
visible to other action systems in a parallel
composition. The other action systems may be given
read/write/execute access to these idenifiers.

An identifier x is made visible to the outside by
marking it at declaration time: var x* := e indicates
that the identifier x can be accessed by the
environment. (We could indicate more restricted access
if needed, but we consider only general access here for
simplicity.) We extend the syntax of declarations as
follows:

D .= ..ID* {revealing a declaration}

(If more than one identifier is declared in D, then each
identifier is understood to be marked.)

Created and Existing Variables

Another distinction that we want to make is that
between a variable that is created by an action system
and a variable that already exists when the action
system starts up. A created variable is preceeded by the
key word var, while an existing variable does not have
this keyword. In the same way as each created variable
is associated with a specific action system, we may
also associate existing variables with an action system.
This permits us to model how variables that exist at
startup of an action system are distributed among the
parallel components of the action system. We extend
the syntax as follows:

D :=..1w {existing variables}

where w is a list of variables.

Accessed Variables

We may also need to keep track of the identifiers that
are used inside an action system but which are not
associated with the action system (i.e., the identifiers
that have to be imported from other action systems in
a parallel composition). We write

A:v

when we want to indicate explicitly the global
identifiers v that are used in 4 but not associated with
A . The list v may contain both variable and constant

identifiers.

Generalized Blocks

With these extensions, the block construct itself only
means that certain variables are associated with certain
statements. Whether these variables are new or existing
ones, or whether they are visible or hidden from the

environment is indicated separately. For simplicity, in
the sequel we assume that the variables that are created
at block entry are destroyed at block exit. If needed, we
could have a separate notation by which we could
create variables that are not destroyed at block exit (or,
dually, indicate that some global variables should be
destroyed at block exit).

10. Program Modules

The above extensions to the block construct give us a
module description language where the action systems
are the modules and parallel composition is the
composition operator for modules. Any partitioning of
an action system can be described as a parallel
composition of action systems because identifiers that
are defined in one module and needed in another module
can be made accessible by exporting.

We complete the picture by extending two other
useful composition operators, sequential composition
and hiding, to action systems:

A= ..
I A, 2 {sequential composition }
| begin D; 41 end {hiding}

Thus action systems can be built out of primitive
action systems by using parallel composition,
sequential composition and hiding. Again we define the
meaning of action system described in this way by
syntactic reduction.

Sequential Composition

Sequential composition of action systems corresponds
to executing these in phases, where each action system
describes one phase, to be started only when the
previous phase has been completed. We define the
meaning of sequential composition by the following
reduction rule:

begin D*; E1; do A od end,;
begin D *; E»; do A od end

= begin D|*; Eq; Ep; vara = 1;
doa=1->A1[la=1A-gA1>a:=2
fla=2-—>4;
od end.

We require that the revealed declarations be the same in
both components, whereas the hidden components can
be different. The reduction introduces a new local
variable a that keeps track of which phase is being
executed in the reduced system. Note that g = (h —
S)=g A h— S holds in general. In particular, this
means that for A; = g; > §;, the first action in the
reduced system is equivalent to the actiona=1 A g;
— S and the last action is equivalent toa=2 A g —
Ss.
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Hiding

Hiding corresponds to nested partitioning of the access
graph. We define the meaning of hiding by the
following reduction rule:

begin D *; E*; Fy;
begin Dy*; E*; F; do A od end end
= begin D1*; E*; Fy; Dy; Fy;do A od end.

A nested action system is thus defined to be equivalent
to the flattened system. The variables that are revealed
in the inner block are not revealed by the outer block
unless explicitly so required. To re-export a variable to
an outer block, we need to repeat the declaration in the
outer block. Repeated declarations (E* above) are
merged into a single declaration on the syntactic
reduction.

Hiding Versus Creating

Hiding/revealing a variable or procedure only makes
sense for parallel composition of action systems and
provides an abstraction mechanism for modules.
Hiding for parallel composition corresponds to creating
a new variable for sequential composition: creating a
variable on block entry and destroying it on exit means
that the variable is not accessible to preceeding or
succeeding action systems. A variable that is to be
accesible for successive action systems must therefore
exist before and after the execution of the action
system; it cannot be created inside the action system.

Open and Closed Systems

The scoping rules allow us to distinguish between
open and closed action systems. A closed action
system does not reveal any identifiers, nor does it
import any, while an open action system either reveals
or imports some identifiers.

The sorting program SORTO described previously is
an open system where the variables to be sorted are
assumed to be associated with the environment (i.e.,
another action system that is composed in parallel
with the sorting action system). It would now be
described with explicit mentioning of the imported
variables, which are required to be natural numbers:

SORTO :: begin do EX1 [] ... JEX4 od end:
x1, x2, x3, x4, x5: nat.

The following is also an open version of this system,
but now the variables to be sorted are considered part of
the action system rather than part of the environment.

SORTOQ' :: begin x1*, x2*, x3*, x4*, x5* : nat;
do EX1[]... 0EX4 od end.

Here the variables x1, ..., x5 could also be accessed by
other action systems in a parallel composition.

The sorting program as a closed system hides the
variables to be sorted inside the system:

SORT]I :: begin x1, x2, x3, x4, x5: nat;
do EX1 [] ... [ EX4 od end.

Note that even if the variables x1, ..., x5 are hidden,
they are assumed to have well-defined values before the
action system starts execution, and these variables will
remain in the state space after the action system has
terminated. Hence we can talk about these variables in
pre- and postcondition specifiations, e.g., to state that
they work correctly with respect to a given
specification.

Nesting of Parallel and Sequential
Components

A closed system cannot communicate with its
environment during execution, but it can change the
state of the system. Hence a closed system behaves as
an ordinary sequential statement. We can therefore
permit a closed action system to be used as a building
block in constructing sequential statements. In
particular, a closed action system can be used to
construct an action that is part of an action system at a
higher level, which in turn may be part of a parallel
composition. This gives us nesting of parallel and
sequential program constructs to any depth. The
nesting is permitted by the following extension of the
language:

Su=..14, {action system }

where 4 is a closed action system.

11. Shared Variable Communication

We have shown how to decompose action systems into
parallel components, but we have not described how
these components communicate with each other. In the
following three sections, we show that communication
is already built into the approach and is a consequence
of the way the action system is partitoned. No new
facilities need to be added for communication between
processes. We start here by showing how action
systems can communicate using shared variables.

Let us partition action system SORT1 into parallel
components by dividing up the actions. We let process
LOW?2 contain actions EX1, EX2, and process HIGH?2
contain the actions EX3, EX4. We also partition the
global variables such that variables x1, x2 belong to
LOW?2 because they are only accessed by actions in
this process, and variables x4, x5 belong to HIGH2 for
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[

!
LOW2 IVAR2 HIGH2!

Figure 2. Partitioning of SORT2.

similar reasons. The variable x3 is shared between the
two processes and forms a partition of its own that we
call VAR2.

The partitioned action system SORT2 is then
expressed as

SORT?2 :: begin LOW2 Il VAR2 | HIGH? end,
where

LOW?2 :: begin x1, x2; do EX1 JEX2 od end : x3
VAR2 :: begin x3* end
HIGH?2 :: begin x4, x5; do EX3 JEX4 od end : x3.

Merging these three action systems again gives us the
original action system SORT1. Note that we omit the
empty loop in VAR2 for brevity. Figure 2 illustrates
the partitioning of SORT2.

This partitioning of the actions gives us a shared
variable model for concurrency. The action systems
LOW?2 and HIGH?2, considered as processes, can
execute in parallel. They communicate by the shared
variable x3. The atomicity restriction is enforced if we
require that variable x3 be accessed under mutual
exclusion by the two processes. (In general, a correct
implementation must also ensure that no deadlock
occurs because of the way in which shared variables are
reserved).

12. Shared Action Communication

Starting from the variables rather than from the actions
gives us a shared action mode] of communication. We
place variables x1, x2, x3 in action system LOW3 and
variables x4, x5 are in action system HIGH3. The
actions EX1, EX2 only access variables in LOW3 and
are hence put into this part. Action EX4 only accesses
variables in HIGH3 and is therefore put into this part.
Action EX3 is shared between the two processes and
forms a part of its own. This gives us the following
sorting program:

SORT3 :: begin LOW3 Il ACT3 || HIGH3 end,

where

LOW3 :: begin x1, x2, x3*; do EX1 [JEX2 od end
ACT3 ::begindo EX3 od end : x3, x4
HIGH3 :: begin x4*, x5; do EX4 od end

Figure3 illustrates the partitioning of SORT3.

By expanding the parallel composition, we can
easily see that this gives us the same action system as
before; i.e., SORT3 = SORT1.

The action EX3 is shared in this case because it
involves both process. All other actions are private to
either process. In this partition, the processes thus
have disjoint sets of variables, and they communicate
by carrying out shared actions. The shared action is
only executed if each process is ready for it. A shared
action can update variables in one or more processes in
a way that may depend on the values of variables in
other processes. In this way, information is
communicated between processes. Note that there is
nothing to prevent more than two action systems from
participating in a shared action, thus in general
providing for synchronized n-way communication [5,
14, 15].

The notion of a shared action is a considerable
abstraction here because it is obvious that neither
process can determine for itself by only looking at its
local variables whether the shared action is enabled or
not. Hence some kind of prior communication or
centralized scheduling would be needed in order to
implement the shared action. Additional restrictions on
the action system can be enforced to make the
communication mechanism efficiently implementable
in a distributed environment [5]. The communication
mechanisms of CSP and Occam are special cases of
the shared action mechanism described here.

13. Remote Procedure Calls

The shared action model achieves synchronous
communication in a parallel composition. However,
the variables associated with a certain process are
accessed by shared actions, which means that more
information about the process is revealed to the
environment than we might want. We present here a
third communication model which also gives us

Figure 3. Partitioning of SORT3.



36 Back, Sere: From Action Systems to Modular Systems

synchronous communication but has better locality
properties. This method is based on the use of

procedures.

An action system A communicates with another
action system B by calling a procedure exported by B.
Information is passed between the processes via the
parameters: value parameters send information from 4
to B, while result parameters return information in the
other direction. The procedure mechanism thus
corresponds to remote procedure call communication.

The atomicity of an action also includes all
procedure invocations that may occur during the action
execution. This guarantees that the proof rules for
simple iteration statements are still valid when
reasoning about the total correctness of action systems
with procedure calls.

The body of a procedure is a statement which is
always executed whenever the procedure is invoked.
Hence the remote procedure mechanim is rather weak,
as there is no way in which an action system can
refuse to accept a procedure call from another action
system. There is, however, a rather simple fix to this:
use actions as statements.

The procedure then has an enabledness condition,
just as an action in a loop or conditional statement
has. This enabledness condition must be satisfied when
the procedure is called. If it is not satisfied, then the
action from which the procedure has been called is
considered not to have been enabled in the first place.
A correct implementation of this mechanism has to
guarantee that in such a situation the effect of the
action is unmade and some other action is executed
instead, if possible. Alternatively, we could have a
mechanism which can determine in advance whether
the action is enabled and prevent execution of an action
that would turn out not to be enabled.

Hence an action with procedure calls (within a
single action system or between action systems) is
either executed to completion without any interference
from other actions, or it is not executed at all. A
parallel implementation has to respect this atomicity
in order to be considered correct.

Example

We illustrate this communication mechanism, again
with the sorting example. We partition the action
system as follows:

SORT4 :: begin LOW4 || HIGH4 end,
where

LOW4 ::  begin x1, x2, x3;
proc swap*(upd a) =
(a>x3 > a,x3:=x3,a)
do EX1 [JEX2 od end

Figure 4. Partitioning of SORT4.

HIGH4 :: begin x4, x5
do true — swap(x4) {EX3'}
NEX4
od end: swap.

Thus the action system LOW4 reveals the procedure
swap that the action system HIGH4 calls with the
parameter x4. The procedure is enabled if x4 > x3, in
which case the two values are swapped. Note that the
enabledness of the action that calls swap is only
determined at the calling end (which has the required
information). The variables x1, ..., x5 are now all
hidden. The only way of accessing x3 is by using the
swap procedure. The outermost brackets in SORT4
hide the swap procedure from the environment.

The access relation and partitioning of SORT4 is
described in Figure 4.

Expanding Parallel Composition

We illustrate the above definitions by simplifying
SORT4:

SORT4
= {reducing parallel composition}
begin begin x1, x2, x3, x4, x5;
proc swap*(upd a) = (a > x3 — a, x3 :=x3, a);
do EX1 [|EX2 [Jtrue — swap(x4) [| EX4 od end end
= {expanding procedure call, performing adaption }
begin begin x1, x2, x3, x4, x5;
proc swap*(upd ) = (a > x3 — a, x3 := 13, a);
do EX1 [JEX2
[ true — begin vara :=x4 :=a>x3 - a, x3 =
x3,a;x4 :==aend
UEX4
od end end
= {simplifying expanded call to EX3}
begin begin x1, x2, x3, x4, x5;
proc swap*(upd @) = (a > x3 > a,x3 :=x3, a)
do EX1 [JEX2 JEX3 [ EX4 od end end
= {flattening nested action system }
begin x1, x2, x3, x4, x5;
proc swap(upd a) = (@ > x3 — a, x3 :=x3, a);
do EX1 [|EX2 JEX3 []EX4 od end
= {omitting redundant procedure call }
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begin x1, x2, x3, x4, x5

do EX1 [JEX2 [EX3 [JEX4 od end
= {definition}

SORT1.

The simplification step is justified by the following
derivation:

true — begin var a :=x4;a > x3 5> a,x3 :=x3, a;
x4 :=aend

true — (x4 > x3 > x3, x4 := x4, x3)

true A x4 > x3 — x3, x4 := x4, x3

x4 > x3 - x3, x4 := x4, x3

EX3.

14. Module Description

Finally, we show how an ordinary modular
programming language could be adapted to the action
system framework as described above. We choose the
programming language Oberon (or Oberon-2) as our
base language because it is simple and does not have
any features for parallel programming. However, other
languages could do as well, such as Modula-2 or
Modula-3, C++, Object Pascal, Ada and so on.

We are interested in an actual language
implementation of action systems because then we
gain a uniform language in which both specifications
and implementations of reactive systems can be
expressed. Action systems are mainly used for
specification of a parallel system. However, having an
implemenation of action systems provides us with a
tool for observing the behavior of the specified system
at an early stage, to reveal inefficiencies in a real
parallel implementation and observe other features of
interest.

Implementing action systems in Oberon means that
a subclass of action systems are efficiently executable
in the Oberon system using the Oberon compiler. We
want to extend the Oberon language so that more
general action systems can be executed as well. Then it
is not important that the more general mechanisms are
efficiently implemented. We can be satisfied with a
considerably less efficient implementation because we
are executing just a specification, which has to be
turned into a more efficient program before final
delivery anyway.

Action Execution

First let us look at simple action systems without
parallel or sequential composition, hiding or
procedures. The action system

begin varw =wg; do A [] ... [Ap,odend :v. (1)

cannot be described directly as an Oberon module
because the iteration statement should be executed
nondeterministically, but Oberon only has
deterministic execution. We could implement the
iteration as a deterministic iteration statement, but then
this would not be a good model of parallel execution.

The Oberon system does, in fact, already have a
mechanism that is very similar to an action system:
the Oberon loop. The Oberon loop is a circular list of
tasks, which are parameterless procedures. Two special
tasks are standard: listening to mouse and keyboard
input and performing garbage collection. The user can
also insert own tasks into the loop. The system runs
by cycling through the Oberon loop forever. This
basic event loop controls interaction with the user.

We can use this mechanism to simulate action
execution. We consider an action to be just a
parameterless procedure that is inserted into the Oberon
loop. As the Oberon system is single-threaded, this
means that an action will be executed to completion
without any interference from any other action. Hence
this mechanism guarantees atomicity of action
execution.

However, there are two problems with this
implementation. First, the Oberon tasks are always
executed; i.e., there is no enabling condition. An
action, on the other hand, need not be enabled. We can
solve this problem by extending the notion of a
procedure so that it can have an enabeling condition.
Thus we get the following syntax for actions in an
Oberon extension:

ACTION EX1;
WHEN x1 > x2
BEGIN x1, x2 :=x2, x]1 END EX1.

The scheduler needs the explicit guard in order to
determine when an action system has terminated. We
introduce a new key word for actions (rather than
calling these procedures) because actions behave
differently from procedures: an action is executed
spontaneously by the system, whereas a procedure is
only executed if it is explicitly called.

Secondly, scheduling in the Oberon loop is
deterministic, whereas we need to have nondetermi-
nistic scheduling in order to model parallellism.
However, the scheduler for the Oberon loop can be
changed so that it cycles in a nondeterministic fashion
through the actions in the loop.

Initialization

There are no local variables in our example, so the
variable declaration and initialization part of the
module are both empty. In addition to assigning initial
values for the variables, an implementation of the
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initialization part of the action systems in Oberon
would also have to install the actions of the module in
the Oberon loop (if this is not done directly by the
compiler). For added flexibility, we may, in fact,
permit the initializations in the modules to be arbitrary
statements.

Parallel Composition of Action Systems

An Oberon program is just a collection of modules
that are initialized one by one. After the initializations,
these modules continue to be available, so that they
can be manipulated by the tasks in the Oberon loop,
and the actions in the modules are executed in parallel,
autonomously. Thus parallel composition of an action
system is implicit in the collection of modules. The
Oberon loop will take care of the execution of the
actions of the modules in a nondeterministic fashion
which simulates atomicity respecting parallel
execution.

Variables and Hiding

The Oberon language already knows about importing
and exporting variables, so these aspects do not provide
any difficulties. What the language lacks is a facility to
distribute existing variables among modules. This
means that existing variables have to be assumed to be
globally visible and have to be explicitly imported into
a module in order to be used.

A facility for taking existing variables into use
would correspond to having persistent data in the
system. Standard Oberon lacks this feature, but it is
present in some extensions of the Oberon system. A
restricted form of persistency is available in most
programming languages as a facility for binding
internal file variabes to external files in a file systems.

The Oberon language does not permit nested module
declarations, but other similar languages do, e.g.,
Modula-2.

Procedures

Procedures as we need them are already present in the
Oberon langugage, except that the procedures are
always enabled. We can solve this problem
syntactically by adding an enabling condition to
procedures also, in the same way as we have enabling
conditions for actions.

However, this gives us an implementation problem
instead. What should we do when we are about to
execute a procedure that turns out not to be enabled?
The semantics requires us to backtrack to the action
from which the procedure originally was called and
choose some othe action instead. Restoring the system
state to what it was before the action execution can be
a very costly operation. However, we may use this as
the general strategy, and then assume that the compiler

is smart enough to detect the situations when more
efficient implementations can be done.

Example

The following is the Oberon equivalent of action
system SORT4 (the USE clause models the placement
of existing variables in a module):

MODULE LOW4;

USE x1, x2, x3 : INTEGER;
PROC swap*(VAR a: INTEGER);

WHEN a > x3 BEGIN a, x3 := x3, a END swap;
ACTION EX1;

WHEN x1 > x2 BEGIN x1, x2 :=x2, xI

END EX1;
ACTION EX2;
WHEN x2 > x3 BEGIN x2, x3 := x3, x2
END EX2;
BEGIN END LOWA4.
MODULE HIGH4;
IMPORT LOW4;
USE x4, x5: INTEGER;
ACTION EX3;
BEGIN LOW4.swap(x4) END EX3;
ACTION EX4;
WHEN x4 > x5 BEGIN x4, x5 := x5, x4
END EX4;
BEGIN END HIGHA4.

15. Conclusions

We have shown how to extend a simple guarded
command language with modularization features that
are considered useful and necessary in the construction
of large programs. The meaning of these
modularization constructs is defined by syntactic
reduction, showing how each construct can be removed
by syntactic transformations that reduces a program
containing the construct to one that does not contain
it. Ultimately, we can reduce a large modularized
program to a simple guarded command.

Another purpose of the treatment here has been to
show that the conceptual basis required for the main
modularization facilities is actually rather small. Most
properties needed are already present in the basic
language of guarded commands with blocks. The
modularization facilities introduced here are not
restricted to programming languages, but work equally
well for specification languages. In fact, many of the
constructs that we have defined are such that they
cannot be implemented efficiently in their full
generality. Hence what we really have is a
specification language with modularization facilities.
A programming language should be seen as a restricted
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subset of the specification language where the
restictions are such that they facilitate efficient
execution of programs written in the language.

The reduction rules introduced in this paper are
intended to provide justification for module refinement
rules. For each kind of module that we have defined
(procedure, process, data module), we can give
conditions under which the replacement of this module
with another module is correct in the sense that it
preserves the correctness of whole program. Justifying
these refinement rules requires the reduction rules.

The logical basis for program refinement that we
use is the refinement calculus, originally described by
Back [1, 2] as a formal framework for stepwise
refinement of sequential programs. This calculus
extends Dijkstra's weakest precondition semantics [13]
for total correctness of programs with a relation of
refinement between program statements. A good
overview of how to apply the refinement calculus in
practical program derivations is given by Morgan [19].

Because action systems can be seen as special kinds
of sequential systems, the refinement calculus
framework carries over to the refinement of parallel
systems in [8]. Reactive system refinement is handled
by existing techniques for data refinement of sequential
programs within the refinement calculus [3].

We have not described the methods by which
modularity is used in program refinement, nor have we
given specific refinement rules for modular
components. These issues have been treated in other
papers, and the interested reader can consult them for
more details [9, 10, 11, 7]. The features of our
modular programming language have been chosen so
that refinement of program modules is simple and
straightforward.
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