Software Development and Experimentation in an
Academic Environment: The Gaudi Factory

Ralph-Johan Back and Luka Milovanov and Ivan Pofres

Abo Akademi University Department of Information Techgias
Turku Centre for Computer Science (TUCS)
Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland

Abstract

In this article, we describe an approach to empirical sakveangineering based on a com-
bined software factory and software laboratory. The safwactory develops software

required by an external customer while the software laboyanonitors and improves the

processes and methods used in the factory. We have usegpinaah during a period of

five years to define and evaluate an agile software process.pidcess combines prac-
tices from Extreme Programming with architectural desigd anproved documentation

in order to find a balance between agility, maintainabilitg aeliability.

Key words: Agile Methods, Empirical Software Engineering, Case Stadi

1 Introduction

One of the main challenges in software engineering resdartie experimen-

tal and empirical validation of new software developmenglaages, methods and
tools. Like in any other discipline, it is important to testbevaluate if new and ex-
isting advances in software engineering provide the exgdatnefits when applied
in practice. We consider this validation process is verykvaad often neglected

by both researchers and industrial practitioners. Thismadlaat good languages,
tools and methods are not adopted fast enough and that baobhapps linger on

longer than they should.

Therefore, we consider that there is needed is a strongdnasigon empirical and
experimental software engineering, where the new toolseeithods are tried out

* Corresponding author.
Email addressed:ni | ovan@bo. fi, http://ww.it.abo.fi/ (Ralph-Johan

Back and Luka Milovanov and lvan Porres).

Preprint submitted to Elsevier April 5, 2007



in case studies and controlled experiments, and the regaitted from these are
carefully analyzed. The problem is how to perform this redean a way that is
cost effective and efficient.

Doing experiments in the industry is difficult. Software iswadays built under
severe time and resource constraints and is often critidhlet success of the com-
pany as a whole. Experimenting with new methods is risky aedefore it is often
avoided. In many cases, it is almost impossible to perfognicant studies in an
industrial setting. A company can rarely afford to develop $ame product twice
by the same team but using two different methods, and thempawerihe resulting
products and the performance of the team. Software resarchn have access to
industrial software construction processes, observidgagasuring them, but they
usually cannot influence the way the projects are carriedamahy larger degree.
In other words, researchers do not have control over thevacdt processes and
methods that used in the industry.

Further on, most software engineering research has bdewiiod) a research-then-
transfer methodology [56]. In this way, the research andagh@ication of the re-

search in the industry are considered as separate, sedjaatitvities. The problem
with this approach is that the researchers working in thenswé engineering re-
search units even in close collaboration with the industryndt have the control
over industrial projects. Software experiments can beeadwut in an academic
environment, but the setting there is usually not very stiali Software is built by

inexperienced students using more or less ad hoc procesmk#he penalties for
schedule slips or unsatisfactory quality are usually loaimaining larger software
systems is very difficult in an academic environment bec#usstudents turnover
is high.

First, a synthetic development project arranged by a reBeadoes not reflect the
conditions and constraints found in an actual software I[dpwmeent project. This
happens especially if there is no actual need for the softteabe developed. Re-
searcher have limited funds, and therefore it is necessapptimize the costs of
the experiments, therefore university experiments mugtdsormed by students.
Although students are not necessarily less capable of tliasks than employed
software developers, they must, however, be trained. litiaddo this, their pro-
gramming experience and motivation in the project may vansaerably. Another
problem may be that during their curricula, students argtliamore theoretical as-
pects of Computer Science rather than practical issuedtofaa@ engineering [36].
Added to these difficulties there is also the high turnoves es students graduate
and leave the project. Finally, although there is no markessure, a researcher
often has very limited resources and therefore it is not yby@ossible to conduct
large experiments or case studies.

On the other hand, university researchers do not have asgyneto release new
software products to the market or even being economicadifitpble to their em-



ployer. In this sense, a university setting can be an ideadepto perform experi-
ments and practical case studies and test new ideas in seféngineering. How-
ever, university researchers also meet with difficultieemwlexperimenting with

new software development ideas in practice. Performingxgereament in collab-

oration with the industry using newly untested softwareedigyment methods can
be risky for the industrial partner but also for the researchince the project can
fail due to factors that cannot be controlled by the researdrhe obvious alterna-
tive is to run a software development project inside a reseeenter or university
in a more controlled environment. Still, this approach hame important short-
comings, including the lack of clear vision and requirersdnt the system to be
build and difficulties to fund the developers.

These shortcomings disappear if the software built in aeanieh project is an ac-
tual software product that is needed by one or more custothatsvill define the
product requirements and will bear the cost of developiegattoduct. In our case,
we have found such customer in our own environment: othearebers that need
scientific software to be built to demonstrate and validiagértresearch work. This
software does not necessarily need to be related to ourrobseasoftware pro-
cesses.

In this paper we describe our experiences using this apprdaaw we created
our own software production unit — th&audi Software Factorin the university
settings. The purpose of the factory is to provide us withadistc environment
where we can empirically study software development in toraavhile building
software for other research projects. Our experience isthas different case stud-
ies conducted since the years 2001. The objective of thesestadies was to find
and document software best practices in a software probas$oicus on product
quality and project agility.

This paper is structured as follows: in Section 2 we presemtGaudi Software
Factory and the Laboratory for Software Construction — awirenment for em-
pirical software engineering. The settings of the softwantory — a sandbox for
empirical investigation are described in Section 3. Wegmethe typical setting for
software project and illustrate the application areas efdbftware built in Gaudi
in Section 5. The software process used in Gaudi is discuss®ekction 4, while
Section 5 summarizes our observations from agile expegienGaudi. Our con-
clusions are presented in Section 6.

1.1 Related Work

There has been active of research on different aspectslefragthods. First of all,
agile methods and especially XP have been criticized fotable of concrete evi-
dence of success [4], or in general [63], but they also haea gaining popularity



both in Industry and Academia. There are many papers pwdish different as-
pects of agile methods, i.e. in industrial [23,35,37,5P¢3a8e studies. An industrial
survey can help us to determine the performance of a conplédéined process
such as XP, but it cannot be used to study the effects of diffetevelopment prac-
tices quantitatively, since the researchers cannot mathigoproject in full details.

In various academic [4,26,34,51] case studies the resg@rcln monitor the pro-
jects in full details and determine the performance of XPngitatively. But in
many cases the environment of the projects which is creatadademic settings
does not reflect the reality, e.g. there is no real customer needs the software,
as opposed to Gaudi, where the software is going to be usets loystomers.
Other papers are concerned with evaluation of differerieggactices: onsite cus-
tomer [46,47], pair programming [53], refactoring [57] ohat is the significance
of the practices combination [67]. There is research orhiegoof agile practices
where the educational value of agile methods is studie®(£82,44,49], research
on human aspects of agile processes [28,45], and finallypapecombining soft-
ware research with software development in e.g. NASA SEI] §ifil Energi at
VTT Technical Research Centre of Finland.

The Industry-driven Experimental Software Engineeringdtive [59] (ENERGI)
is an environment in VTT Oulu, which was originally targetecevaluate and im-
prove agile methods proposed by other researchers in tlte frelcontrast, our
intention was not only to evaluate existing agile practiocesalso to propose new
practices that we think will improve the overall softwar@gess. The Software
Factory at the Arizona State Universggthers student programmers, in a common
facility where a professional software engineer mentormanages them. As a re-
sult, researchers of non-computing disciplines receivi:-gesigned, documented
and tested software, and students receive experiencemngarka professional soft-
ware development organizati¢h]. However, it looks like with such great poten-
tial for the research in software engineering, the ASU Fgcseems to lack the
research part, as we did not manage to find any scientific paliieg otherwise.

Another example is University of Sheffield in UK. This unisgy has an initia-

tive called the Software Hut [33] where students undertakgepts for external

clients in this imitative several student teams produceséimee product for a client
and the client selects the best implementation. There gsaatdudent run software
house Genesys, that provides software products for extelreats. Similarly, the

Software Hut and Genesys have been used by the Sheffields&afaluate agile

methods.



2 Gaudi and its Working Principles

Gaudi aims at developing and testing new software developmethods in a real-
istic setting. We are interested in the time, cost, quadity] quantitative aspects of
developing software, and study these issues in a seriesefstadies. We focus on
lightweight or agile software processes. Similarly to tiferBodel thatoffers an or-
ganizational structure that separates the product devalemt focus from the learn-
ing and reuse focus, collects data and packages the experfenfurther reusgin
our approach, we made a clear separation between the sefteastruction and
the research units, which work together in a very closeimgiahip. These units
are the Gaudi Software Factory and the Laboratory for SoéWanstruction. To-
gether they present a research environment that resuksiistic and empirically
valid evidence of different aspects of software enginepnirethods.

Gaudiis a research project which is related to Bhgerience Factor{3] (EF) ap-
proach. TheExperience Factory3] (EF) approach promotes organizational learn-
ing in such a way that the organization manages and leammsifsmwn experience.
In this approach the organization observes and collect aladut itself, creates
conclusions based on this data and packages the expermnitether reuse. Fi-
nally, and most importantly, the organization feeds thapegence packages back
to itself to share them inside and outside the organizafAmnexample of such an
approach is the NASA GSFC Software Engineering Laboratbéy. [

2.1 Software Factory

Gaudi Software Factoris a part of CREST at Abo Akademi University, which is
a research center focusing at the construction of reliatftevare. CREST consist
of four laboratories: Embedded Systems (ES), Distributede®ns (DS), Software
Construction (SC) and Mechanized Reasoning (MR). The Gaaffare Factory
was built as a central resource for constructing softwarthiese laboratories. Later
Gaudi was also used to build software for research outsideSTR

The goal of the Gaudi factory is to produce software for thedseof various re-
search projects in our university. Software is built in thetbry according to the
requirements given by the project stakeholders. Theselstddters also provide the
resources required to carry out the project. A characteon$the factory is that the
developers are students. However, programming in Gaudt ia part of their stud-
ies, and the students get no credits for participating indbatthey are employed
and paid a normal salary according to the university regaiat We emphasize to
the Gaudi software developers that the purpose of their \8dkproduce working
software using the specified software process, methodsoahsl Our intention is
to keep the programmers occupied with the constructingestitware, and to be



mindful that our research does not disturb them in any waig 3&ems to work out
well: in most cases the developers reported that they diteebthey were involved
in a research project, or they said that the experimentateat the project did not
disturb their day-to-day routine.

2.2 Software Laboratory

TheLaboratory for Software Constructiaims at developing and testing new soft-
ware development methods in a realistic setting. We aredsted in the time, cost,
guality, and quantitative aspects of developing softwang, study these issues in
a series of case studies run in the Gaudi factory. The godleoSbftware Con-
struction Laboratory in collaboration with Gaudi factosyto investigate, evaluate
and improve the software development process used in tharyad he factory is
in charge of the software product, while the laboratory isharge of the software
process. The laboratory supplies the factory with tasksueces and new methods,
while the factory provides the laboratory with the feedbexcthe form of software
and experience results. The laboratory staff is composegsefarchers and doctoral
students working in the area of software engineering.

The laboratory uses the Gaudi factory as a sandbox for s@ftpracess improve-
ment and development. Software projects in the factorywareas a series of mon-
itored and controlled case studies. The settings of thogegis including tools,
methods, techniques and a software process are definedrahyithe labora-
tory. Based on these case studies we have defined a stantaoti@o of practices
which has proved to be successful in these case studiesrtNetess, we always
consider possibilities to improve and extend our standanmthéwork with new set-
tings in future research projects. We call these settsugwvare best practiceas
they focus on product quality and project agility.

One of the main challenges in the factory is high developeraitound. This is

a consequence of the environments where the software ppa@ee carried out.
Programmer turnaround is a risk that needs to be minimizexhynsoftware de-
velopment company and the impacts of this have to be mitigdtea university

environment, this is part of normal life. We employ studeaggprogrammers dur-
ing their studies. Some students can be employed for moredhe project, but
eventually they will graduate and leave the programmingnted few students

may continue as Ph.D. students or as part of a more permaregramming staff,

but this is more the exception than the norm.

Other common challenges in Gaudi have come from the chaisiie of an aca-
demic research environment: product requirements wete gfien underspecified
and highly volatile and the developer turnaround was higfftwére is also often
built in the context of a research project to validate and aestrate promising



but immature research ideas. Once it is functional, thevso# creates a feedback
loop for the researchers. If the researchers make good usesdeedback, they
will improve and refine their research work and thereforeytwill need to update
the software to include their improved ideas. In this cofjtthe better a piece of
research software fulfills its goal, the more changes willdzpiired in it.

Our approach to these challenges has been to base our sofivearess on agile
methods, in particular on Extreme Programming, and to diadarge develop-
ment project into a number of successive smaller projetts.ritain characteristics
behind agile methods and particularly XP fit into our framewfd 2] for empirical
software engineering. A central feature of XP is its simplid=irst of all, XP is
easy to learn. As we have seen in our first project [11], stisderthe program-
mers in Gaudi, learn XP quickly while doing what they likeogramming. The
ability to start a running project in a very short time is agsgreat advantage for
short time span university projects. That has been impbftaus since we really
do not want to spend too much time teaching the students. Wetavaet project
running as soon as possible. We simply have not seen othgibgites then agile
process methods. Agile methods can help us by providing éofegoftware pro-
cess that is easy to learn, keep the programmers focuse@ @natiuct and not on
the experiment and allow us to observe the results of thergnogpers as early as
possible.

2.3 Projects

Each project carried out in Gaudi should involve the devalept of (part of ) a
software system according to the specifications of a custttmaécommissions the
project. This is an important aspect in Gaudi: all developtrpeoject should have a
customer that defines the product to be built and pays foelgldpment. In some
cases, the system is developed from scratch, but often tieofthe project is to
develop additional features into an existing system.

The Gaudi factory was started as a pilot study [11] in the sanwh2001 with a
group of six programmers working on a single product (anioiat editor). The
study was carried out as a survey, while most of the subségtigties were case
studies. The following summer we introduced two other potsliand six more
programmers. The work continued with part-time employraeiiring the follow-
ing fall and spring. In the fourth cycle, in the summer of 2008re were five
parallel projects with five different products, each withitiedent focus but with
approximately the same settings. Altogether, we havearhout over 20 software
construction projects in Gaudi to this day. The applicadogas of the software
built in Gaudi are illustrated in Section 5.



3 Settings of the Gaudi Factory

In this section we describe the project settings and arraegés for Gaudi, as well

as the different roles and duties involved in a project. Heesent our approach on
how to set up the environment for empirical research in sai@vengineering. This

approach has required a large amount of resources andfitdtthas provided us

with unique opportunity to monitor and study software depehent in practice.

3.1 Project Roles

Traditionally, the division of labor in software developmédias been performed
based on the different phases of a water fall or sequentaiess: developers are
specialized into analysts, architects, designers andresh many agile methods,
personnelis split into only two main groups: technical depers and customers. In
Gaudi, we have found the need to also identify other categahiat are important
for carrying out the overall software development process.

Ateam in a Gaudi project usually consists of 6-7 people. Bawdents perform the
programmerstasks. A professor or senior researcher actstap enanagera PhD
student plays the role @oach and a researcher (a professor, post doctoral student
or a PhD student) plays the role otastomeror customer proxy

Developer Four undergraduate students are employed to perform thetagers’
tasks for each project. These students are usually thirdwtH year students ma-
joring in Computer Science or Computer Engineering. On avage about 45%
of the students in a project had participated earlier in Gaugjects. Having one
experienced student is important for a new team to take ¢neold code in con-
tinuation and maintenance (see Section 5) projects. Asdafytaearly 50 students
have worked in Gaudi as developers.

Coach and Tracker XP gives the following definition in [19] for the role of
the coach: "A role of the team for someone who watches thegsas a whole
and calls the team’s attention to impending problems or dppdies for improve-
ment”. In XP the traditional project management is dividatbitwo roles: the
coach and the tracker. Coaching is concerned with techeieadution of the pro-
cess, while tracking is about measurements and their validagainst project’s
estimates. Main responsibilities of the coach are to bdablai as a development
partner for new programmers, encourage refactoring, helgrammers with tech-
nical tasks, helping everybody else making decisions ampthaxthe process to



the upper-level management. The job of the tracker is tecbthe defined met-
rics, ensure that the team is aware of the measures and ren@rehrlier made
predictions.

In the Gaudi factory both roles of the coach and the trackeagurements are dis-
cussed in the section 3.4) are played by the same person, atBtént. The coach
is mostly needed by the team during the first weeks of a prdieistoften neces-
sary for the coach to spend a few hours with the developerklwegerforming the
tasks of the developers, especially when a completely nam takes over an old
project or in case of very inexperienced developers. Bet dfie first small release
the programming team becomes more autonomous and needsahel less and
less. At this point the coach becomes less concerned witbusatypes of technical
solutions and his or her main concern becomes the overalepsomonitoring and
execution, and the customer’s involvement.

Customer and Lead Developer Customer model is a key issue in an agile pro-
cess because all phases of a project require communicaitioth& customer. The
role of the customer in XP is to write and prioritize user &®y explain them for
the development team and to define and run acceptance tessftothe correct
functionality of the implemented stories. One of the mostidctive features of XP

is that the customer should work onsite, as a member of tine, iedhe same room
with the team and be 100% available for the team’s questib®s KP customer
should remain focused on understanding the needs whileahaapers concen-
trate on programming. An ongoing dialog between these riglesucial for the
success of the project [48].

3.2 Schedule and Resources

A characteristic of the Gaudi factory is that the developeesstudents. Finding
time to meet and work together is the most frequent probleranwkie consider
students as developers of a software project [60]. We haviEled this problem
by employing students full time for the whole project paythgm a normal salary
according to the university regulations. The scheduleHergrojects is defined by
the fact that the students are usually employed for the suranmig That is, we set
ourselves a strict three-month deadline: the product hias teleased by August 31
at latest. Developers work 40 hours a week, no overtime.elhave been a number
of projects during fall and spring, when the students worad-time (25-30 hours
a week), but such schedule better fits for maintenance pgsojec

A typical software project in Gaudi represents a total ¢fbdrone to two person-
years. This is also the usual size of a project that a singkeareher can find fi-
nancing for in a university setting per year. A project sife@pe person-year is



also a good base for a case study. It is large enough to yigidfisant results,
while it can be carried out in the relatively short period lofete calendar months
using a group of four students. In some cases we were dividagrojects in three
clear phases: training, programming and cleaning up [1d{.iB the majority of
the projects and later on as a rule, we rather divide our surpnagects into five
equal iterations. The first project meeting where all the ipers are introduced to
each other usually takes place in the middle of May.

The developers working with the same project have flexibteraormal daily work-
ing hours: 8:00 to 16:00 or 10:00 to 18:00. All of the develspa a project sit in
the same room arranged according to the advice given by B&tkThere is a big
table in the center with four computers for pair and solo praogning and other
tables against the walls for personal use. There is no atsg@parators or cubicles.
The room also has a bookshelf, a food table with a coffee makea white-board.
Another room with more white-boards used by the programfieenmieetings with
customers and for presentations. The programmers havedagisfied with the
room.

3.3 Training

Usually only a few of the developers are familiar with thelsoand techniques
we use in our projects. Therefore, we have to provide propening for them.
However, the projects are short so we can not spend much tmibeotraining.
We choose to give the developers short (1-4 hour) tutoriathe essentials of the
technologies that they are going to use. The purpose of thewgals is not to teach
a full programming language or a method, but to give a germratview of the
topic and provide references to the necessary literatueecoisider these tutorials
as an introduction to standaswbftware best practicesyhich are then employed
throughout the Gaudi factory. Besides general tutoriatsadh developers take, we
also provide tutorials on specific topics that may be needealy one project, and
which are taken only by the developers concerned.

Table 1 shows the complete set of tutorials for one of ourgutsj (FiPla [9]).
For the Gaudi customers we also give one tutorial which ieddXP for Gaudi
Customers”.

Developers also get some selected literature to study (alsrtechnical documen-
tation, books) after the tutorials. During the project,ythmave the possibility to
ask the project coach for help with the practical applicaté the techniques and
tools used in the project. Those developers who did notgipatie in our previ-

ous projects find these tutorials very helpful and their thenber and length is
sufficient.

The first week at the beginning of the project is also resefgettaining. During

10



Tutorial Numbers| Total hours

Eiffel and DBC 2

CVS

Extreme Programming

SFI

NN NN DA

Unit testing

oO|lRr|Rr |k |R

All tutorials together
Table 1
Tutorials

this time, the programmers do not get the actual developtasks, but they spend
time getting acquainted with the tools to be used during tlogept, writing their
own small programs or completing simple assignments giyethéir coach. Dur-
ing this phase the developers also need supervision androetpthe people in
charge of training and tutorials.

3.4 Metrics Collection and Evaluation

When properly collected, software metrics [25] help to ioye the software and
the software process in organizations. On the other hareslbould know exactly
what is the use of a particular metric and why it is collectebbar measurement
objectives driven by organizational business goals algwane the motivation to

measure, while the ad-hoc approach in most cases leads rigeaalaount of data
which is hard if possible to make use of. In mature organiretithe metrics col-

lection depends on the business goals of the organizatijnA&er the goals have
been identified, the focus is set on the metrics which areaaleto the business
goals. On the other hand, some organizations collect a Idiffefent metrics, but

have no strategy for its usage.

The first Gaudi project [11] explored the use of XP practices:objectives were
more or less to see whether we could produce software in tivergity settings
with inexperienced students. In the subsequent projeds,[®32], we concen-
trated on the establishment and maintenance of a lighthweigftware process.
Under these settings, we needed concrete quantitativeagial of the methods un-
der study. We established an experimental supervision atdacollection frame-
work in order to measure the impact of different developnpeattices in a project.
The complete description of our measurement framework issare for a separate
paper, but in this section we outline its main principlese Btarting point for our
measurements was the Goal Question Metric (GQM) approathaid Quality
Improvement Paradigm [15,17] (QIP).

11



QIP combines the evolutionary and revolutionary experit@leaspects of the sci-
entific method, tailored to the study of software, i.e., tegedopment of complex
systems that need to have models built and evolved to aidraieratanding of the
artifact. It involves the understanding as well as the evahary and revolutionary
improvement of software. The steps of the QIP are:

e Characterizehe current project and its environment.

e Setthe quantifiable goals for successful project performamncei@provement.

e Choosehe appropriate process model and supporting methods alsdfto this
project.

e Executehe processes, construct the products, collect and valilatprescribed
data, and analyze it to provide real-time feedback for @bitre action.

e Analyzethe data to evaluate the current practices, determine gmafylrecord
findings, and make recommendations for future project imgmeents.

e Packagethe experience in the form of updated and refined models amet ot
forms of structured knowledge gained from this and priojguts and save it in
an experience base for future projects.

GQM is based upon the assumption that for an organizatioresare in a mean-
ingful way it must first specify the goals for itself and itsoprcts, then it must
trace those goals to the data that are intended to define tjoade operationally,
and finally provide a framework for interpreting the datahwigéspect to the stated
goals [14]. Exemplar goals for the Gaudi factory dFecus on writing code and
tests”, "Improve customer’s interaction and process transparefaycustomer’,
"Improve customer’s satisfaction’etc. More of the goals can be found in [9,32],
for example. We have chosen an incremental approach to defimaetrics frame-
work. The idea behind it is to take the very basic and simpl&ioss define them
and their collection mechanisms and use it as a standarelged in Gaudi. This
framework is extended with more metrics as needed.

Besides stating the goals and defining the metrics to reaaipaals and data collec-
tion mechanisms, we will also describe the feedback meshaniThese feedback
mechanisms are basically describing what one should dothétkata.

Another type of data we collect in Gaudi is qualitative. Dgrthe project devel-
opers are asked to keep a shared log of their personal fegérpgerience and any-
thing else which in their opinion concerns the project. Iditidn, at the last day
of work, each programmer gets a list with many questions eonieg the projects.
Customers are also asked to keep a free-form diary wherestimyld write down
all activities they performed in their project and time sidenit. Finally, if we need
more qualitative data, we interview developers and custemker the project has
finished.

It is important to identify the person in charge of collegtithe defined metrics.
One of the requirements for the success of a metric prograrmonmsnitment. Re-

12



sponsibility for the metrics program should be assignegéziic individuals [29].
Furthermore, the commitment of this person should alsotadkshed. In our case,
we found that the best person for this work is a project codome measurements
such as unit test coverage and personal time tracking shmulssigned to de-
velopers. But a Gaudi developer should not be responsiblinéomeasurements
because this data has to deal with the process improvemdngxgerimenting,
while we want to keep our developers focused on the softweay build and not
on the research they make a part of.

4 Development Practices and Impact in Experimentation

Agile methods provide good results when used in small ptej@ith undefined and
volatile requirements. We started building the softwarecpss of Gaudi factory
with just a few basic practices from XP, evaluating them aratigally including
more and more practices into the Gaudi process. After tryiriga new practice in
Gaudi we evaluated it and then, depending on the resulte@uiuation, it either
became a standard part of the Gaudi process, was abandoneat keft for later
re-implementation, adaptation and re-evaluation. Tali®the agile practices we
have had experience in Gaudi.

Adopted Under Evaluation Abandoned

No overtime, pair programming, 100% unit test cov{ Daily stand up meet-
code standards, unit testing, refdcerage, tests writtemings, CRC cards or
toring, collective code ownership,before the code, onsitesimilar, score of ac-
continuous integration, automatedtustomer, release ceptance tests pub-
tests and daily builds, coach agplanning, project| lished

project manager, user stories, shoselocity = measured
iteration, iteration planning, spikesystem metaphor
solutions, lightweight documenta
tion, customer proxy, time estima
tions

Table 2
Process Practices in Gaudi Software Factory

The set of adopted practices evolved from the set of practiceler evaluation.
We started the first Gaudi project [11] with the simplified XBgess including the
following practices: pair programming, collective coderesship, continuous in-
tegration, refactoring, unit testing, short term planing amall releases. We chose
particularly these practices because in our opinion it Wa®hly possibility to start
with. We saw them as a minimum which we require in order toastesoftware in
three months, yet we saw them as all we needed and could hantliat point.
After the project was over, the basic process for Gaudi wiabkshed, therefore

13



we could start improving our process with the introductibmore agile practices
which seemed necessary.

Software process improvement was one of the drivers forrttreduction of new
practices. For example, we saw that in the early projectseee®d more customer-
team interaction — so we brought in the onsite customer [8\véVer, our goal was
not to follow the existing practices blindly. The fact thaila methods worked for
us did not mean that it was not possible to improve existirtpggactices. First,
we were trying to implement a practice as it was originallfirte in literature
and test it in the Gaudi environment. After the data on theaithpf the practice
was obtained and analyzed we were searching the ways to ddsractice in
our environment in order to get the maximum benefit with maicost out of it.
An example of such an adaptation is the evolution of the erwistomer into the
customer proxy [32].

Table 3 shows percentage of activities performed by deeetoput of total project
effort. The first four rows show data for the projects of Sumg@93, the remaining
two for Summer 2004. All activities were performed in thedi projects, but the
amount of time for some projects and activities was insigaift, therefore some
values in the table are zeros.

Activity Deve | FiPla| MED | U3D || SCS| CRL
Programming and Unit Testing 19 39 48 39 34 56
Refactoring 0 9 7 13 4 6
Debugging 7 14 15 19 19 14
Integration 0 0 1 1 1 0
Design 1 6 4 8 3 7
Meetings 5 1 1 1 4 2
Research 33 6 3 4 11 3
Planning game 0 2 3 0 1 0
With Customer 0 2 0 0 7 0
Miscellaneous 31 21 18 15 9 9

Table 3
Developers’ activities %

While improving the Gaudi process by introducing new or madg the existing
agile practices we saw that in order to find a balance betwgiityamaintainabil-
ity and reliability we needed other methods and techniqusemething outside
the agile world. Particularly architectural design andutoentation practices are
neglected by agile processes, yet we could see that thesécpsawould benefit
the Gaudi factory. Therefore, we established project aodymt documentation as

14



an important practice of the Gaudi process. Reliance orcoramunication in ag-
ile world could not be used in our environment for the produotbe developed
over a number of summer projects with high developer tuwnnago Artifacts de-
scribing the software architecture, design and productualaare as important as
the source code and should be created and maintained dhangole life of the
project. Stepwise Feature Introduction [8] provides a $enapchitecture that goes
well with the agile approach of constructing software inrsiteration cycles.

In the rest of this section we will briefly introduce the coragtices of the Gaudi
process. For the readers’ convenience we group the praatideur categories:

¢ Requirements managemeRequirements management in XP is performed by
the person carrying out the customer role. The requirenastpresented in the
form of user stories. The practices considered here are@estModel and User
Stories.

e Planning The most fundamental issues to be decided in XP project ast w
functionality should be implemented and when it should bgl@mented. In or-
der to deal with these issues, we need the planning game ayatlangechanism
for time estimations. The practices considered here ar@ldrening Game and
Time Estimations.

e Engineering Engineering practices include the day-to-day practicepleyed
by the programmers in order to implement the user storiesihd final working
system. The practices considered here are Pair ProgramBatfigctoring, Col-
lective Code Ownership, Unit Testing, Design by Contract Stepwise Feature
Introduction.

e Asset managemenAny nontrivial software project will create many artifact
which will evolve during the project. In XP, those artifaet®e added in the cen-
tral repository and updated as soon as possible. Each teamenés not only al-
lowed, but encouraged to change any artifact in the repysitbe practices con-
sidered here are Configuration Management, Continuougrhtien and Docu-
mentation.

The goal of this paper is to introduce the Gaudi environmesttthe evaluation of
the practices which is an issue for a separate paper. Thigsested can read about
particular practice evaluation in [8,9,10,32].

4.1 Requirements management

Customer Model The role of the customer in XP is to write and prioritize user
stories, explain them for the development team and defineuandcceptance tests
to verify the correct functionality of the implemented sésr One of the most dis-
tinctive features of XP is that the customer should work nsis a member of
the team, in the same room with the team and be 100% availabkbé team’s

15



guestions. The XP customer practice appears to be achiexgalent results, but
it also appears to be unsustainable [46].

An active customer is also a great boost for the team morsitheaGaudi program-
mers noticed?It would be more motivating to develop software that somebody is
actually going to use. The customer could have been moreeaaind at least
pretend to be interested in the producThe XP customer practice appears to be
achieving excellent results, but it also appears to be tasizble [46]. Among the
20 Gaudi projects, there was a real onsite customer onlyamouject [9]. Before
this the customers involvement was minimal and it was in th&tére Driven De-
velopment [55] style: the offsite customer wrote requiraisdor the application,
then the coach transformed these requirements into pradgairements. After
that the coach compiled the list of features based on theugtadquirements, and
the features were given to the developers as programmikg.tas

Being an onsite customer does not increase the customakdeaal very much [9]
and has a number of benefits such as: improved communicatarebn customers
and the programming team, decreased number of false featndefeature misses,
etc. But despite the well-known benefits of an onsite custpthis model is hard
to implement in practice [24,41,40,65] due to the lack of outment or the high
value of the customer. Yet, without sufficient developarstomer interaction it
becomes very hard to cope with changing requirements ewergththat is one of
the main goals of agile software development [31].

In one of our case studies [32] we showed how the mentiondalgares were tack-
led with the effective use of austomer representativer a customer proxylin
our experience, customer feedback with the customer reptatsve model works
at least as well as with the onsite customer [32]. Bringing ¢hstomer closer to
the development process is important for keeping the prajedrack even with
changing requirements. Iterations, the heart beat oftgggrovide only a short
time to influence things. Project time competes with theamust’s restricted and
valuable time. We believe that the involvement of a customeresentative can be
the required piece in making needed software functionalitgertainty and time
resources meet. Truly active customer interaction enaigiisy.

Table 4 shows how the Gaudi customer’s time was spent ongbriggues. Ap-

parently, being an onsite customer does not increase thensass work load very

much. One might even wonder whether an onsite presencdlismeaessary based
on these figures. However, the feedback from the developteant shows that an
onsite customer is very helpful even though the customaepgsitiwas rather sel-
dom needed. The developers’ suggestion about involvinguk®mer more in the
team’s work could also be implemented by seating the customthe same room
with the programmers. The feeling was that there could haenbnore sponta-
neous questions and comments between the developers angtbmer if she had
been in the same room. The second row in the table 4, SCS, shewata for

16



Available | Writing stories| With team| Testing| Idle
FiPla 100 2.5 3 25 92
SCS 71 5 9 20 37

Table 4
Customer involvement (%)

the project of summer 2004 where we did not have an onsit@uest but used a
customer representative or so-calgstomer proxyThe difference between these
two customer models were that in the SCS project the custoepeesentative did
not commit himself to be always available to the team and deioto make deci-
sions he had to consult the actual customer who was basafédite. In both cases
all customer-team communications were face-to-face, mags, no phone discus-
sions. It is essential to have an active customer or custemggresentative [32] in
a project when the customer model itself is not a subjectferdase study. This
allows us to keep the developers focused on the productheaesearch and not
be disturbed by the experimental nature of project.

User Stories Customer requirements in XP projects are presented in the ¢b
user stories. User stories are written by the customer ayddbscribe the required
functionality from a user’s point of view, in about three t@rCces of text in the
customers terminology without using technical jargon 8, Beck [19] provides
additional recommendation for stories: they should alstushe such information
as the title, date, status and a short description of whatiskee should be able to
do after the story was finished. The time needed to implenhendtories should be
estimable and they must make sense to the programmers.

In the Gaudi factory we do not require customers to have cet@mustomer or
product specification for the software to be build. Howewes,do expect our cus-
tomer to write stories, either themselves or via their repngatives. The most com-
prehensive written instructions are formulated as cust@togies which followed
the guidelines given by the XP practice. The division of thedpict’s features into
the stories is made by the customer based on an intuitiveadeat what mean-
ingful chunks the system could be divided into. A typical gesson year project
normally has 15-25 user stories. The stories can also beethét rof joint work
between the customer and the coach. While most of the stargewritten before
the project or in the beginning of it, customers still bringnnstories throughout
the project’s time and delete or change existing stories.

In many projects, product or component requirements an@septed in the form
of tasks written by programmers. Tasks contain a lot of tectletails, and often
also describe what classes and methods are required tonmapte concrete story.
A story normally produces 3-4 tasks. When a story is splib itatsks, the tasks
are linked aslependenciesf the story, and the story becomgspendenbn tasks.

17



When we used paper stories, we just attached the tasks tostbeies. This is
done in order to ensure the bidirectional traceability afuieements. Moreover,
it is possible to trace each story or task to the source cogéementing it. It is
essential that each story makes sense for the developeitsisedtimable.

We have used both paper stories and stories written into abasbd task manage-
ment system. An advantage of paper stories is their siniypli©in the other hand,
the task management system allows its users to modify theeetsnof stories, add
comments, track the effort, attach files (i.e. tests or degdaruments) etc. Itis also
more suitable when we have a remote or offsite customere@thyrwe are only
using the task management system and do not have any papes sticall.

4.2 Planning

Planning Game and Small Iterations The planning games the XP planning
process [19]: business gets to specify what the system neelts while develop-
ment specifies how much each feature costs and what budgetiiakde per day,
week or month. XP talks about two types of planning: by scopkley time. Plan-
ning by time is used to choose the stories to be implemenaétgrthan taking all
of them and negotiating about a release date and resourbeasged (planning by
scope).

The time and people resources are fixed in a Gaudi projecsctiedule is usually
three months and there are only four programmers avail@blerefore we do re-
lease planning by time. Because the developers (and ofterttad customer) lack
experience, the coach usually selects the stories for thiestwort iteration. The
selection is based on two factors: selected stories shaithplemented in two
weeks maximum and those stories should have the highesttyribhe process
also teaches the customer how to create good stories — afteraéing the stories
the coach often asks the customer to rewrite them in orderaduce smaller and
better estimable stories. The coach also asks the custanverite tests or test-
ing scenarios based on the stories. After the coach and gternar decide on the
functionality for the first two weeks, the team and the coadhtagether split the

stories into technical tasks and then the developers wplement the tasks. No
time estimations are done at this point. By the time the fiesation functionality

is implemented, the team is better acquainted with the progring language and
the product, so they are in a better position to provide tist@rations.

Each new iteration starts with the customer selecting tbeest from the project
plan that should be implemented in the next release. Thdamwent team and the
customer meet in the beginning of each iteration to disdwesteatures to be imple-
mented. Since the customer stories usually do not providedetailed guidelines
for the desired features, the development team and thernastweed to discuss in

18



order to clarify open issues and provide more precise reqents. These meetings
usually take about an hour. During these meetings, some diitte is used to make
sure the team understands the application logic corréb#yrest of the discussions
often concern aspects of the user interface. There areatiypio/e iterations in a
usual summer Gaudi project.

Time Estimations The XP release planning meeting is based on the idea that
the development team estimates each user story in termseaf plogramming
weeks [19]. An ideal week is how long a programmer imaginesgoitild take to
implement a story and its tests if he or she had absolutelyimptlse to do.

We have two estimation phases in the Gaudi process. The liasegs when the
team estimated all of the stories in ideal programming dagsrzeeks. These esti-
mations are not very precise and they are improved in thenskeestimation phase
when the team splits stories into tasks. When programmétsgpies into techni-
cal tasks they make use of their previous programming expeei and try to think
of the stories in terms of the programs they have alreadyemriiThis makes sense
for the programmers and makes the estimating process éasthem.

The estimated time for a tagi,sk is the number of hours it will take one program-
mer to write the code and the unit tests for it. These estonatare done by the
same programmers that are signed up for the tasks, i.e.getiserpwho estimates
the task will later implement it. This improves the precrsaf the estimations. Es-
timated timeEsory for a storystory split into number of taskgask ; is twice the
sum of all its task estimations:

Estory =2 Z Etaslgj
J

The sum is doubled to reserved the time for refactoring armigiging. This is
the estimation of a story for solo programming. In case of peagramming we
need to take the Nosek’s [53] principle into consideratiwvro programmers will
implement two tasks in pair 60 percent slower than two progreers implementing
the same tasks separately with solo programmiFige story estimation for pair
programming case in Gaudi is:

S
Estory = 3 z Etask_,—
J

Similarly, to get the estimation for an iteration we have tmnsthe estimations
of all stories the iteration consists of. Project estimatiall be the sum of all its

iteration estimations. XP-style project estimation isfus® plan the next one or
two iterations in the project, but they can seldom be usedtimate the calendar
length or resources needed in a project.

19



Task Management As we already mentioned, we have abandoned user stories
written on paper. We are using a web-based issue trackirigmyfer user stories,
tasks and bug report. The issues on a web-based system aasyat® dnandle as

the paper stories or tasks. This becomes especially obwidhen it comes to the
modification of the stories, or attaching e.g. design doaumer test reports to
them. Electronic issues also have a number of advantages edmpared to the
paper cards.

With an issue tracking system projects become more traespss the customer
and the coach. It allows the customer to work offsite. Eaeltebnic issue can be
linked to the source code in the repository. They can alstadothe user documen-
tation (see Section 4.4). Also such a system makes it easeailect some of the
metrics such as defect rate, deviation from the schedusomer’s and develop-
ers’ productivity, to mention a few. Currently, we are ushBA [43] as a standard
issue tracking system in Gaudi.

4.3 Engineering

Pair Programming Pair programming is a programming technique in which two
programmers work together at one computer on the same t@kKI[lee program-
mer who types is called a driver, the other programmer idallnavigator. While
the driver works tactically, the navigator works stratedjic looking for misspells
and errors and thinking about the overall structure of thaeec@ll code in XP is
written in pairs. Productivity is assumed to follow the Nk'sgorinciple. Pair pro-
gramming has many significant benefits: better detailedydg®n XP the design
is performed on the fly), shorter program code and better aomication between
team members. Also, many common programming mistakes aghtas they are
being typed, etc [21]. As it has been frequently reporteqd2,89,50,68], pair pro-
gramming also has a great educational aspect. Programeaensfiom each other
while working in pairs. This is especially interesting inraontext since in the
same project we can have students with very different progrmg experience.

In our first projects we were enforcing developers to alwagskvin pairs, later on

when we had some experienced developers in the projectsaveetige developers
the right to choose when to work in pair and when to work sokhl@ 5 shows the
percentage of the pair-solo work in the three projects ofraem2003 and two of
summer 2004, the first number indicates the percentage ofvoak. In the 2003

projects pair programming was not enforced, but recomnenabile in summer

2004 two months were pair programming and one month soloe®ieelit up to the

programmer whether to work in pairs while debugging or refiang.

20



FiPla | MED | U3D || SCS | CRL

Programming| 79/21 | 88/12 | 84/16 | 62/38 | 60/40
Refactoring | 77/23| 85/15| 76/24 | 49/51 | 62/38
Debugging 27/73| 84/16 | 86/14 | 74/26 | 51/49

Table 5
Pair vs. solo %

Unit Testing Unit testing is defined as testing of individual hardwareadtvgare
units or groups of related units [54]. In XP, unit testingamafto tests written by the
same developer as the production code. According to XPpdk enust have unit
tests and the tests should be written before the actual ddeetests must use a
unit test framework to be able to create automated unit tetss

Learning to write tests was relatively easy for most devetepThe most diffi-

cult practice to adopt was the "write test first” approachr ®xperience shows
that if the coach spends time together with the programmeisng tests himself

and writing the tests before the code, the programming teantirwes this testing
practice also without the coach. Some supervision is, hewesquired, especially
during the first weeks of work. The tutorial about unit tegtiocused at the test
driven development before the project is also essentia.iffiplementation of the
testing practice also depends on the nature of the progragtask. Our experi-
ence showed that the "write test first” approach worked omiyée situation where
the first programming tasks had no GUI involved because GUdéas hard to test
automatically.

Refactoring The most popular definitions for refactoring is given by FemjR7]:
"Refactoring is the process of changing a software systesugh a way that it
does not alter the external behavior of the code, yet imgrdsenternal structure”.
XP promotes refactoring throughout the entire projectdyele to save time and
increase quality [57] by removing redundancy, eliminatimgised functionality,
rejuvenating obsolete designs. This practice togethdr pair programming also
promotes collective code ownership, where no one persoms tivencode and may
become a bottleneck for changes . Instead, every team membecouraged to
contribute to all parts of the project.

4.4 Asset Management

Continuous Integration According to XP, developers should integrate code into
the code repository every few hours, whenever possiblejraady case changes
should never be kept for more than a day. In this way XP prejdetect early
compatibility problems, or even avoid them altogether, andure that everyone

21



works with the latest version. Only one pair should integi@ta time. Due to the
small size (four to six programmers) of the development eamGaudi, we do
not use a special computer for integration, neither do weemese of integration
tokens. When a pair needs to integrate its code, the progeasnfrom this pair
simply inform their colleagues and ask them to wait with tlmiegration until the
first pair checks in the integrated code. The number of ddick-ins varies, but
there is at least one check-in every day. In many cases attegiis just a matter of
few seconds.

All code produced in the Gaudi Software Factory, as well laestls, are developed
under a version control system. The source code reposioajso an important
source of data for analyzing the progress of the projeatesati revisions are stored
there together with a record of the responsible person atedathal time for check-
in. It is important to be able to trace every check-in to cetertasks and user
stories [6]. For this purpose programmers add the identidicaf the relevant task
or story to commit log. The identification is the unique ID bétstory or task in
the task management system (SourceForge or JIRA). The texecep when the
programmers refactor or debug existing code, it is then kiarg (or impossible) to
trace this activity to a concrete task or story. Thereforeckkins after refactoring
or debugging are linked to the "General Refactoring and Qging” task.

Documentation There are two types of documentation produced in Gaudk soft
ware documentation or source code documentation and usemsmtation or man-
uals. Since our intention has been the continuation of samjegis with new de-
velopment teams, the practice of documenting the source kad been in Gaudi
from the very first project. The programmers were adding demntation strings
to each class and method. In Python there are comments loua apecial lan-
guage statement for documentation which then are procéssta PyDoc(simi-
lar to JavaDog tool which produces e.g. HTML documentation for the codee T
approach of the self-documenting code goes well with theicoous refactoring
discussed before because the code and its documentatiamalable for the de-
veloper’s reference and updates at the same place, and thle ddcumentation
of the system, e.g. in HTML, is always kept up to date by sintglying "nake
doc” command. In the case of Eiffel, sufficient up-to-date saiftevdocumentation
is provided in the form of pre- and post-conditions and clagariants [9].

User documentation received special attention in Gaudh@®xpertise areas of
project’s customer and coach started differ, e.g. a projith developed an ap-
plication in information systems, a tool for financial benmdrking using self-
organizing maps [62]. The fact that the built software wdugdused by people out-
side the Gaudi factory and the laboratory influenced our grgwterest in the user
documentation. The idea behind the documentation prosehs following: when
a story is implemented, the pair or single programmer whdempented it should
also write the user documentation for the story. The docuatem is written di-

22



rectly on the story (issue on JIRA system) or in a text file tedan the project’s
repository. This file is divided into sections, where eaattiea corresponds to an
implemented story. If the stories are on a web-based taslagement system, the
documentation is written directly in the stories — this slifigs the bidirectional
traceability for stories and their documentation, and si&geping the documenta-
tion up-to-date. Later on the complete user documentatitirbescompiled from
the stories’ documentation. Documenting a user story ichigrephrasing it, and
it takes an average of 30 minutes to do it. In order to enswateeidch of the stories
is documented, the customer closes a story (accepts itemgpitation) only after
it has been documented.

These approaches allow us to embed the software and theagendntation into
the development process. The documentation for the newapess is provided
by the self-documenting code, while the bidirectional ¢auility of the stories
and user documentation makes it easy to update the cormisgaiocumentation
whenever the functionality changes. The documentatiomeies from one of the
Gaudi projects can be found in [10].

5 Experiences from Gaudi

In the previous sections we have presented the environraeatipirical software

engineering research — Gaudi Software Factory and the atdrgrfor Software

Construction. We have described the settings for the Gaoitliv&re Factory and
presented the software process which has been used in oyepj2@ts during a
period of five years in the factory. In this section we woukelto discuss some of
the overall experiences obtained from the Gaudi environmen

Past Projects The application areas of the software built in Gaudi areequatr-
ied. Examples of produced software are: an editor for magtieal derivations,
software construction and modeling tools, 3D model aniomata personal finan-
cial planner, financial benchmarking of organizations, éiwoad-hoc network
router, digital TV middleware, and so on.

Table 6 lists 20 projects in the Gaudi factory. The effortadleproject is given in
person-months (PM) and the size of produced software sigweés in thousands
of lines of code (KLOC). We distinguish between four typepuadjects:

e NEW: New software project where a software product is built fracratch.
Usually most of the tools, methods and experimental teclesicselected for
such a project have already given positive feedback in ptesvGaudi projects.
Only few new methods can be investigated.

23



e CNT: Continuation of an existing software project, where a newettlgmment
team takes over the code of an existing software product.riEfmeteam usu-
ally consists of 50-75% of programmers without previousezignce with the
software or even without any previous experience in GauditeMof the new
experimental methods can be used for such projects.

e MNT: Maintenance project where the old team takes care of thetemgince
of the existing software. Some minor functionality can bdetito the product,
but the main software goal is maintenance. Only a few new austltan be
investigated.

e EXP: Technology exploration project where the software goalosta build a
product for a customer, but to explore specific softwarertetdgy, such as a
new programming language or technique, or CASE tool. Thesggs often
involve the use of COTS or open source libraries, etc.

Since there is no software goal as such for the technologipeatipn projects, we
do not list the lines of code produced in them.

All software in Gaudi was built in time and on budget. We hawanaged to deliver
the desired software for its customers in time among all taadb project which
had clear goals for the software to be build. The softwardyets reach their func-
tional level that is set at the end of the overall planningquefor the projects.
This does not only concern the projects with well-definedunegnents, but also
the projects with very high requirement uncertainties [E{amples of this soft-
ware are: Coral Modeling Framework [5], Software ConstarciWorkbench [7],
MathEdit — an Editor for Mathematical Derivations [13], Do — a tool for fi-
nancial benchmarking with self organizing maps [62] and 8SCG- an Editor for
Refinement Diagrams [8].

We introduce refactoring right after the first short itevatand promote it through-
out the whole project. Pair programming, continuous reidcg, collective code
ownership, and the layered architecture make the code peddu the Gaudi fac-
tory simpler and easier to read, and hence more maintai@blaentioned before,
larger products are developed in a series of three-montjsgts and not necessar-
ily by the same developers. To ensure that a new team that talex the project
gets to understand the code quickly, we usually composestre tvith one or two
developers who have experience with the product from a pusvoroject, the rest
of the team being new to the product. In this way new devekpan take over
the old code and start contributing to the different parthefproduct faster. When
the team is completely new, the coach will help the deve®petake over the old
code.

Agile Methods Support our Experimental Setup As overall conclusions of our
experiences is that agile methods provide good results wked in small projects
with undefined and volatile requirements. Agile methodshaany known limita-

24



Year | Project| Effort, PM | Type | Size, KLOC
Summer 01| EXE 18 NEW 4.7
Summer 02 SCW 12 NEW 18.6

MTR 3 EXP -

MED 12 NEW 14.8

SMW 12 CNT 36.1

Spring 03| SCW 6 MNT 20.5
SMW 6 MNT 45.6

MED 6 MNT 20.3
Summer 03] FPL 12 NEW 11.1
u3D 12 NEW -

MED 12 CNT 31.6

WLN 12 EXP -

DVE 12 EXP -

Summer 04 NS2 18 EXP -
CRL 12 NEW 11.8

SCS 12 NEW 10.0

Fall05| SCS 6 CNT 13.2
DOM 8 NEW 7.4
Summer 05 SCS 12 CNT 10.5
CRL 12 CNT 28.9

Total 215 160.3

Table 6
Software projects in Gaudi, 2001-2005

tions such as difficulties to scale up to large teams, rediamcoral communication
and a focus on functional requirements that dismisses tperiance of reliability

and safety aspects. However, when projects are of relgptsreéll size and are not
safety critical, agile methods will enable us to reliablyaob results in a short time.

The fact that agile methods worked for us does not mean timat isossible to im-

prove existing agile practices. Our first recommendatiahasarchitectural design
should be an established practice. We have never observeddaagchitecture to
"emerge” from a project. The architecture has been eithsigded a priory at the
beginning of a project or a posteriori, when the design wasffioult to understand

that a complete rethinking was needed.

25



Also, we established project and product documentatiomasiportant task. XP

reliance on oral communication should not be used in enwmemts with high de-

veloper turnaround. Artifacts describing the softwardndecture, design and prod-
uct manual are as important as the source code and shoul@édedrand main-

tained during the whole life of the project.

Tension between Development and ResearchFinally, we want to note that dur-
ing these five years we have observed a certain tension bethveedevelopment of
software and the research of software development. We re/priojects that pro-
duced good products to customer satisfaction but were deresi bad case studies
since it was not possible to collect all the desired data eliable way. Also, there
have been successful case studies that produced softveateathnever been used
by its customer.

To detect and avoid these situations a well-defined measnteinamework should
be in place during the development phase of a project butadlepthe project has
been completed to monitor how the products are being uselddydustomers.

6 Conclusions

The software engineering discipline studies how to builddasoftware systems
that fulfill the user’s requirements, are reliable and arestmcted on time and
within budget. This includes the study of many different ogpts and techniques
used in software development: software process modelselngdotations, pro-

gramming languages and methods, testing and validatiategies, CASE tools.
Various methods such as surveys, case studies and formaliegnts have been
proven to be useful for empirical software engineering. Eesy, most software
engineering research has been following a research-taasfér methodology due
to the lack of the proper environment which reflects the retirgys of the industry

and yet allows researches to have control over the softwaeps.

In this paper we have presented Gaudi, our approach to eslpieisearch in soft-
ware engineering based on the development of small softpraducts in a con-

trolled environments. This approach requires a large amofuresources and ef-
fort but provides a unique opportunity to monitor and studfpvgare development
in practice. And at the same time it allows us to produce ramable and quality

software for its customers — researchers. The Gaudi fastaried in 2001 and has
carried out 20 projects during a period of five years reprasgran effort of 30

person-years in total. This work has been measured and shésef these mea-
surements are being used to create the so called Gaudi pr@rese this process
is completely defined it can be used to assess new softwairgeemnigng techniques,
methods and tools. We believe that other universities asehreh units can benefit

26



from us in their research in empirical software engineebggreating a factory-
laboratory environment similar to our Gaudi settings.

The software which has been built in Gaudi environment plesithe validity of
Gaudi as a factory for software construction. All softwar&audi was built in time
and on budget. We have managed to deliver the desired seffaaits customers
in time among all the Gaudi project which had clear goals fierdoftware to be
build. The software products reach their functional leiektis set at the end of the
overall planning period for the projects. This does not ardycern the projects
with well-defined requirements, but also the projects wigyvhigh requirement
uncertainties.

Another evidence for the validity of our research is its bee our environment.

We are not just improving or inventing software engineemnmgthods, but we are
"using our own medicine” — implementing our finding into thaythe software is
built in Gaudi factory. Here the evidence is satisfied custoand software delivery
in time when there are large requirement uncertainties +esudt of the customer
proxy application, those successful products which werk bsing the Stepwise
Feature Introduction methodology, etc.

6.1 Limitations and Future Work

A good working software factory would need to have a permasiaff of software
developers who would built up the competence of the faciM.see the biggest
limitation of our work in the competence build-up. People #re greatest assets
in software organizations because they represent intedecapital [61]. However,
we are not able to keep these valuable assets because Geeidpaes are students
who will eventually graduate and leave, and the fundingaistitucture for employ-
ing permanent staff in order to build the competence is mgg3iVe could use this
limitation as an advantage and investigate new softwardadstwithin the high
turnaround factor, but this would seriously limit the speot of our research. And
even a greater threat for us could be a high turnaround ofetbearches involved
in Gaudi as coaches and project managers. The Gaudi factesyagile process
with much reliance on oral communication which perhaps @¢dnd mitigated by
the means of documentation and standardization. Yet it céean whether docu-
ments and standards would actually help and will a heavibudwented process be
still flexible and agile.

We see our future work in Gaudi in moving towards formal ekpents. We do not
think we should abandon other investigation techniquasieys and case studies.
We have collected enough of valuable data for retrospestivdies and we can
foresee that case studies will be the most reasonable appfmasome of the fu-
ture software projects in Gaudi. A case study is also the fikady technique for

27



future collaboration of Gaudi with the industry. Nevertsa, formal experiments
will become especially useful for us as the Gaudi procesarhedaefined and the
number of tools, methods and practices used became seislsitiiation formal
experimentation will be the best way to consider altermatools, methods and
practices. Formal experiments would also provide us wittihwhe data on gen-
eralizability of our experience which would be critical fibre experience transfer
outside Gaudi.

References

[1] ASU Software Factory. http://softwarefactory.aswed

[2] Extreme Programming: A gentle introduction website. li@:m at:
http://lwww.extremeprogramming.org/.

[3] Encyclopedia of Software Engineeringplume 1, chapter The Experience Factory,
pages 469-476. John Wiley & Sons, Inc., 1994.

[4] Pekka Abrahamsson. Extreme Programming: First Redutm a Controlled
Study. InProceedings of the 29th EUROMICRO Conference "New Wavegstef
Architecture”. IEEE, 2003.

[5] Marcus Alanen and Ivan Porres. The Coral Modelling Fraork. In Johan Lilius
Kai Koskimies, Ludwik Kuzniarz and Ivan Porres, editoBpceedings of the 2nd
Nordic Workshop on the Unified Modeling Language NWUML'20@4mber 35 in
TUCS General Publications. TUCS Turku Centre for Computéerie, Jul 2004.

[6] UIf Asklund, Lars Bendix, and Torbjorn Ekman. Softwarer@iguration Management
Practices for eXtreme Programming Teams. Froceedings of the 11th Nordic
Workshop on Programming and Software Development Tools Berhniques
NWPER’'2004August 2004.

[7] Ralph Back, Dag Bjorklund, Johan Lilius, Luka Milovanoand Ivan Porres. A
workbench to experiment on new model engineering apptinati In Perdita Stevens,
Jon Whittle, and Grady Booch, editoksML 2003 - The Unified Modeling Language
volume 2863 oLNCS San Francisco , CA, USA, Oct 2003.

[8] Ralph-Johan Back, Johannes Eriksson, and Luka Milovaksing stepwise feature
introduction in practice: An experience report. RIhSE pages 2—-17, 2005.

[9] Ralph-Johan Back, Piia Hirkman, and Luka Milovanov. Exing the XP Customer
Model and Design by Contract. Proceedings of the 30th EUROMICRO Conference
IEEE Computer Society, 2004.

[10] Ralph-Johan Back, Luka Milovanov, and Ivan Porres. t8afe Development and
Experimentation in an Academic Environment: The Gaudi Expee. Technical
Report 641, TUCS, 2004.

28



[11] Ralph-Johan Back, Luka Milovanov, Ivan Porres, and r®ioPreoteasa. An
Experiment on Extreme Programming and Stepwise Featuradinttion. Technical
Report 451, TUCS, 2002.

[12] Ralph-Johan Back, Luka Milovanov, Ivan Porres, andrdid®reoteasa. XP as a
Framework for Practical Software Engineering Experimerits Proceedings of the
Third International Conference on eXtreme Programming &wille Processes in
Software Engineering - XP200pRlay 2002.

[13] Ralph-Johan Back and Magnus Myreen. Tool support foranant based
programming. InAPSEC '05: Proceedings of the 12th Asia-Pacific Software
Engineering Conference (APSEC’0ppges 711-718, Washington, DC, USA, 2005.
IEEE Computer Society.

[14] Victor Basili, Gianluigi Caldiera, and Dieter Rombacihe Goal Question Metric
Approach. Encyclopedia of Software Engineeridghn Wiley and Sons, 1994.

[15] Victor R. Basili. Quantitative Evaluation of Softwakngineering Methodology. In
Proceedings of the First Pan Pacific Computer Conferencelb®dene, Australia
September 1985.

[16] Victor R. Basili, Frank E. McGarry, Rose Pajerski, andiMn V. Zelkowitz. Lessons
learned from 25 years of process improvement: The Rise afidoFéthe NASA
Software Engineering Laboratory. IBEE Computer Society and ACM International
Conference on Software Engineering (ICSE 20023y 2002.

[17] Victor R. Basili and H. Dieter Rombach. The TAME Proje€bwards Improvement-
Oriented Software Environment$EEE Trans. on Software Engineerinty(6):758—
773, June 1988.

[18] Kent Beck. Embracing Change with Extreme Programm@gmputey 32(10):70-73,
October 1999.

[19] Kent Beck. Extreme Programming Explained: Embrace Changeddison-Wesley,
1999.

[20] Joseph Chao. Balancing hands-on and research agivifi graduate level agile
software development course.Rnoceedings of Agile 2005 Conference, July, Marriott
Denver City Center2005.

[21] Alistair Cockburn and Laurie Williams. The Costs andiBéts of Pair Programming.
In Proceedings of eXtreme Programming and Flexible ProcedseSoftware
Engineering XP200Q000.

[22] L. L. ConstantineConstantine on Peoplewar&nglewood Cliffs: Prentice Hall, 1995.

[23] Ko Dooms and Roope Kylmakoski. Comprehensive docuatemt made agile —
experiments with rapid7 in philips. Rroceedings of the 6th International Conference
on Product Focused Software Process Improvement - PROF&S Zulu, Finland
2005.

[24] C. Farell, R. Narang, S. Kapitan, and H. Webber. Towaadseffective onsite
customer practice. IRroceedings of the Third International Conference on exXge
Programming and Agile Processes in Software Engineering2002 May 2002.

29



[25] Norman E. Fenton. Software Metrics: A Rigorous and Practical Approach
International Thomson Computer Press, Boston, MA, USAB199

[26] Thomas Flohr and Thorsten Schneider. An xp experimettt students - setup and
problems. InProceedings of the 6th International Conference on Prodwciused
Software Process Improvement - PROFES 2005, Oulu, Finl2oeb.

[27] Martin Fowler. Refactoring: Improving the Design of Existing CodeObject
Technology Series. Addison-Wesley, 1999.

[28] Robert Gittins and Sian Hope. A study of Human SolutionsXtreme Programming.
In Proceedings of 13th Workshop of the Psychology of Prograiginiterest Group —
PPIG, Bournemouth UKApril 2001.

[29] Tracy Hall and Norman Fenton. Implementing effectiodtware metrics programs.
IEEE Softw. 14(2):55-65, 1997.

[30] Gorel Hedin, Lars Bendix, and Boris Magnusson. Intrtidg software engineering by
means of Extreme Programming. IBSE '03: Proceedings of the 25th International
Conference on Software Engineerjinfashington, DC, USA, 2003. IEEE Computer
Society.

[31] Jim Highsmith and Alistair Cockburn. Agile softwarevééopment: The business of
innovation. Computey 34(9):120-122, 2001.

[32] Piia Hirkman and Luka Milovanov. Introducing a Custaniepresentative to High
Requirement Uncertainties. A Case Study. Rroceedings of the International
Conference on Agile Manufacturing005.

[33] M. Holcombe, M. Gheorghe, and F. Macias. Teaching xprial: Some initial
observations and plans; proceedings xp2001; sardinid,.200

[34] Hanna Hulkko and Pekka Abrahamsson. A multiple casgystun the impact of pair
programming on product quality. IC€SE '05: Proceedings of the 27th international
conference on Software engineeriféew York, NY, USA, 2005. ACM Press.

[35] Sylvia llieva, Penko Ivanov, and Eliza Stefanova. Asals of an Agile Methodology
Implementation.  InProceedings of the 30th EUROMICRO ConferenteEE
Computer Society, 2004.

[36] Sadahiro Isoda and Motoshi Saeki. Software engingennasia. IEEE Software
11(6):63-68, 1994.

[37] Andreas Jedlitschka, Dirk Hamann, Thomas Goéhlert, astlid Schroder. Adapting
PROFES for Use in an Agile Process: An Industry ExperiengeoRe In PROFES
2005.

[38] Ron Jeffries, Ann Anderson, and Chet HendricksBrtreme Programming Installed
Addison-Wesley, 2001.

[39] David H. Johnson and James Caristi. Extreme Progragara the Software Design
Course. InProceedings of XP Univers2001.

30



[40] Mikko Korkala. Extreme Programming: Introducing a Reégments Management
Process for an Offsite Customer. Department of Informafwocessing Science
research papers series A, University of Oulu, 2004.

[41] Mikko Korkala and Pekka Abrahamsson. Extreme ProgramgmReassessing the
Requirements Management Process for an Offsite CustomerPrdceedings of
the European Software Process Improvement Conference BBR2004 Springer
Verlag LNCS Series, 2004.

[42] Noel F LeJeune. Teaching software engineering pregtidth extreme programming.
J. Comput. Small Coll21(3):107-117, 2006.

[43] Atlassian Software Systems Pty Ltd. JIRA — bug trackisgue tracking and project
management software. http://www.atlassian.com/sotjiea/, 2007.

[44] Daniel Lubke and Kurt Schneider. Agile hour: Teachimqmskills to students and it
professionals. IiProceedings of the 6th International Conference on Pro#focused
Software Process Improvement - PROFES 2005, Oulu, Fin2o@b.

[45] Katiuscia Mannaro, Marco Melis, and Michele Marchedtmpirical Analysis on
the Satisfaction of IT Employees Comparing XP Practicesh viither Software
Development Methodologies. Irbth International Conference on Extreme
Programming and Agile Processes in Software Engineering®—2804, Garmisch-
Partenkirchen, Germanyune 2004.

[46] Angela Martin, Robert Biddle, and James Noble. The XBtGmer Role in Practice:
Three Studies. IR\gile Development Conferenc2004.

[47] Angela Martin, James Noble, and Robert Biddle. BeingeJMalkovich: A Look
Into the World of an XP Customer. ldth International Conference on Extreme
Programming and Agile Processes in Software Engineering 2003, Genova, Italy
May 2003.

[48] Robert C. Martin. eXtreme Programming Developmenttigh Dialog.I[EEE Softw,
17(4):12-13, 2000.

[49] Grigori Melnik and Frank Maurer. Introducing Agile Mwaids in Learning
Environments: Lessons Learned. Third XP and Second Agile Universe Conference
on Extreme Programming and Agile Methods — XP/Agile Uniyeksigust 2003.

[50] Mathias M. Mdller and Walter F. Tichy. Case study: Extee programming in
a university environment. IrProceedings of the 23rd Conference on Software
Engineering IEEE Computer Society, 2001.

[51] Roger A. Miller. Extreme programming in a universityjarct. In5th International
Conference on Extreme Programming and Agile Processesfiw&e Engineering —
XP 2004, Garmisch-Partenkirchen, Germagg04.

[52] Orlando Murru, Roberto Deias, and Giampiero Mugheddéssessing XP at a
European Internet CompanNeEE Softw, 20(3):37-43, 2003.

[53] J.T. Nosek. The Case for Collaborative Programmi@gmmunications of the ACM
41(3):105-108, 1998.

31



[54] Institute of Electrical and Electronics Engineers.IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glasea New York, 1990.

[55] Stephen R. Palmer and John M. Felsingd Practicel Guide to Feature-Driven
DevelopmentThe Coad Series. Prentice Hall PTR, 2002.

[56] Colin Potts. Software-engineering research revisitEEE Software10(5):19-28.

[57] D. B. Roberts.Practical Analysis of RefactoringPhD thesis, University of lllinois
at Urbana-Champaign, 1999.

[58] Bernhard Rumpe and Astrid Schroder. Quantitative eyian extreme programming
projects. InThird International Conference on Extreme Programming &tekible
Processes in Software Engineering, XP2002, May 26g2@es 95-100, Alghero,
Italy, 2002.

[59] Outi Salo and Pekka Abrahamsson. Evaluation of Agilév@&re Development: The
Controlled Case Study approach. Rroceedings of the 5th International Conference
on Product Focused Software Process Improvement PROFES 3@@inger Verlag
LNCS Series, 2004.

[60] Dean Sanders.  Student Perceptions of the SuitabilityExtreme and Pair
Programming. IProceedings of XP Univers@001.

[61] lan Sommerville Software Engineering (7th EditionPearson Addison Wesley, 2004.

[62] Patrik Stahl, Tomas Eklund, Franck Tétard, and BartaokB A cooperative usability
evaluation of the domino software. Technical Report 775CBJJun 2006.

[63] Matt Stephens and Doug Rosenber@xtreme programming refactored: the case
against XP Apress L.P., 2003.

[64] CMMI Team. Capability Maturity Model Integration, \V&@pon 1.1, CMMI for Systems
Engineering, Software Engineering, Integrated Product Rrocess Development,
and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1), Contins Representation,
CMU/SEI-2002-TR-011, ESC-TR-2002-011, March 2002.

[65] Nathan Wallace, Peter Bailey, and Neil Ashworth. Manggxp with multiple or
remote customers. IRroceedings of the Third International Conference on eXtre
Programming and Agile Processes in Software Engineering2002 May 2002.

[66] Laurie Williams and Robert KessldPair Programming llluminatedAddison-Wesley
Longman Publishing Co., Inc., 2002.

[67] Laurie Williams, Robert R. Kessler, Ward CunninghammdaRon Jeffries.
Strengthening the case for pair programmitigEE Softw. 17(4):19-25, 2000.

[68] Laurie A. Williams and Robert R. Kessler. Experimeqgtiwith Industry’'s Pair-
Programming Model in the Computer Science Classroodaurnal on Software
Engineering EducationDecember 2000.

32



