
Software Development and Experimentation in an
Academic Environment: The Gaudí Factory

Ralph-Johan Back and Luka Milovanov and Ivan Porres∗

Åbo Akademi University Department of Information Technologies
Turku Centre for Computer Science (TUCS)

Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland

Abstract

In this article, we describe an approach to empirical software engineering based on a com-
bined software factory and software laboratory. The software factory develops software
required by an external customer while the software laboratory monitors and improves the
processes and methods used in the factory. We have used this approach during a period of
five years to define and evaluate an agile software process. This process combines prac-
tices from Extreme Programming with architectural design and improved documentation
in order to find a balance between agility, maintainability and reliability.

Key words: Agile Methods, Empirical Software Engineering, Case Studies

1 Introduction

One of the main challenges in software engineering researchis the experimen-
tal and empirical validation of new software development languages, methods and
tools. Like in any other discipline, it is important to test and evaluate if new and ex-
isting advances in software engineering provide the expected benefits when applied
in practice. We consider this validation process is very weak and often neglected
by both researchers and industrial practitioners. This means that good languages,
tools and methods are not adopted fast enough and that bad approaches linger on
longer than they should.

Therefore, we consider that there is needed is a stronger emphasis on empirical and
experimental software engineering, where the new tools andmethods are tried out

∗ Corresponding author.
Email addresses:lmilovan@abo.fi, http://www.it.abo.fi/ (Ralph-Johan

Back and Luka Milovanov and Ivan Porres).

Preprint submitted to Elsevier April 5, 2007



in case studies and controlled experiments, and the resultsgained from these are
carefully analyzed. The problem is how to perform this research in a way that is
cost effective and efficient.

Doing experiments in the industry is difficult. Software is nowadays built under
severe time and resource constraints and is often critical to the success of the com-
pany as a whole. Experimenting with new methods is risky and therefore it is often
avoided. In many cases, it is almost impossible to perform significant studies in an
industrial setting. A company can rarely afford to develop the same product twice
by the same team but using two different methods, and then compare the resulting
products and the performance of the team. Software researchers can have access to
industrial software construction processes, observing and measuring them, but they
usually cannot influence the way the projects are carried outto any larger degree.
In other words, researchers do not have control over the software processes and
methods that used in the industry.

Further on, most software engineering research has been following a research-then-
transfer methodology [56]. In this way, the research and theapplication of the re-
search in the industry are considered as separate, sequential activities. The problem
with this approach is that the researchers working in the software engineering re-
search units even in close collaboration with the industry do not have the control
over industrial projects. Software experiments can be carried out in an academic
environment, but the setting there is usually not very realistic. Software is built by
inexperienced students using more or less ad hoc processes,and the penalties for
schedule slips or unsatisfactory quality are usually low. Maintaining larger software
systems is very difficult in an academic environment becausethe students turnover
is high.

First, a synthetic development project arranged by a researcher does not reflect the
conditions and constraints found in an actual software development project. This
happens especially if there is no actual need for the software to be developed. Re-
searcher have limited funds, and therefore it is necessary to optimize the costs of
the experiments, therefore university experiments must beperformed by students.
Although students are not necessarily less capable of thesetasks than employed
software developers, they must, however, be trained. In addition to this, their pro-
gramming experience and motivation in the project may vary considerably. Another
problem may be that during their curricula, students are taught more theoretical as-
pects of Computer Science rather than practical issues of software engineering [36].
Added to these difficulties there is also the high turnover rate as students graduate
and leave the project. Finally, although there is no market pressure, a researcher
often has very limited resources and therefore it is not always possible to conduct
large experiments or case studies.

On the other hand, university researchers do not have any pressure to release new
software products to the market or even being economically profitable to their em-

2



ployer. In this sense, a university setting can be an ideal place to perform experi-
ments and practical case studies and test new ideas in software engineering. How-
ever, university researchers also meet with difficulties when experimenting with
new software development ideas in practice. Performing an experiment in collab-
oration with the industry using newly untested software development methods can
be risky for the industrial partner but also for the researcher, since the project can
fail due to factors that cannot be controlled by the researcher. The obvious alterna-
tive is to run a software development project inside a research center or university
in a more controlled environment. Still, this approach has some important short-
comings, including the lack of clear vision and requirements for the system to be
build and difficulties to fund the developers.

These shortcomings disappear if the software built in an research project is an ac-
tual software product that is needed by one or more customersthat will define the
product requirements and will bear the cost of developing the product. In our case,
we have found such customer in our own environment: other researchers that need
scientific software to be built to demonstrate and validate their research work. This
software does not necessarily need to be related to our research in software pro-
cesses.

In this paper we describe our experiences using this approach: how we created
our own software production unit – theGaudí Software Factoryin the university
settings. The purpose of the factory is to provide us with a realistic environment
where we can empirically study software development in practice while building
software for other research projects. Our experience is based on different case stud-
ies conducted since the years 2001. The objective of these case studies was to find
and document software best practices in a software process that focus on product
quality and project agility.

This paper is structured as follows: in Section 2 we present the Gaudí Software
Factory and the Laboratory for Software Construction – our environment for em-
pirical software engineering. The settings of the softwarefactory – a sandbox for
empirical investigation are described in Section 3. We present the typical setting for
software project and illustrate the application areas of the software built in Gaudí
in Section 5. The software process used in Gaudí is discussedin Section 4, while
Section 5 summarizes our observations from agile experience in Gaudí. Our con-
clusions are presented in Section 6.

1.1 Related Work

There has been active of research on different aspects of agile methods. First of all,
agile methods and especially XP have been criticized for thelack of concrete evi-
dence of success [4], or in general [63], but they also have been gaining popularity

3



both in Industry and Academia. There are many papers published on different as-
pects of agile methods, i.e. in industrial [23,35,37,52,58] case studies. An industrial
survey can help us to determine the performance of a completely defined process
such as XP, but it cannot be used to study the effects of different development prac-
tices quantitatively, since the researchers cannot monitor the project in full details.

In various academic [4,26,34,51] case studies the researchers can monitor the pro-
jects in full details and determine the performance of XP quantitatively. But in
many cases the environment of the projects which is created in academic settings
does not reflect the reality, e.g. there is no real customer who needs the software,
as opposed to Gaudí, where the software is going to be used by its customers.
Other papers are concerned with evaluation of different agile practices: onsite cus-
tomer [46,47], pair programming [53], refactoring [57] or what is the significance
of the practices combination [67]. There is research on teaching of agile practices
where the educational value of agile methods is studied [20,30,42,44,49], research
on human aspects of agile processes [28,45], and finally papers on combining soft-
ware research with software development in e.g. NASA SEL [16] and Energi at
VTT Technical Research Centre of Finland.

The Industry-driven Experimental Software Engineering Initiative [59] (ENERGI)
is an environment in VTT Oulu, which was originally targetedto evaluate and im-
prove agile methods proposed by other researchers in the field. In contrast, our
intention was not only to evaluate existing agile practicesbut also to propose new
practices that we think will improve the overall software process. The Software
Factory at the Arizona State Universitygathers student programmers, in a common
facility where a professional software engineer mentors and manages them. As a re-
sult, researchers of non-computing disciplines receive well-designed, documented
and tested software, and students receive experience working in a professional soft-
ware development organization[1]. However, it looks like with such great poten-
tial for the research in software engineering, the ASU Factory seems to lack the
research part, as we did not manage to find any scientific papertelling otherwise.

Another example is University of Sheffield in UK. This university has an initia-
tive called the Software Hut [33] where students undertake projects for external
clients in this imitative several student teams produce thesame product for a client
and the client selects the best implementation. There is also a student run software
house Genesys, that provides software products for external clients. Similarly, the
Software Hut and Genesys have been used by the Sheffield staffto evaluate agile
methods.

4



2 Gaudí and its Working Principles

Gaudí aims at developing and testing new software development methods in a real-
istic setting. We are interested in the time, cost, quality,and quantitative aspects of
developing software, and study these issues in a series of case studies. We focus on
lightweight or agile software processes. Similarly to the EF model thatoffers an or-
ganizational structure that separates the product development focus from the learn-
ing and reuse focus, collects data and packages the experience for further reuse, in
our approach, we made a clear separation between the software construction and
the research units, which work together in a very close relationship. These units
are the Gaudí Software Factory and the Laboratory for Software Construction. To-
gether they present a research environment that results in realistic and empirically
valid evidence of different aspects of software engineering methods.

Gaudí is a research project which is related to theExperience Factory[3] (EF) ap-
proach. TheExperience Factory[3] (EF) approach promotes organizational learn-
ing in such a way that the organization manages and learns from its own experience.
In this approach the organization observes and collects data about itself, creates
conclusions based on this data and packages the experience for further reuse. Fi-
nally, and most importantly, the organization feeds these experience packages back
to itself to share them inside and outside the organization.An example of such an
approach is the NASA GSFC Software Engineering Laboratory [16].

2.1 Software Factory

Gaudí Software Factoryis a part of CREST at Åbo Akademi University, which is
a research center focusing at the construction of reliable software. CREST consist
of four laboratories: Embedded Systems (ES), Distributed Systems (DS), Software
Construction (SC) and Mechanized Reasoning (MR). The GaudíSoftware Factory
was built as a central resource for constructing software for these laboratories. Later
Gaudí was also used to build software for research outside CREST.

The goal of the Gaudí factory is to produce software for the needs of various re-
search projects in our university. Software is built in the factory according to the
requirements given by the project stakeholders. These stakeholders also provide the
resources required to carry out the project. A characteristic of the factory is that the
developers are students. However, programming in Gaudí is not a part of their stud-
ies, and the students get no credits for participating in Gaudí – they are employed
and paid a normal salary according to the university regulations. We emphasize to
the Gaudí software developers that the purpose of their workis to produce working
software using the specified software process, methods and tools. Our intention is
to keep the programmers occupied with the constructing of the software, and to be

5



mindful that our research does not disturb them in any way. This seems to work out
well: in most cases the developers reported that they did notfeel they were involved
in a research project, or they said that the experimental nature of the project did not
disturb their day-to-day routine.

2.2 Software Laboratory

TheLaboratory for Software Constructionaims at developing and testing new soft-
ware development methods in a realistic setting. We are interested in the time, cost,
quality, and quantitative aspects of developing software,and study these issues in
a series of case studies run in the Gaudí factory. The goal of the Software Con-
struction Laboratory in collaboration with Gaudí factory is to investigate, evaluate
and improve the software development process used in the factory. The factory is
in charge of the software product, while the laboratory is incharge of the software
process. The laboratory supplies the factory with tasks, resources and new methods,
while the factory provides the laboratory with the feedbackin the form of software
and experience results. The laboratory staff is composed ofresearchers and doctoral
students working in the area of software engineering.

The laboratory uses the Gaudí factory as a sandbox for software process improve-
ment and development. Software projects in the factory are run as a series of mon-
itored and controlled case studies. The settings of those projects including tools,
methods, techniques and a software process are defined a priori by the labora-
tory. Based on these case studies we have defined a standard collection of practices
which has proved to be successful in these case studies. Nevertheless, we always
consider possibilities to improve and extend our standard framework with new set-
tings in future research projects. We call these settingssoftware best practicesas
they focus on product quality and project agility.

One of the main challenges in the factory is high developer turnaround. This is
a consequence of the environments where the software projects are carried out.
Programmer turnaround is a risk that needs to be minimized inany software de-
velopment company and the impacts of this have to be mitigated. In a university
environment, this is part of normal life. We employ studentsas programmers dur-
ing their studies. Some students can be employed for more then one project, but
eventually they will graduate and leave the programming team. A few students
may continue as Ph.D. students or as part of a more permanent programming staff,
but this is more the exception than the norm.

Other common challenges in Gaudí have come from the characteristics of an aca-
demic research environment: product requirements were quite often underspecified
and highly volatile and the developer turnaround was high. Software is also often
built in the context of a research project to validate and demonstrate promising

6



but immature research ideas. Once it is functional, the software creates a feedback
loop for the researchers. If the researchers make good use ofthis feedback, they
will improve and refine their research work and therefore, they will need to update
the software to include their improved ideas. In this context, the better a piece of
research software fulfills its goal, the more changes will berequired in it.

Our approach to these challenges has been to base our software process on agile
methods, in particular on Extreme Programming, and to divide a large develop-
ment project into a number of successive smaller projects. The main characteristics
behind agile methods and particularly XP fit into our framework [12] for empirical
software engineering. A central feature of XP is its simplicity. First of all, XP is
easy to learn. As we have seen in our first project [11], students – the program-
mers in Gaudí, learn XP quickly while doing what they like: programming. The
ability to start a running project in a very short time is alsoa great advantage for
short time span university projects. That has been important for us since we really
do not want to spend too much time teaching the students. We want to get project
running as soon as possible. We simply have not seen other possibilities then agile
process methods. Agile methods can help us by providing a flexible software pro-
cess that is easy to learn, keep the programmers focused on the product and not on
the experiment and allow us to observe the results of the programmers as early as
possible.

2.3 Projects

Each project carried out in Gaudí should involve the development of (part of ) a
software system according to the specifications of a customer that commissions the
project. This is an important aspect in Gaudí: all development project should have a
customer that defines the product to be built and pays for its development. In some
cases, the system is developed from scratch, but often the goal of the project is to
develop additional features into an existing system.

The Gaudí factory was started as a pilot study [11] in the summer of 2001 with a
group of six programmers working on a single product (an outlining editor). The
study was carried out as a survey, while most of the subsequent studies were case
studies. The following summer we introduced two other products and six more
programmers. The work continued with part-time employments during the follow-
ing fall and spring. In the fourth cycle, in the summer of 2003, there were five
parallel projects with five different products, each with a different focus but with
approximately the same settings. Altogether, we have carried out over 20 software
construction projects in Gaudí to this day. The applicationareas of the software
built in Gaudí are illustrated in Section 5.

7



3 Settings of the Gaudí Factory

In this section we describe the project settings and arrangements for Gaudí, as well
as the different roles and duties involved in a project. Herepresent our approach on
how to set up the environment for empirical research in software engineering. This
approach has required a large amount of resources and effortbut it has provided us
with unique opportunity to monitor and study software development in practice.

3.1 Project Roles

Traditionally, the division of labor in software development has been performed
based on the different phases of a water fall or sequential process: developers are
specialized into analysts, architects, designers and testers. In many agile methods,
personnel is split into only two main groups: technical developers and customers. In
Gaudí, we have found the need to also identify other categories that are important
for carrying out the overall software development process.

A team in a Gaudí project usually consists of 6-7 people. Fourstudents perform the
programmers’tasks. A professor or senior researcher acts as atop manager, a PhD
student plays the role ofcoach, and a researcher (a professor, post doctoral student
or a PhD student) plays the role of acustomeror customer proxy.

Developer Four undergraduate students are employed to perform the developers’
tasks for each project. These students are usually third or fourth year students ma-
joring in Computer Science or Computer Engineering. On an average about 45%
of the students in a project had participated earlier in Gaudí projects. Having one
experienced student is important for a new team to take over the old code in con-
tinuation and maintenance (see Section 5) projects. As of today, nearly 50 students
have worked in Gaudí as developers.

Coach and Tracker XP gives the following definition in [19] for the role of
the coach: ”A role of the team for someone who watches the process as a whole
and calls the team’s attention to impending problems or opportunities for improve-
ment”. In XP the traditional project management is divided into two roles: the
coach and the tracker. Coaching is concerned with technicalexecution of the pro-
cess, while tracking is about measurements and their validation against project’s
estimates. Main responsibilities of the coach are to be available as a development
partner for new programmers, encourage refactoring, help programmers with tech-
nical tasks, helping everybody else making decisions and explain the process to

8



the upper-level management. The job of the tracker is to collect the defined met-
rics, ensure that the team is aware of the measures and remindthe earlier made
predictions.

In the Gaudí factory both roles of the coach and the tracker (measurements are dis-
cussed in the section 3.4) are played by the same person, a PhDstudent. The coach
is mostly needed by the team during the first weeks of a project. It is often neces-
sary for the coach to spend a few hours with the developers weekly, performing the
tasks of the developers, especially when a completely new team takes over an old
project or in case of very inexperienced developers. But after the first small release
the programming team becomes more autonomous and needs their coach less and
less. At this point the coach becomes less concerned with various types of technical
solutions and his or her main concern becomes the overall process monitoring and
execution, and the customer’s involvement.

Customer and Lead Developer Customer model is a key issue in an agile pro-
cess because all phases of a project require communication with the customer. The
role of the customer in XP is to write and prioritize user stories, explain them for
the development team and to define and run acceptance tests toverify the correct
functionality of the implemented stories. One of the most distinctive features of XP
is that the customer should work onsite, as a member of the team, in the same room
with the team and be 100% available for the team’s questions [18]. XP customer
should remain focused on understanding the needs while the developers concen-
trate on programming. An ongoing dialog between these rolesis crucial for the
success of the project [48].

3.2 Schedule and Resources

A characteristic of the Gaudí factory is that the developersare students. Finding
time to meet and work together is the most frequent problem when we consider
students as developers of a software project [60]. We have avoided this problem
by employing students full time for the whole project payingthem a normal salary
according to the university regulations. The schedule for the projects is defined by
the fact that the students are usually employed for the summer only. That is, we set
ourselves a strict three-month deadline: the product has tobe released by August 31
at latest. Developers work 40 hours a week, no overtime. There have been a number
of projects during fall and spring, when the students workedpart-time (25-30 hours
a week), but such schedule better fits for maintenance projects.

A typical software project in Gaudí represents a total effort of one to two person-
years. This is also the usual size of a project that a single researcher can find fi-
nancing for in a university setting per year. A project size of one person-year is

9



also a good base for a case study. It is large enough to yield significant results,
while it can be carried out in the relatively short period of three calendar months
using a group of four students. In some cases we were dividingthe projects in three
clear phases: training, programming and cleaning up [11]. But in the majority of
the projects and later on as a rule, we rather divide our summer projects into five
equal iterations. The first project meeting where all the members are introduced to
each other usually takes place in the middle of May.

The developers working with the same project have flexible and normal daily work-
ing hours: 8:00 to 16:00 or 10:00 to 18:00. All of the developers in a project sit in
the same room arranged according to the advice given by Beck [19]. There is a big
table in the center with four computers for pair and solo programming and other
tables against the walls for personal use. There is no vertical separators or cubicles.
The room also has a bookshelf, a food table with a coffee makerand a white-board.
Another room with more white-boards used by the programmersfor meetings with
customers and for presentations. The programmers have beensatisfied with the
room.

3.3 Training

Usually only a few of the developers are familiar with the tools and techniques
we use in our projects. Therefore, we have to provide proper training for them.
However, the projects are short so we can not spend much time on the training.
We choose to give the developers short (1-4 hour) tutorials on the essentials of the
technologies that they are going to use. The purpose of thesetutorials is not to teach
a full programming language or a method, but to give a generaloverview of the
topic and provide references to the necessary literature. We consider these tutorials
as an introduction to standardsoftware best practices,which are then employed
throughout the Gaudí factory. Besides general tutorials that all developers take, we
also provide tutorials on specific topics that may be needed in only one project, and
which are taken only by the developers concerned.

Table 1 shows the complete set of tutorials for one of our projects (FiPla [9]).
For the Gaudí customers we also give one tutorial which is called ”XP for Gaudí
Customers”.

Developers also get some selected literature to study (manuals, technical documen-
tation, books) after the tutorials. During the project, they have the possibility to
ask the project coach for help with the practical application of the techniques and
tools used in the project. Those developers who did not participate in our previ-
ous projects find these tutorials very helpful and their the number and length is
sufficient.

The first week at the beginning of the project is also reservedfor training. During

10



Tutorial Numbers Total hours

Eiffel and DBC 2 4

CVS 1 2

Extreme Programming 1 2

SFI 1 2

Unit testing 1 2

All tutorials together 6 12
Table 1
Tutorials

this time, the programmers do not get the actual developmenttasks, but they spend
time getting acquainted with the tools to be used during the project, writing their
own small programs or completing simple assignments given by their coach. Dur-
ing this phase the developers also need supervision and helpfrom the people in
charge of training and tutorials.

3.4 Metrics Collection and Evaluation

When properly collected, software metrics [25] help to improve the software and
the software process in organizations. On the other hand, one should know exactly
what is the use of a particular metric and why it is collected.Clear measurement
objectives driven by organizational business goals also improve the motivation to
measure, while the ad-hoc approach in most cases leads to a large amount of data
which is hard if possible to make use of. In mature organizations the metrics col-
lection depends on the business goals of the organization [64]. After the goals have
been identified, the focus is set on the metrics which are relevant to the business
goals. On the other hand, some organizations collect a lot ofdifferent metrics, but
have no strategy for its usage.

The first Gaudí project [11] explored the use of XP practices:our objectives were
more or less to see whether we could produce software in the university settings
with inexperienced students. In the subsequent projects, e.g. [9,32], we concen-
trated on the establishment and maintenance of a light-weight software process.
Under these settings, we needed concrete quantitative evaluation of the methods un-
der study. We established an experimental supervision and metric collection frame-
work in order to measure the impact of different developmentpractices in a project.
The complete description of our measurement framework is anissue for a separate
paper, but in this section we outline its main principles. The starting point for our
measurements was the Goal Question Metric (GQM) approach [14] and Quality
Improvement Paradigm [15,17] (QIP).

11



QIP combines the evolutionary and revolutionary experimental aspects of the sci-
entific method, tailored to the study of software, i.e., the development of complex
systems that need to have models built and evolved to aid our understanding of the
artifact. It involves the understanding as well as the evolutionary and revolutionary
improvement of software. The steps of the QIP are:

• Characterizethe current project and its environment.
• Setthe quantifiable goals for successful project performance and improvement.
• Choosethe appropriate process model and supporting methods and tools for this

project.
• Executethe processes, construct the products, collect and validate the prescribed

data, and analyze it to provide real-time feedback for corrective action.
• Analyzethe data to evaluate the current practices, determine problems, record

findings, and make recommendations for future project improvements.
• Packagethe experience in the form of updated and refined models and other

forms of structured knowledge gained from this and prior projects and save it in
an experience base for future projects.

GQM is based upon the assumption that for an organization to measure in a mean-
ingful way it must first specify the goals for itself and its projects, then it must
trace those goals to the data that are intended to define thosegoals operationally,
and finally provide a framework for interpreting the data with respect to the stated
goals [14]. Exemplar goals for the Gaudí factory are:”Focus on writing code and
tests”, ”Improve customer’s interaction and process transparencyfor customer”,
”Improve customer’s satisfaction”, etc. More of the goals can be found in [9,32],
for example. We have chosen an incremental approach to defineour metrics frame-
work. The idea behind it is to take the very basic and simple metrics, define them
and their collection mechanisms and use it as a standard guidelines in Gaudí. This
framework is extended with more metrics as needed.

Besides stating the goals and defining the metrics to reach the goals and data collec-
tion mechanisms, we will also describe the feedback mechanisms. These feedback
mechanisms are basically describing what one should do withthe data.

Another type of data we collect in Gaudí is qualitative. During the project devel-
opers are asked to keep a shared log of their personal feelings, experience and any-
thing else which in their opinion concerns the project. In addition, at the last day
of work, each programmer gets a list with many questions concerning the projects.
Customers are also asked to keep a free-form diary where theyshould write down
all activities they performed in their project and time spent for it. Finally, if we need
more qualitative data, we interview developers and customers after the project has
finished.

It is important to identify the person in charge of collecting the defined metrics.
One of the requirements for the success of a metric program iscommitment. Re-

12



sponsibility for the metrics program should be assigned to specific individuals [29].
Furthermore, the commitment of this person should also be established. In our case,
we found that the best person for this work is a project coach.Some measurements
such as unit test coverage and personal time tracking shouldbe assigned to de-
velopers. But a Gaudí developer should not be responsible for the measurements
because this data has to deal with the process improvement and experimenting,
while we want to keep our developers focused on the software they build and not
on the research they make a part of.

4 Development Practices and Impact in Experimentation

Agile methods provide good results when used in small projects with undefined and
volatile requirements. We started building the software process of Gaudí factory
with just a few basic practices from XP, evaluating them and gradually including
more and more practices into the Gaudí process. After tryingout a new practice in
Gaudí we evaluated it and then, depending on the results of the evaluation, it either
became a standard part of the Gaudí process, was abandoned, or was left for later
re-implementation, adaptation and re-evaluation. Table 2lists the agile practices we
have had experience in Gaudí.

Adopted Under Evaluation Abandoned

No overtime, pair programming,
code standards, unit testing, refac-
toring, collective code ownership,
continuous integration, automated
tests and daily builds, coach as
project manager, user stories, short
iteration, iteration planning, spike
solutions, lightweight documenta-
tion, customer proxy, time estima-
tions

100% unit test cov-
erage, tests written
before the code, onsite
customer, release
planning, project
velocity measured,
system metaphor

Daily stand up meet-
ings, CRC cards or
similar, score of ac-
ceptance tests pub-
lished

Table 2
Process Practices in Gaudí Software Factory

The set of adopted practices evolved from the set of practices under evaluation.
We started the first Gaudí project [11] with the simplified XP process including the
following practices: pair programming, collective code ownership, continuous in-
tegration, refactoring, unit testing, short term planing and small releases. We chose
particularly these practices because in our opinion it was the only possibility to start
with. We saw them as a minimum which we require in order to release software in
three months, yet we saw them as all we needed and could handleat that point.
After the project was over, the basic process for Gaudí was established, therefore

13



we could start improving our process with the introduction of more agile practices
which seemed necessary.

Software process improvement was one of the drivers for the introduction of new
practices. For example, we saw that in the early projects we needed more customer-
team interaction – so we brought in the onsite customer [9]. However, our goal was
not to follow the existing practices blindly. The fact that agile methods worked for
us did not mean that it was not possible to improve existing agile practices. First,
we were trying to implement a practice as it was originally defined in literature
and test it in the Gaudí environment. After the data on the impact of the practice
was obtained and analyzed we were searching the ways to adoptthis practice in
our environment in order to get the maximum benefit with minimal cost out of it.
An example of such an adaptation is the evolution of the onsite customer into the
customer proxy [32].

Table 3 shows percentage of activities performed by developers out of total project
effort. The first four rows show data for the projects of Summer 2003, the remaining
two for Summer 2004. All activities were performed in the listed projects, but the
amount of time for some projects and activities was insignificant, therefore some
values in the table are zeros.

Activity Deve FiPla MED U3D SCS CRL

Programming and Unit Testing 19 39 48 39 34 56

Refactoring 0 9 7 13 4 6

Debugging 7 14 15 19 19 14

Integration 0 0 1 1 1 0

Design 1 6 4 8 3 7

Meetings 5 1 1 1 4 2

Research 33 6 3 4 11 3

Planning game 0 2 3 0 1 0

With Customer 0 2 0 0 7 0

Miscellaneous 31 21 18 15 9 9
Table 3
Developers’ activities %

While improving the Gaudí process by introducing new or modifying the existing
agile practices we saw that in order to find a balance between agility, maintainabil-
ity and reliability we needed other methods and techniques –something outside
the agile world. Particularly architectural design and documentation practices are
neglected by agile processes, yet we could see that these practices would benefit
the Gaudí factory. Therefore, we established project and product documentation as

14



an important practice of the Gaudí process. Reliance on oralcommunication in ag-
ile world could not be used in our environment for the products to be developed
over a number of summer projects with high developer turnaround. Artifacts de-
scribing the software architecture, design and product manual are as important as
the source code and should be created and maintained during the whole life of the
project. Stepwise Feature Introduction [8] provides a simple architecture that goes
well with the agile approach of constructing software in short iteration cycles.

In the rest of this section we will briefly introduce the core practices of the Gaudí
process. For the readers’ convenience we group the practices in four categories:

• Requirements management. Requirements management in XP is performed by
the person carrying out the customer role. The requirementsare presented in the
form of user stories. The practices considered here are Customer Model and User
Stories.

• Planning. The most fundamental issues to be decided in XP project are what
functionality should be implemented and when it should be implemented. In or-
der to deal with these issues, we need the planning game and a good mechanism
for time estimations. The practices considered here are thePlanning Game and
Time Estimations.

• Engineering. Engineering practices include the day-to-day practices employed
by the programmers in order to implement the user stories into the final working
system. The practices considered here are Pair Programming, Refactoring, Col-
lective Code Ownership, Unit Testing, Design by Contract and Stepwise Feature
Introduction.

• Asset management. Any nontrivial software project will create many artifacts
which will evolve during the project. In XP, those artifactsare added in the cen-
tral repository and updated as soon as possible. Each team member is not only al-
lowed, but encouraged to change any artifact in the repository. The practices con-
sidered here are Configuration Management, Continuous Integration and Docu-
mentation.

The goal of this paper is to introduce the Gaudí environment,not the evaluation of
the practices which is an issue for a separate paper. Those interested can read about
particular practice evaluation in [8,9,10,32].

4.1 Requirements management

Customer Model The role of the customer in XP is to write and prioritize user
stories, explain them for the development team and define andrun acceptance tests
to verify the correct functionality of the implemented stories. One of the most dis-
tinctive features of XP is that the customer should work onsite, as a member of
the team, in the same room with the team and be 100% available for the team’s

15



questions. The XP customer practice appears to be achievingexcellent results, but
it also appears to be unsustainable [46].

An active customer is also a great boost for the team morale, as the Gaudí program-
mers noticed:”It would be more motivating to develop software that somebody is
actually going to use. The customer could have been more active, and at least
pretend to be interested in the product”. The XP customer practice appears to be
achieving excellent results, but it also appears to be unsustainable [46]. Among the
20 Gaudí projects, there was a real onsite customer only in one project [9]. Before
this the customers involvement was minimal and it was in the Feature Driven De-
velopment [55] style: the offsite customer wrote requirements for the application,
then the coach transformed these requirements into productrequirements. After
that the coach compiled the list of features based on the product requirements, and
the features were given to the developers as programming tasks.

Being an onsite customer does not increase the customer’s work load very much [9]
and has a number of benefits such as: improved communication between customers
and the programming team, decreased number of false features and feature misses,
etc. But despite the well-known benefits of an onsite customer, this model is hard
to implement in practice [24,41,40,65] due to the lack of commitment or the high
value of the customer. Yet, without sufficient developers-customer interaction it
becomes very hard to cope with changing requirements even though that is one of
the main goals of agile software development [31].

In one of our case studies [32] we showed how the mentioned problems were tack-
led with the effective use of acustomer representativeor a customer proxy. In
our experience, customer feedback with the customer representative model works
at least as well as with the onsite customer [32]. Bringing the customer closer to
the development process is important for keeping the project on track even with
changing requirements. Iterations, the heart beat of agility, provide only a short
time to influence things. Project time competes with the customer’s restricted and
valuable time. We believe that the involvement of a customerrepresentative can be
the required piece in making needed software functionality, uncertainty and time
resources meet. Truly active customer interaction enablesagility.

Table 4 shows how the Gaudí customer’s time was spent on project issues. Ap-
parently, being an onsite customer does not increase the customer’s work load very
much. One might even wonder whether an onsite presence is really necessary based
on these figures. However, the feedback from the developmentteam shows that an
onsite customer is very helpful even though the customer’s input was rather sel-
dom needed. The developers’ suggestion about involving thecustomer more in the
team’s work could also be implemented by seating the customer in the same room
with the programmers. The feeling was that there could have been more sponta-
neous questions and comments between the developers and thecustomer if she had
been in the same room. The second row in the table 4, SCS, showsthe data for

16



Available Writing stories With team Testing Idle

FiPla 100 2.5 3 2.5 92

SCS 71 5 9 20 37
Table 4
Customer involvement (%)

the project of summer 2004 where we did not have an onsite customer, but used a
customer representative or so-calledcustomer proxy. The difference between these
two customer models were that in the SCS project the customerrepresentative did
not commit himself to be always available to the team and in order to make deci-
sions he had to consult the actual customer who was basicallyoffsite. In both cases
all customer-team communications were face-to-face, no e-mails, no phone discus-
sions. It is essential to have an active customer or customer’s representative [32] in
a project when the customer model itself is not a subject for the case study. This
allows us to keep the developers focused on the product, not the research and not
be disturbed by the experimental nature of project.

User Stories Customer requirements in XP projects are presented in the form of
user stories. User stories are written by the customer and they describe the required
functionality from a user’s point of view, in about three sentences of text in the
customers terminology without using technical jargon [2,38]. Beck [19] provides
additional recommendation for stories: they should also include such information
as the title, date, status and a short description of what theuser should be able to
do after the story was finished. The time needed to implement the stories should be
estimable and they must make sense to the programmers.

In the Gaudí factory we do not require customers to have complete customer or
product specification for the software to be build. However,we do expect our cus-
tomer to write stories, either themselves or via their representatives. The most com-
prehensive written instructions are formulated as customer stories which followed
the guidelines given by the XP practice. The division of the product’s features into
the stories is made by the customer based on an intuitive ideaabout what mean-
ingful chunks the system could be divided into. A typical oneperson year project
normally has 15-25 user stories. The stories can also be the result of joint work
between the customer and the coach. While most of the storiesare written before
the project or in the beginning of it, customers still bring new stories throughout
the project’s time and delete or change existing stories.

In many projects, product or component requirements are represented in the form
of tasks written by programmers. Tasks contain a lot of technical details, and often
also describe what classes and methods are required to implement a concrete story.
A story normally produces 3-4 tasks. When a story is split into tasks, the tasks
are linked asdependenciesof the story, and the story becomesdependenton tasks.

17



When we used paper stories, we just attached the tasks to their stories. This is
done in order to ensure the bidirectional traceability of requirements. Moreover,
it is possible to trace each story or task to the source code implementing it. It is
essential that each story makes sense for the developers andit is estimable.

We have used both paper stories and stories written into a web-based task manage-
ment system. An advantage of paper stories is their simplicity. On the other hand,
the task management system allows its users to modify the contents of stories, add
comments, track the effort, attach files (i.e. tests or design documents) etc. It is also
more suitable when we have a remote or offsite customer. Currently we are only
using the task management system and do not have any paper stories at all.

4.2 Planning

Planning Game and Small Iterations The planning gameis the XP planning
process [19]: business gets to specify what the system needsto do, while develop-
ment specifies how much each feature costs and what budget is available per day,
week or month. XP talks about two types of planning: by scope and by time. Plan-
ning by time is used to choose the stories to be implemented, rather than taking all
of them and negotiating about a release date and resources tobe used (planning by
scope).

The time and people resources are fixed in a Gaudí project: theschedule is usually
three months and there are only four programmers available.Therefore we do re-
lease planning by time. Because the developers (and often also the customer) lack
experience, the coach usually selects the stories for the first short iteration. The
selection is based on two factors: selected stories should be implemented in two
weeks maximum and those stories should have the highest priority. The process
also teaches the customer how to create good stories – after estimating the stories
the coach often asks the customer to rewrite them in order to produce smaller and
better estimable stories. The coach also asks the customer to write tests or test-
ing scenarios based on the stories. After the coach and the customer decide on the
functionality for the first two weeks, the team and the coach will together split the
stories into technical tasks and then the developers will implement the tasks. No
time estimations are done at this point. By the time the first iteration functionality
is implemented, the team is better acquainted with the programming language and
the product, so they are in a better position to provide time estimations.

Each new iteration starts with the customer selecting the stories from the project
plan that should be implemented in the next release. The development team and the
customer meet in the beginning of each iteration to discuss the features to be imple-
mented. Since the customer stories usually do not provide very detailed guidelines
for the desired features, the development team and the customer need to discuss in

18



order to clarify open issues and provide more precise requirements. These meetings
usually take about an hour. During these meetings, some of the time is used to make
sure the team understands the application logic correctly,the rest of the discussions
often concern aspects of the user interface. There are typically five iterations in a
usual summer Gaudí project.

Time Estimations The XP release planning meeting is based on the idea that
the development team estimates each user story in terms of ideal programming
weeks [19]. An ideal week is how long a programmer imagines itwould take to
implement a story and its tests if he or she had absolutely nothing else to do.

We have two estimation phases in the Gaudí process. The first phase is when the
team estimated all of the stories in ideal programming days and weeks. These esti-
mations are not very precise and they are improved in the second estimation phase
when the team splits stories into tasks. When programmers split stories into techni-
cal tasks they make use of their previous programming experience and try to think
of the stories in terms of the programs they have already written. This makes sense
for the programmers and makes the estimating process easierfor them.

The estimated time for a taskEtask is the number of hours it will take one program-
mer to write the code and the unit tests for it. These estimations are done by the
same programmers that are signed up for the tasks, i.e., the person who estimates
the task will later implement it. This improves the precision of the estimations. Es-
timated timeEstoryi for a storystoryi split into number of taskstaski, j is twice the
sum of all its task estimations:

Estoryi = 2∑
j

Etaski, j

The sum is doubled to reserved the time for refactoring and debugging. This is
the estimation of a story for solo programming. In case of pair programming we
need to take the Nosek’s [53] principle into consideration:two programmers will
implement two tasks in pair 60 percent slower than two programmers implementing
the same tasks separately with solo programming.The story estimation for pair
programming case in Gaudí is:

Estoryi =

5
3∑

j
Etaski, j

Similarly, to get the estimation for an iteration we have to sum the estimations
of all stories the iteration consists of. Project estimation will be the sum of all its
iteration estimations. XP-style project estimation is useful to plan the next one or
two iterations in the project, but they can seldom be used to estimate the calendar
length or resources needed in a project.

19



Task Management As we already mentioned, we have abandoned user stories
written on paper. We are using a web-based issue tracking system for user stories,
tasks and bug report. The issues on a web-based system are as easy to handle as
the paper stories or tasks. This becomes especially obvious, when it comes to the
modification of the stories, or attaching e.g. design documents or test reports to
them. Electronic issues also have a number of advantages when compared to the
paper cards.

With an issue tracking system projects become more transparent to the customer
and the coach. It allows the customer to work offsite. Each electronic issue can be
linked to the source code in the repository. They can also contain the user documen-
tation (see Section 4.4). Also such a system makes it easier to collect some of the
metrics such as defect rate, deviation from the schedule, customer’s and develop-
ers’ productivity, to mention a few. Currently, we are usingJIRA [43] as a standard
issue tracking system in Gaudí.

4.3 Engineering

Pair Programming Pair programming is a programming technique in which two
programmers work together at one computer on the same task [66]. The program-
mer who types is called a driver, the other programmer is called a navigator. While
the driver works tactically, the navigator works strategically: looking for misspells
and errors and thinking about the overall structure of the code. All code in XP is
written in pairs. Productivity is assumed to follow the Nosek’s principle. Pair pro-
gramming has many significant benefits: better detailed design (in XP the design
is performed on the fly), shorter program code and better communication between
team members. Also, many common programming mistakes are caught as they are
being typed, etc [21]. As it has been frequently reported [21,22,39,50,68], pair pro-
gramming also has a great educational aspect. Programmers learn from each other
while working in pairs. This is especially interesting in our context since in the
same project we can have students with very different programming experience.

In our first projects we were enforcing developers to always work in pairs, later on
when we had some experienced developers in the projects, we gave the developers
the right to choose when to work in pair and when to work solo. Table 5 shows the
percentage of the pair-solo work in the three projects of summer 2003 and two of
summer 2004, the first number indicates the percentage of pair work. In the 2003
projects pair programming was not enforced, but recommended, while in summer
2004 two months were pair programming and one month solo. We leave it up to the
programmer whether to work in pairs while debugging or refactoring.

20



FiPla MED U3D SCS CRL

Programming 79/21 88/12 84/16 62/38 60/40

Refactoring 77/23 85/15 76/24 49/51 62/38

Debugging 27/73 84/16 86/14 74/26 51/49
Table 5
Pair vs. solo %

Unit Testing Unit testing is defined as testing of individual hardware or software
units or groups of related units [54]. In XP, unit testing refers to tests written by the
same developer as the production code. According to XP, all code must have unit
tests and the tests should be written before the actual code.The tests must use a
unit test framework to be able to create automated unit test suites.

Learning to write tests was relatively easy for most developers. The most diffi-
cult practice to adopt was the ”write test first” approach. Our experience shows
that if the coach spends time together with the programmers,writing tests himself
and writing the tests before the code, the programming team continues this testing
practice also without the coach. Some supervision is, however, required, especially
during the first weeks of work. The tutorial about unit testing focused at the test
driven development before the project is also essential. The implementation of the
testing practice also depends on the nature of the programming task. Our experi-
ence showed that the ”write test first” approach worked only in the situation where
the first programming tasks had no GUI involved because GUI code is hard to test
automatically.

Refactoring The most popular definitions for refactoring is given by Fowler [27]:
”Refactoring is the process of changing a software system insuch a way that it
does not alter the external behavior of the code, yet improves its internal structure”.
XP promotes refactoring throughout the entire project lifecycle to save time and
increase quality [57] by removing redundancy, eliminatingunused functionality,
rejuvenating obsolete designs. This practice together with pair programming also
promotes collective code ownership, where no one person owns the code and may
become a bottleneck for changes . Instead, every team memberis encouraged to
contribute to all parts of the project.

4.4 Asset Management

Continuous Integration According to XP, developers should integrate code into
the code repository every few hours, whenever possible, andin any case changes
should never be kept for more than a day. In this way XP projects detect early
compatibility problems, or even avoid them altogether, andensure that everyone

21



works with the latest version. Only one pair should integrate at a time. Due to the
small size (four to six programmers) of the development teams in Gaudí, we do
not use a special computer for integration, neither do we make use of integration
tokens. When a pair needs to integrate its code, the programmers from this pair
simply inform their colleagues and ask them to wait with their integration until the
first pair checks in the integrated code. The number of daily check-ins varies, but
there is at least one check-in every day. In many cases integration is just a matter of
few seconds.

All code produced in the Gaudí Software Factory, as well as all tests, are developed
under a version control system. The source code repository is also an important
source of data for analyzing the progress of the project, since all revisions are stored
there together with a record of the responsible person and date and time for check-
in. It is important to be able to trace every check-in to concrete tasks and user
stories [6]. For this purpose programmers add the identification of the relevant task
or story to commit log. The identification is the unique ID of the story or task in
the task management system (SourceForge or JIRA). The exception is when the
programmers refactor or debug existing code, it is then veryhard (or impossible) to
trace this activity to a concrete task or story. Therefore check-ins after refactoring
or debugging are linked to the ”General Refactoring and Debugging” task.

Documentation There are two types of documentation produced in Gaudí: soft-
ware documentation or source code documentation and user documentation or man-
uals. Since our intention has been the continuation of some projects with new de-
velopment teams, the practice of documenting the source code has been in Gaudí
from the very first project. The programmers were adding documentation strings
to each class and method. In Python there are comments but also a special lan-
guage statement for documentation which then are processedby thePyDoc(simi-
lar to JavaDoc) tool which produces e.g. HTML documentation for the code. The
approach of the self-documenting code goes well with the continuous refactoring
discussed before because the code and its documentation areavailable for the de-
veloper’s reference and updates at the same place, and the whole documentation
of the system, e.g. in HTML, is always kept up to date by simplytyping ”make
doc” command. In the case of Eiffel, sufficient up-to-date software documentation
is provided in the form of pre- and post-conditions and classinvariants [9].

User documentation received special attention in Gaudí as the expertise areas of
project’s customer and coach started differ, e.g. a projectwhich developed an ap-
plication in information systems, a tool for financial benchmarking using self-
organizing maps [62]. The fact that the built software wouldbe used by people out-
side the Gaudí factory and the laboratory influenced our growing interest in the user
documentation. The idea behind the documentation process is the following: when
a story is implemented, the pair or single programmer who implemented it should
also write the user documentation for the story. The documentation is written di-

22



rectly on the story (issue on JIRA system) or in a text file located in the project’s
repository. This file is divided into sections, where each section corresponds to an
implemented story. If the stories are on a web-based task management system, the
documentation is written directly in the stories – this simplifies the bidirectional
traceability for stories and their documentation, and helps keeping the documenta-
tion up-to-date. Later on the complete user documentation will be compiled from
the stories’ documentation. Documenting a user story is basically rephrasing it, and
it takes an average of 30 minutes to do it. In order to ensure that each of the stories
is documented, the customer closes a story (accepts its implementation) only after
it has been documented.

These approaches allow us to embed the software and the user documentation into
the development process. The documentation for the new developers is provided
by the self-documenting code, while the bidirectional traceability of the stories
and user documentation makes it easy to update the corresponding documentation
whenever the functionality changes. The documentation examples from one of the
Gaudí projects can be found in [10].

5 Experiences from Gaudí

In the previous sections we have presented the environment for empirical software
engineering research – Gaudí Software Factory and the Laboratory for Software
Construction. We have described the settings for the Gaudí Software Factory and
presented the software process which has been used in over 20projects during a
period of five years in the factory. In this section we would like to discuss some of
the overall experiences obtained from the Gaudí environment.

Past Projects The application areas of the software built in Gaudí are quite var-
ied. Examples of produced software are: an editor for mathematical derivations,
software construction and modeling tools, 3D model animation, a personal finan-
cial planner, financial benchmarking of organizations, a mobile ad-hoc network
router, digital TV middleware, and so on.

Table 6 lists 20 projects in the Gaudí factory. The effort of each project is given in
person-months (PM) and the size of produced software size isgiven in thousands
of lines of code (KLOC). We distinguish between four types ofprojects:

• NEW: New software project where a software product is built from scratch.
Usually most of the tools, methods and experimental techniques selected for
such a project have already given positive feedback in previous Gaudí projects.
Only few new methods can be investigated.

23



• CNT: Continuation of an existing software project, where a new development
team takes over the code of an existing software product. Thenew team usu-
ally consists of 50-75% of programmers without previous experience with the
software or even without any previous experience in Gaudí. More of the new
experimental methods can be used for such projects.

• MNT: Maintenance project where the old team takes care of the maintenance
of the existing software. Some minor functionality can be added to the product,
but the main software goal is maintenance. Only a few new methods can be
investigated.

• EXP: Technology exploration project where the software goal is not to build a
product for a customer, but to explore specific software technology, such as a
new programming language or technique, or CASE tool. These projects often
involve the use of COTS or open source libraries, etc.

Since there is no software goal as such for the technology exploration projects, we
do not list the lines of code produced in them.

All software in Gaudí was built in time and on budget. We have managed to deliver
the desired software for its customers in time among all the Gaudí project which
had clear goals for the software to be build. The software products reach their func-
tional level that is set at the end of the overall planning period for the projects.
This does not only concern the projects with well-defined requirements, but also
the projects with very high requirement uncertainties [32]. Examples of this soft-
ware are: Coral Modeling Framework [5], Software Construction Workbench [7],
MathEdit – an Editor for Mathematical Derivations [13], Domino – a tool for fi-
nancial benchmarking with self organizing maps [62] and SOCOS – an Editor for
Refinement Diagrams [8].

We introduce refactoring right after the first short iteration and promote it through-
out the whole project. Pair programming, continuous refactoring, collective code
ownership, and the layered architecture make the code produced in the Gaudí fac-
tory simpler and easier to read, and hence more maintainable. As mentioned before,
larger products are developed in a series of three-months projects and not necessar-
ily by the same developers. To ensure that a new team that takes over the project
gets to understand the code quickly, we usually compose the team with one or two
developers who have experience with the product from a previous project, the rest
of the team being new to the product. In this way new developers can take over
the old code and start contributing to the different parts ofthe product faster. When
the team is completely new, the coach will help the developers to take over the old
code.

Agile Methods Support our Experimental Setup As overall conclusions of our
experiences is that agile methods provide good results whenused in small projects
with undefined and volatile requirements. Agile methods have many known limita-

24



Year Project Effort, PM Type Size, KLOC

Summer 01 EXE 18 NEW 4.7

Summer 02 SCW 12 NEW 18.6

MTR 3 EXP –

MED 12 NEW 14.8

SMW 12 CNT 36.1

Spring 03 SCW 6 MNT 20.5

SMW 6 MNT 45.6

MED 6 MNT 20.3

Summer 03 FPL 12 NEW 11.1

U3D 12 NEW –

MED 12 CNT 31.6

WLN 12 EXP –

DVE 12 EXP –

Summer 04 NS2 18 EXP –

CRL 12 NEW 11.8

SCS 12 NEW 10.0

Fall 05 SCS 6 CNT 13.2

DOM 8 NEW 7.4

Summer 05 SCS 12 CNT 10.5

CRL 12 CNT 28.9

Total 215 160.3
Table 6
Software projects in Gaudí, 2001-2005

tions such as difficulties to scale up to large teams, reliance on oral communication
and a focus on functional requirements that dismisses the importance of reliability
and safety aspects. However, when projects are of relatively small size and are not
safety critical, agile methods will enable us to reliably obtain results in a short time.

The fact that agile methods worked for us does not mean that isnot possible to im-
prove existing agile practices. Our first recommendation isthat architectural design
should be an established practice. We have never observed a good architecture to
”emerge” from a project. The architecture has been either designed a priory at the
beginning of a project or a posteriori, when the design was sodifficult to understand
that a complete rethinking was needed.

25



Also, we established project and product documentation as an important task. XP
reliance on oral communication should not be used in environments with high de-
veloper turnaround. Artifacts describing the software architecture, design and prod-
uct manual are as important as the source code and should be created and main-
tained during the whole life of the project.

Tension between Development and ResearchFinally, we want to note that dur-
ing these five years we have observed a certain tension between the development of
software and the research of software development. We have had projects that pro-
duced good products to customer satisfaction but were considered bad case studies
since it was not possible to collect all the desired data in a reliable way. Also, there
have been successful case studies that produced software that has never been used
by its customer.

To detect and avoid these situations a well-defined measurement framework should
be in place during the development phase of a project but alsoafter the project has
been completed to monitor how the products are being used by their customers.

6 Conclusions

The software engineering discipline studies how to build large software systems
that fulfill the user’s requirements, are reliable and are constructed on time and
within budget. This includes the study of many different concepts and techniques
used in software development: software process models, modeling notations, pro-
gramming languages and methods, testing and validation strategies, CASE tools.
Various methods such as surveys, case studies and formal experiments have been
proven to be useful for empirical software engineering. However, most software
engineering research has been following a research-then-transfer methodology due
to the lack of the proper environment which reflects the real settings of the industry
and yet allows researches to have control over the software process.

In this paper we have presented Gaudí, our approach to empirical research in soft-
ware engineering based on the development of small softwareproducts in a con-
trolled environments. This approach requires a large amount of resources and ef-
fort but provides a unique opportunity to monitor and study software development
in practice. And at the same time it allows us to produce maintainable and quality
software for its customers – researchers. The Gaudí factorystarted in 2001 and has
carried out 20 projects during a period of five years representing an effort of 30
person-years in total. This work has been measured and the results of these mea-
surements are being used to create the so called Gaudí process. Once this process
is completely defined it can be used to assess new software engineering techniques,
methods and tools. We believe that other universities and research units can benefit

26



from us in their research in empirical software engineeringby creating a factory-
laboratory environment similar to our Gaudí settings.

The software which has been built in Gaudí environment provides the validity of
Gaudí as a factory for software construction. All software in Gaudí was built in time
and on budget. We have managed to deliver the desired software for its customers
in time among all the Gaudí project which had clear goals for the software to be
build. The software products reach their functional level that is set at the end of the
overall planning period for the projects. This does not onlyconcern the projects
with well-defined requirements, but also the projects with very high requirement
uncertainties.

Another evidence for the validity of our research is its benefit to our environment.
We are not just improving or inventing software engineeringmethods, but we are
”using our own medicine” – implementing our finding into the way the software is
built in Gaudí factory. Here the evidence is satisfied customer and software delivery
in time when there are large requirement uncertainties – as aresult of the customer
proxy application, those successful products which were built using the Stepwise
Feature Introduction methodology, etc.

6.1 Limitations and Future Work

A good working software factory would need to have a permanent staff of software
developers who would built up the competence of the factory.We see the biggest
limitation of our work in the competence build-up. People are the greatest assets
in software organizations because they represent intellectual capital [61]. However,
we are not able to keep these valuable assets because Gaudí developers are students
who will eventually graduate and leave, and the funding infrastructure for employ-
ing permanent staff in order to build the competence is missing. We could use this
limitation as an advantage and investigate new software methods within the high
turnaround factor, but this would seriously limit the spectrum of our research. And
even a greater threat for us could be a high turnaround of the researches involved
in Gaudí as coaches and project managers. The Gaudí factory uses agile process
with much reliance on oral communication which perhaps could be mitigated by
the means of documentation and standardization. Yet it is unclear whether docu-
ments and standards would actually help and will a heavily documented process be
still flexible and agile.

We see our future work in Gaudí in moving towards formal experiments. We do not
think we should abandon other investigation techniques: surveys and case studies.
We have collected enough of valuable data for retrospectivestudies and we can
foresee that case studies will be the most reasonable approach for some of the fu-
ture software projects in Gaudí. A case study is also the mostlikely technique for

27



future collaboration of Gaudí with the industry. Nevertheless, formal experiments
will become especially useful for us as the Gaudí process became defined and the
number of tools, methods and practices used became set. In this situation formal
experimentation will be the best way to consider alternative tools, methods and
practices. Formal experiments would also provide us with with the data on gen-
eralizability of our experience which would be critical forthe experience transfer
outside Gaudí.

References

[1] ASU Software Factory. http://softwarefactory.asu.edu/.

[2] Extreme Programming: A gentle introduction website. Online at:
http://www.extremeprogramming.org/.

[3] Encyclopedia of Software Engineering, volume 1, chapter The Experience Factory,
pages 469–476. John Wiley & Sons, Inc., 1994.

[4] Pekka Abrahamsson. Extreme Programming: First Resultsfrom a Controlled
Study. InProceedings of the 29th EUROMICRO Conference ”New Waves in System
Architecture”. IEEE, 2003.

[5] Marcus Alanen and Ivan Porres. The Coral Modelling Framework. In Johan Lilius
Kai Koskimies, Ludwik Kuzniarz and Ivan Porres, editors,Proceedings of the 2nd
Nordic Workshop on the Unified Modeling Language NWUML’2004, number 35 in
TUCS General Publications. TUCS Turku Centre for Computer Science, Jul 2004.

[6] Ulf Asklund, Lars Bendix, and Torbjörn Ekman. Software Configuration Management
Practices for eXtreme Programming Teams. InProceedings of the 11th Nordic
Workshop on Programming and Software Development Tools andTechniques
NWPER’2004, August 2004.

[7] Ralph Back, Dag Björklund, Johan Lilius, Luka Milovanov, and Ivan Porres. A
workbench to experiment on new model engineering applications. In Perdita Stevens,
Jon Whittle, and Grady Booch, editors,UML 2003 - The Unified Modeling Language,
volume 2863 ofLNCS, San Francisco , CA, USA, Oct 2003.

[8] Ralph-Johan Back, Johannes Eriksson, and Luka Milovanov. Using stepwise feature
introduction in practice: An experience report. InRISE, pages 2–17, 2005.

[9] Ralph-Johan Back, Piia Hirkman, and Luka Milovanov. Evaluating the XP Customer
Model and Design by Contract. InProceedings of the 30th EUROMICRO Conference.
IEEE Computer Society, 2004.

[10] Ralph-Johan Back, Luka Milovanov, and Ivan Porres. Software Development and
Experimentation in an Academic Environment: The Gaudi Experience. Technical
Report 641, TUCS, 2004.

28



[11] Ralph-Johan Back, Luka Milovanov, Ivan Porres, and Viorel Preoteasa. An
Experiment on Extreme Programming and Stepwise Feature Introduction. Technical
Report 451, TUCS, 2002.

[12] Ralph-Johan Back, Luka Milovanov, Ivan Porres, and Viorel Preoteasa. XP as a
Framework for Practical Software Engineering Experiments. In Proceedings of the
Third International Conference on eXtreme Programming andAgile Processes in
Software Engineering - XP2002, May 2002.

[13] Ralph-Johan Back and Magnus Myreen. Tool support for invariant based
programming. InAPSEC ’05: Proceedings of the 12th Asia-Pacific Software
Engineering Conference (APSEC’05), pages 711–718, Washington, DC, USA, 2005.
IEEE Computer Society.

[14] Victor Basili, Gianluigi Caldiera, and Dieter Rombach. The Goal Question Metric
Approach. Encyclopedia of Software Engineering. John Wiley and Sons, 1994.

[15] Victor R. Basili. Quantitative Evaluation of SoftwareEngineering Methodology. In
Proceedings of the First Pan Pacific Computer Conference, Melbourne, Australia,
September 1985.

[16] Victor R. Basili, Frank E. McGarry, Rose Pajerski, and Marvin V. Zelkowitz. Lessons
learned from 25 years of process improvement: The Rise and Fall of the NASA
Software Engineering Laboratory. InIEEE Computer Society and ACM International
Conference on Software Engineering (ICSE 2002), May 2002.

[17] Victor R. Basili and H. Dieter Rombach. The TAME Project: Towards Improvement-
Oriented Software Environments.IEEE Trans. on Software Engineering, 14(6):758–
773, June 1988.

[18] Kent Beck. Embracing Change with Extreme Programming.Computer, 32(10):70–73,
October 1999.

[19] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

[20] Joseph Chao. Balancing hands-on and research activities: A graduate level agile
software development course. InProceedings of Agile 2005 Conference, July, Marriott
Denver City Center, 2005.

[21] Alistair Cockburn and Laurie Williams. The Costs and Benefits of Pair Programming.
In Proceedings of eXtreme Programming and Flexible Processesin Software
Engineering XP2000, 2000.

[22] L. L. Constantine.Constantine on Peopleware. Englewood Cliffs: Prentice Hall, 1995.

[23] Ko Dooms and Roope Kylmäkoski. Comprehensive documentation made agile –
experiments with rapid7 in philips. InProceedings of the 6th International Conference
on Product Focused Software Process Improvement - PROFES 2005, Oulu, Finland,
2005.

[24] C. Farell, R. Narang, S. Kapitan, and H. Webber. Towardsan effective onsite
customer practice. InProceedings of the Third International Conference on eXtreme
Programming and Agile Processes in Software Engineering - XP2002, May 2002.

29



[25] Norman E. Fenton. Software Metrics: A Rigorous and Practical Approach.
International Thomson Computer Press, Boston, MA, USA, 1996.

[26] Thomas Flohr and Thorsten Schneider. An xp experiment with students - setup and
problems. InProceedings of the 6th International Conference on ProductFocused
Software Process Improvement - PROFES 2005, Oulu, Finland, 2005.

[27] Martin Fowler. Refactoring: Improving the Design of Existing Code. Object
Technology Series. Addison-Wesley, 1999.

[28] Robert Gittins and Sian Hope. A study of Human Solutionsin eXtreme Programming.
In Proceedings of 13th Workshop of the Psychology of Programming Interest Group –
PPIG, Bournemouth UK, April 2001.

[29] Tracy Hall and Norman Fenton. Implementing effective software metrics programs.
IEEE Softw., 14(2):55–65, 1997.

[30] Görel Hedin, Lars Bendix, and Boris Magnusson. Introducing software engineering by
means of Extreme Programming. InICSE ’03: Proceedings of the 25th International
Conference on Software Engineering, Washington, DC, USA, 2003. IEEE Computer
Society.

[31] Jim Highsmith and Alistair Cockburn. Agile software development: The business of
innovation.Computer, 34(9):120–122, 2001.

[32] Piia Hirkman and Luka Milovanov. Introducing a Customer Representative to High
Requirement Uncertainties. A Case Study. InProceedings of the International
Conference on Agile Manufacturing, 2005.

[33] M. Holcombe, M. Gheorghe, and F. Macias. Teaching xp forreal: Some initial
observations and plans; proceedings xp2001; sardinia, 2001.

[34] Hanna Hulkko and Pekka Abrahamsson. A multiple case study on the impact of pair
programming on product quality. InICSE ’05: Proceedings of the 27th international
conference on Software engineering, New York, NY, USA, 2005. ACM Press.

[35] Sylvia Ilieva, Penko Ivanov, and Eliza Stefanova. Analyses of an Agile Methodology
Implementation. InProceedings of the 30th EUROMICRO Conference. IEEE
Computer Society, 2004.

[36] Sadahiro Isoda and Motoshi Saeki. Software engineering in asia. IEEE Software,
11(6):63–68, 1994.

[37] Andreas Jedlitschka, Dirk Hamann, Thomas Göhlert, andAstrid Schröder. Adapting
PROFES for Use in an Agile Process: An Industry Experience Report. In PROFES,
2005.

[38] Ron Jeffries, Ann Anderson, and Chet Hendrickson.Extreme Programming Installed.
Addison-Wesley, 2001.

[39] David H. Johnson and James Caristi. Extreme Programming and the Software Design
Course. InProceedings of XP Universe, 2001.

30



[40] Mikko Korkala. Extreme Programming: Introducing a Requirements Management
Process for an Offsite Customer. Department of InformationProcessing Science
research papers series A, University of Oulu, 2004.

[41] Mikko Korkala and Pekka Abrahamsson. Extreme Programming: Reassessing the
Requirements Management Process for an Offsite Customer. In Proceedings of
the European Software Process Improvement Conference EUROSPI 2004. Springer
Verlag LNCS Series, 2004.

[42] Noel F LeJeune. Teaching software engineering practices with extreme programming.
J. Comput. Small Coll., 21(3):107–117, 2006.

[43] Atlassian Software Systems Pty Ltd. JIRA – bug tracking, issue tracking and project
management software. http://www.atlassian.com/software/jira/, 2007.

[44] Daniel Lübke and Kurt Schneider. Agile hour: Teaching xp skills to students and it
professionals. InProceedings of the 6th International Conference on ProductFocused
Software Process Improvement - PROFES 2005, Oulu, Finland, 2005.

[45] Katiuscia Mannaro, Marco Melis, and Michele Marchesi.Empirical Analysis on
the Satisfaction of IT Employees Comparing XP Practices with Other Software
Development Methodologies. In5th International Conference on Extreme
Programming and Agile Processes in Software Engineering – XP 2004, Garmisch-
Partenkirchen, Germany, June 2004.

[46] Angela Martin, Robert Biddle, and James Noble. The XP Customer Role in Practice:
Three Studies. InAgile Development Conference, 2004.

[47] Angela Martin, James Noble, and Robert Biddle. Being Jane Malkovich: A Look
Into the World of an XP Customer. In4th International Conference on Extreme
Programming and Agile Processes in Software Engineering – XP 2003, Genova, Italy,
May 2003.

[48] Robert C. Martin. eXtreme Programming Development through Dialog.IEEE Softw.,
17(4):12–13, 2000.

[49] Grigori Melnik and Frank Maurer. Introducing Agile Methods in Learning
Environments: Lessons Learned. InThird XP and Second Agile Universe Conference
on Extreme Programming and Agile Methods – XP/Agile Universe, August 2003.

[50] Mathias M. Müller and Walter F. Tichy. Case study: Extreme programming in
a university environment. InProceedings of the 23rd Conference on Software
Engineering. IEEE Computer Society, 2001.

[51] Roger A. Müller. Extreme programming in a university project. In5th International
Conference on Extreme Programming and Agile Processes in Software Engineering –
XP 2004, Garmisch-Partenkirchen, Germany, 2004.

[52] Orlando Murru, Roberto Deias, and Giampiero Mugheddu.Assessing XP at a
European Internet Company.IEEE Softw., 20(3):37–43, 2003.

[53] J.T. Nosek. The Case for Collaborative Programming.Communications of the ACM,
41(3):105–108, 1998.

31



[54] Institute of Electrical and Electronics Engineers. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, 1990.

[55] Stephen R. Palmer and John M. Felsing.A Practicel Guide to Feature-Driven
Development. The Coad Series. Prentice Hall PTR, 2002.

[56] Colin Potts. Software-engineering research revisited. IEEE Software, 10(5):19–28.

[57] D. B. Roberts.Practical Analysis of Refactorings. PhD thesis, University of Illinois
at Urbana-Champaign, 1999.

[58] Bernhard Rumpe and Astrid Schröder. Quantitative survey on extreme programming
projects. InThird International Conference on Extreme Programming andFlexible
Processes in Software Engineering, XP2002, May 26-30, pages 95–100, Alghero,
Italy, 2002.

[59] Outi Salo and Pekka Abrahamsson. Evaluation of Agile Software Development: The
Controlled Case Study approach. InProceedings of the 5th International Conference
on Product Focused Software Process Improvement PROFES 2004. Springer Verlag
LNCS Series, 2004.

[60] Dean Sanders. Student Perceptions of the Suitability of Extreme and Pair
Programming. InProceedings of XP Universe, 2001.

[61] Ian Sommerville.Software Engineering (7th Edition). Pearson Addison Wesley, 2004.

[62] Patrik Ståhl, Tomas Eklund, Franck Tétard, and Barbro Back. A cooperative usability
evaluation of the domino software. Technical Report 775, TUCS, Jun 2006.

[63] Matt Stephens and Doug Rosenberg.Extreme programming refactored: the case
against XP. Apress L.P., 2003.

[64] CMMI Team. Capability Maturity Model Integration, Version 1.1, CMMI for Systems
Engineering, Software Engineering, Integrated Product and Process Development,
and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1), Continuous Representation,
CMU/SEI-2002-TR-011, ESC-TR-2002-011, March 2002.

[65] Nathan Wallace, Peter Bailey, and Neil Ashworth. Managing xp with multiple or
remote customers. InProceedings of the Third International Conference on eXtreme
Programming and Agile Processes in Software Engineering - XP2002, May 2002.

[66] Laurie Williams and Robert Kessler.Pair Programming Illuminated. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[67] Laurie Williams, Robert R. Kessler, Ward Cunningham, and Ron Jeffries.
Strengthening the case for pair programming.IEEE Softw., 17(4):19–25, 2000.

[68] Laurie A. Williams and Robert R. Kessler. Experimenting with Industry’s Pair-
Programming Model in the Computer Science Classroom.Journal on Software
Engineering Education, December 2000.

32


